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Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition (Circularity)

An attribute grammar 20 = (G, E, V) € AG is called circular if there exists
a syntax tree t such that the attribute equation system E; is recursive
(i.e., some attribute variable of ¢t depends on itself). Otherwise it is called
noncircular.

Remark: because of the division of Var, into In; and Out,, cyclic
dependencies cannot occur at production level.
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Attribute Dependency Graphs and Circularity |

Observation: a cycle in the dependency graph D; of a given syntax tree t
is caused by the occurrence of a “cover” production
T = Ag — woAiwy ... Aw, € Pin a node kg of t such that
@ the dependencies in E, yield the “upper end” of the cycle and
@ for at least one i € [r], some attributes in syn(A;) depend on
attributes in inh(A4;).

on the board l

To identify such “critical” situations we need to determine for each i € [r]
the possible ways in which attributes in syn(A;) can depend on attributes
in inh(A;).
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Attribute Dependency Graphs and Circularity 11
Definition (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, X, P,S).
o If t is a syntax tree with root label A € N and root node k,
a € syn(A), and 3 € inh(A) such that 3.k —7 a.k, then « is

. _ A
dependent on 3 below A in t (notation: 8 — «).
@ For every syntax tree t with root label A € N,

is(A, t) :={(B,a) € inh(A) x syn(A) | B A ain t}.
o For every AelN,

IS(A) :

{is(A, t) | t syntax tree with root label A}
2

C 92InhxSyn

Remark: it is important that /S(A) is a system of attribute dependence
sets, not a union (otherwise: strong noncircularity—see exercises).

on the board
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© The Circularity Check
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The Circularity Check |

In the circularity check, the dependency systems IS(A) are iteratively
computed. The following notation is employed:

Definition 15.1
Given m = A — wpAiwi ... A,w, € P and is; C inh(A;) x syn(A;) for
every i € [r], let

is[m;is1, ..., is,] C inh(A) x syn(A)
be given by
is[m;ist, ... is| ==

{(8.0) [ (8.0.0.0) € (=7 VU1 {(8"pra'pi) | (8'.) € si})* }

where p; := ). [wj_1] +i.

on the board
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The Circularity Check |1

Algorithm 15.3 (Circularity check for attribute grammars)
Input: A =(G,E,V) € AG with G = (N,X,P,S)
Procedure: @ for every A € N, iteratively construct IS(A) as follows:
@ ift=A— we P, then is[x] € IS(A)
@ ifmt=A— wAiwi...Aw, € P andis; € IS(A;) for
every i € [r], then is[m; is1,. .., is.] € IS(A)

© test whether 2 is circular by checking if there exist
T=A— wAiwy...Aw, € P and is; € IS(A;) for
every i € [r] such that the following relation is cyclic:
—r Uiz {(B-pis a.pi) | (B, ) € isi}
(where pr = Y1_ |wja| + 1)
Output: ‘“yes” or “no”
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The Circularity Check 111
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Application of Algorithm 15.3: on the board
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© Correctness and Complexity of the Circularity Check
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Correctness and Complexity of Circularity Check

Theorem 15.5 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 15.3 yields the answer “yes”.

by induction on the syntax tree t with cyclic D O

Lemma 15.6

The time complexity of the circularity check is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

4

by reduction of the word problem of alternating Turing machines (see

M. Jazayeri: A Simpler Construction for Showing the Intrinsically Exponential
Complexity of the Circularity Problem for Attribute Grammars, Comm. of the
ACM 28(4), 1981, pp. 715-720) O

v
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O Attribute Evaluation
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Attribute Evaluation Methods

Given: @ noncircular attribute grammar 24 = (G, E, V) € AG

@ syntax tree t of G
@ valuation v : Syns — V where
Syns :={a.k | k labelled by a € X, € syn(a)} C Var,
Goal: extend v to (partial) solution v : Var; — V
Methods: @ Topological sorting of D; (later):
@ start with variables which depend at most on Synys
@ proceed by successive substitution
@ Strongly noncircular AGs: recursive functions (details
omitted)
@ for every A € N and « € syn(A), define evaluation
function ga  with the following parameters:
@ the node of t where a has to be evaluated and
@ all inherited attributes of A on which « (potentially)
depends
@ for every a € syn(S), evaluate gs o (ko) where kg
denotes the root of t
© L-attributed grammars: integration with top-down parsing
(later)
© S-attributed grammars (i.e., Inh = 0): yacc
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© Attribute Evaluation by Topological Sorting
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Attribute Evaluation by Topological Sorting
Algorithm 15.7 (Evaluation by topological sorting)

