Compiler Construction

Lecture 15: Semantic Analysis Il
(Attribute Evaluation)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

@ Repetition: Circularity of Attribute Grammars

m Compiler Construction Summer Semester 2012 15.2



Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition (Circularity)

An attribute grammar 20 = (G, E, V) € AG is called circular if there exists
a syntax tree t such that the attribute equation system E; is recursive
(i.e., some attribute variable of ¢t depends on itself). Otherwise it is called
noncircular.

Remark: because of the division of Var, into In; and Out,, cyclic
dependencies cannot occur at production level.

mH Compiler Construction Summer Semester 2012 15.3



Attribute Dependency Graphs and Circularity |

Observation: a cycle in the dependency graph D; of a given syntax tree t
is caused by the occurrence of a “cover” production
T = Ag — woAiwy ... Aw, € Pin a node kg of t such that
@ the dependencies in E, yield the “upper end” of the cycle and
@ for at least one i € [r], some attributes in syn(A;) depend on
attributes in inh(A4;).

on the board l

To identify such “critical” situations we need to determine for each i € [r]
the possible ways in which attributes in syn(A;) can depend on attributes
in inh(A;).

mH Compiler Construction Summer Semester 2012 15.4



Attribute Dependency Graphs and Circularity 11
Definition (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, X, P,S).
o If t is a syntax tree with root label A € N and root node k,
a € syn(A), and 3 € inh(A) such that 3.k —7 a.k, then « is

. _ A
dependent on 3 below A in t (notation: 8 — «).
@ For every syntax tree t with root label A € N,

is(A, t) :={(B,a) € inh(A) x syn(A) | B A ain t}.
o For every AelN,

IS(A) :

{is(A, t) | t syntax tree with root label A}
2

C 92InhxSyn

Remark: it is important that /S(A) is a system of attribute dependence
sets, not a union (otherwise: strong noncircularity—see exercises).

on the board

RWNTH Compiler Construction Summer Semester 2012 15.5




© The Circularity Check

m Compiler Construction Summer Semester 2012 15.6



The Circularity Check |

In the circularity check, the dependency systems IS(A) are iteratively
computed. The following notation is employed:

Definition 15.1
Given m = A — wpAiwi ... A,w, € P and is; C inh(A;) x syn(A;) for
every i € [r], let

is[m;is1, ..., is,] C inh(A) x syn(A)
be given by
is[m;ist, ... is| ==

{(8.0) [ (8.0.0.0) € (=7 VU1 {(8"pra'pi) | (8'.) € si})* }

where p; := ). [wj_1] +i.

on the board

mH Compiler Construction Summer Semester 2012 15.7




The Circularity Check |1

Algorithm 15.3 (Circularity check for attribute grammars)
Input: A =(G,E,V) € AG with G = (N,X,P,S)
Procedure: @ for every A € N, iteratively construct IS(A) as follows:
@ ift=A— we P, then is[x] € IS(A)
@ ifmt=A— wAiwi...Aw, € P andis; € IS(A;) for
every i € [r], then is[m; is1,. .., is.] € IS(A)

© test whether 2 is circular by checking if there exist
T=A— wAiwy...Aw, € P and is; € IS(A;) for
every i € [r] such that the following relation is cyclic:
—r Uiz {(B-pis a.pi) | (B, ) € isi}
(where pr = Y1_ |wja| + 1)
Output: ‘“yes” or “no”

mH Compiler Construction Summer Semester 2012 15.8



The Circularity Check 111
@

DA—>a: @

g
g

Y

s ™ T B S
) 5
§ S

DA—)C:

(D

Dp—b: (B)

Application of Algorithm 15.3: on the board

mH Compiler Construction Summer Semester 2012 15.9



© Correctness and Complexity of the Circularity Check

m Compiler Construction Summer Semester 2012 15.10



Correctness and Complexity of Circularity Check

Theorem 15.5 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 15.3 yields the answer “yes”.

by induction on the syntax tree t with cyclic D O

Lemma 15.6

The time complexity of the circularity check is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

4

by reduction of the word problem of alternating Turing machines (see

M. Jazayeri: A Simpler Construction for Showing the Intrinsically Exponential
Complexity of the Circularity Problem for Attribute Grammars, Comm. of the
ACM 28(4), 1981, pp. 715-720) O

v

RWNTH Compiler Construction Summer Semester 2012 15.11




O Attribute Evaluation

m Compiler Construction Summer Semester 2012




Attribute Evaluation Methods

Given: @ noncircular attribute grammar 24 = (G, E, V) € AG

@ syntax tree t of G
@ valuation v : Syns — V where
Syns :={a.k | k labelled by a € X, € syn(a)} C Var,
Goal: extend v to (partial) solution v : Var; — V
Methods: @ Topological sorting of D; (later):
@ start with variables which depend at most on Synys
@ proceed by successive substitution
@ Strongly noncircular AGs: recursive functions (details
omitted)
@ for every A € N and « € syn(A), define evaluation
function ga  with the following parameters:
@ the node of t where a has to be evaluated and
@ all inherited attributes of A on which « (potentially)
depends
@ for every a € syn(S), evaluate gs o (ko) where kg
denotes the root of t
© L-attributed grammars: integration with top-down parsing
(later)
© S-attributed grammars (i.e., Inh = 0): yacc
mH Compiler Construction Summer Semester 2012 15.13