Input: noncircular A = (G, E, V) € AG, syntax tree t of G,
valuation v : Syns — V
Procedure: @ let Var := Var, \ Syns (* attributes to be evaluated *)
Q while Var # () do

@ let x € Var such that {y € Var |y = x} =0
Q let x =f(x1,...,xn) € E¢

O let v(x) = f(v(x1),...,v(x))

O let Var := Var \ {x}

Output: solution v : Vary — V

Remark: noncircularity guarantees that in step 2.1 at least one such x is
available

Example 15.8
see Examples 13.1 and 13.2 (Knuth's binary numbers)
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© L-Attributed Grammars
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L-Attributed Grammars |

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 15.1 (L-attributed grammar)

Let 2 = (G, E, V) € AG such that, for every 7 € P and
B.i="f(...,a ,...) € Ex with 8 € Inh and « € Syn, j < i. Then 2 is
called an L-attributed grammar (notation: 2 € LAG).

Remark: note that no restrictions are imposed for € Syn (for i = 0) or
a € Inh (for j = 0). Thus, in an L-attributed grammar,
@ synthesized attributes of the left-hand side can depend on any outer
variable and
@ every inner variable can depend on any inherited attribute of the
left-hand side.

Corollary 15.2
Every A € LAG is noncircular.
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L-Attributed Grammars Il
Example 15.3
©

L-attributed grammar:
S—AB il =0

2 =s1+1

s0=s2+1
A—aA (2 =i0+1

s0=s52+1 a

A—c s0=170+1
B—b s0=i0+1
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Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

© top-down: evaluation of inherited attributes

© bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing
© top-down: expansion steps

© bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate
attribute evaluation =

@ use recursive-descent parser

@ add variables and operations for attribute evaluation
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Recursive-Descent Parsing I

Ingredients: @ variable token for current token
@ function next () for invoking the scanner
@ procedure print (i) for displaying the leftmost analysis
(or errors)

Method: to every A € N we assign a procedure
A(in: inh(A), out: syn(A))

which

@ declares local variables for synthesized attributes on
right-hand sides,

@ tests token with regard to the lookahead sets of the
A-productions,

@ prints the corresponding rule number and
@ evaluates the corresponding right-hand side as follows:

o for a € X: check token; call next ()
e for A€ N: call A with appropriate parameters
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Recursive-Descent Parsing Il

Example 15.4 (cf. Example 15.3)

proc main();
token := next(); SO
proc SQO); (xS - AB %)
if token in {’a’,’c’} then
print(1); AQO; BO
else print(error); stop fi
proc AQQ; (x A — a A | c %)

if token = ’a’ then
print(2); token := next(); AQ)
elsif token = ’c’ then

print(3); token := next()
else print(error); stop fi
proc B(Q); (x B — b %)
if token = ’b’ then
print(4); token := next()
else print(error); stop fi
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Recursive-Descent Parsing I

Example 15.5 (cf. Example 15.3)

proc main(); var s;

token := next(); S(s); print(s)
proc S(out s0); var si,s2; (xS — AB %)
if token in {’a’,’c’} then
print(1); A(O0,s1); B(sl + 1,s2); s0O :
else print(error); stop fi
proc A(in i0,out s0); var s2;
if token = ’a’ then
print(2); token := next(); A(i0 + 1,s2); sO := s2 + 1
elsif token = ’c’ then
print(3); token := mnext(); sO
else print(error); stop fi
proc B(in i0,out s0); (x B — b %)
if token = ’b’ then

s2 + 1

xA - a A | cx*

= i0 + 1

print(4); token := next(); sO

=10 + 1
else print(error); stop fi

V.
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