© Attribute Evaluation by Topological Sorting

m Compiler Construction Summer Semester 2012 15.14



Attribute Evaluation by Topological Sorting
Algorithm 15.7 (Evaluation by topological sorting)

Input: noncircular A = (G, E, V) € AG, syntax tree t of G,
valuation v : Syns — V
Procedure: @ let Var := Var, \ Syns (* attributes to be evaluated *)
Q while Var # () do

@ let x € Var such that {y € Var |y = x} =0
Q let x =f(x1,...,xn) € E¢

O let v(x) = f(v(x1),...,v(x))

O let Var := Var \ {x}

Output: solution v : Vary — V

Remark: noncircularity guarantees that in step 2.1 at least one such x is
available

Example 15.8
see Examples 13.1 and 13.2 (Knuth's binary numbers)

mH Compiler Construction Summer Semester 2012 15.15



© L-Attributed Grammars

m Compiler Construction Summer Semester 2012 15.16



L-Attributed Grammars |

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 15.1 (L-attributed grammar)

Let 2 = (G, E, V) € AG such that, for every 7 € P and
B.i="f(...,a ,...) € Ex with 8 € Inh and « € Syn, j < i. Then 2 is
called an L-attributed grammar (notation: 2 € LAG).

Remark: note that no restrictions are imposed for € Syn (for i = 0) or
a € Inh (for j = 0). Thus, in an L-attributed grammar,
@ synthesized attributes of the left-hand side can depend on any outer
variable and
@ every inner variable can depend on any inherited attribute of the
left-hand side.

Corollary 15.2
Every A € LAG is noncircular.

mH Compiler Construction Summer Semester 2012 15.17



L-Attributed Grammars Il
Example 15.3
©

L-attributed grammar:
S—AB il =0

2 =s1+1

s0=s2+1
A—aA (2 =i0+1

s0=s52+1 a

A—c s0=170+1
B—b s0=i0+1

mH Compiler Construction Summer Semester 2012 15.18



Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

© top-down: evaluation of inherited attributes

© bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing
© top-down: expansion steps

© bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate
attribute evaluation =

@ use recursive-descent parser

@ add variables and operations for attribute evaluation

mH Compiler Construction Summer Semester 2012 15.19



Recursive-Descent Parsing I

Ingredients: @ variable token for current token
@ function next () for invoking the scanner
@ procedure print (i) for displaying the leftmost analysis
(or errors)

Method: to every A € N we assign a procedure
A(in: inh(A), out: syn(A))

which

@ declares local variables for synthesized attributes on
right-hand sides,

@ tests token with regard to the lookahead sets of the
A-productions,

@ prints the corresponding rule number and
@ evaluates the corresponding right-hand side as follows:

o for a € X: check token; call next ()
e for A€ N: call A with appropriate parameters

m Compiler Construction Summer Semester 2012 15.20



Recursive-Descent Parsing Il

Example 15.4 (cf. Example 15.3)

proc main();
token := next(); SO
proc SQO); (xS - AB %)
if token in {’a’,’c’} then
print(1); AQO; BO
else print(error); stop fi
proc AQQ; (x A — a A | c %)

if token = ’a’ then
print(2); token := next(); AQ)
elsif token = ’c’ then

print(3); token := next()
else print(error); stop fi
proc B(Q); (x B — b %)
if token = ’b’ then
print(4); token := next()
else print(error); stop fi

RWNTH Compiler Construction Summer Semester 2012 15.21



Recursive-Descent Parsing I

Example 15.5 (cf. Example 15.3)

proc main(); var s;

token := next(); S(s); print(s)
proc S(out s0); var si,s2; (xS — AB %)
if token in {’a’,’c’} then
print(1); A(O0,s1); B(sl + 1,s2); s0O :
else print(error); stop fi
proc A(in i0,out s0); var s2;
if token = ’a’ then
print(2); token := next(); A(i0 + 1,s2); sO := s2 + 1
elsif token = ’c’ then
print(3); token := mnext(); sO
else print(error); stop fi
proc B(in i0,out s0); (x B — b %)
if token = ’b’ then

s2 + 1

xA - a A | cx*

= i0 + 1

print(4); token := next(); sO

=10 + 1
else print(error); stop fi

V.
RWNTH Compiler Construction Summer Semester 2012 15.22



	Repetition: Circularity of Attribute Grammars
	The Circularity Check
	Correctness and Complexity of the Circularity Check
	Attribute Evaluation
	Attribute Evaluation by Topological Sorting
	L-Attributed Grammars

