Compiler Construction

Lecture 16: Code Generation | (Intermediate Code)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/
P

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

ORMA WTHAACH
INIVER

Online Registration for
Seminars and Practical Courses (Praktika)
in Winter Term 2012/13

Who?
Students of: = Master Courses
= Bachelor Informatik (BraSeminar!)

Where?
web-info8.informatik.rwth-aachen.de/apse

When?
18.06.2012 - 01.07.2012

@ Generation of Intermediate Code

m Compiler Construction Summer Semester 2012 16.3

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
Syntax analysis (Parser))

Y

(Semantic analysis)

w
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code

Target code
mH Compiler Construction Summer Semester 2012 16.4

Modularization of Code Generation |

Splitting of code generation for programming language PL:

trans code

PL — IC — MC

Frontend: trans generates machine-independent intermediate code (IC)
for abstract (stack) machine

Backend: code generates actual machine code (MC)

m Compiler Construction Summer Semester 2012 16.5

Modularization of Code Generation |

Splitting of code generation for programming language PL:

trans code

PL — IC — MC

Frontend: trans generates machine-independent intermediate code (IC)
for abstract (stack) machine

Backend: code generates actual machine code (MC)

Advantages: |C machine independent —

Portability: much easier to write IC compiler/interpreter for a new
machine (as opposed to rewriting the whole compiler)

Fast compiler implementation: generating |C much easier than generating
MC

Code size: IC programs usually smaller than corresponding MC programs

Code optimization: division into machine-independent and
machine-dependent parts

mH Compiler Construction Summer Semester 2012 16.5

Modularization of Code Generation |l
Example 16.1

@ UNiversal Computer-Oriented Language (UNCOL; =~ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL; MC,
S el only n+ m translations
UNCOL : (in place of n- m)
—7 T~
PL, MC,,

mH Compiler Construction Summer Semester 2012 16.6

http://en.wikipedia.org/wiki/UNCOL

Modularization of Code Generation |l
Example 16.1

@ UNiversal Computer-Oriented Language (UNCOL; =~ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL; MC,
S el only n+ m translations
UNCOL : (in place of n- m)
—7 T~
PL, MC,,

© Pascal’s pseudocode (P-code; ~ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

mH Compiler Construction Summer Semester 2012 16.6

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine

Modularization of Code Generation |l
Example 16.1

@ UNiversal Computer-Oriented Language (UNCOL; =~ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL; MC,
S el only n+ m translations
UNCOL : (in place of n- m)
—7 T~
PL, MC,,

© Pascal’s pseudocode (P-code; ~ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

© The Amsterdam Compiler Kit (TACK; = 1980;
http://tack.sourceforge.net/)

mH Compiler Construction Summer Semester 2012 16.6

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/

Modularization of Code Generation |l
Example 16.1

@ UNiversal Computer-Oriented Language (UNCOL; =~ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL; MC,
S el only n+ m translations
UNCOL : (in place of n- m)
—7 T~
PL, MC,,

© Pascal’s pseudocode (P-code; ~ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

© The Amsterdam Compiler Kit (TACK; = 1980;
http://tack.sourceforge.net/)

@ Java Virtual Machine (JVM; Sun; ~ 1996;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

mH Compiler Construction Summer Semester 2012 16.6

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/
http://en.wikipedia.org/wiki/Java_Virtual_Machine

Modularization of Code Generation |l
Example 16.1

@ UNiversal Computer-Oriented Language (UNCOL; =~ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL; MC,
S el only n+ m translations
UNCOL : (in place of n- m)
—7 T~
PL, MC,,

© Pascal’s pseudocode (P-code; ~ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

© The Amsterdam Compiler Kit (TACK; = 1980;
http://tack.sourceforge.net/)

@ Java Virtual Machine (JVM; Sun; ~ 1996;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

© Common Intermediate Language (CIL; Microsoft .NET; =~ 2002;
http://en.wikipedia.org/wiki/Common_Intermediate_Language)

RWNTH Compiler Construction Summer Semester 2012 16.6

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Common_Intermediate_Language

Language Structures |

Structures in high-level programming languages:

@ Basic data types and basic operations
Static and dynamic data structures
Expressions and assignments

)
)
@ Control structures (sequences, branching statements, loops, ...)
@ Procedures and functions

)

Modularity: blocks, modules, and classes

mH Compiler Construction Summer Semester 2012 16.7

Language Structures |

Structures in high-level programming languages:

Basic data types and basic operations
Static and dynamic data structures
Expressions and assignments

)
)
@ Control structures (sequences, branching statements, loops, ...)
@ Procedures and functions

)

Modularity: blocks, modules, and classes
Use of procedures and blocks:
@ FORTRAN: non-recursive and non-nested procedures
— static memory management (requirements determined at compile time)
@ C: recursive and non-nested procedures
= dynamic memory management using runtime stack (requirements only
known at runtime), no static links
@ Algol-like languages (Pascal, Modula): recursive and nested procedures
—> dynamic memory management using runtime stack with static links
@ Object-oriented languages (C++, Java): object creation and removal
—> dynamic memory management using heap

mH Compiler Construction Summer Semester 2012 16.7

Language Structures Il

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump instruction,
transfer instruction, 1/O instruction, ...

Addressing modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many registers),
CISC (many [complex but slow] instructions, few registers)

mH Compiler Construction Summer Semester 2012 16.8

Language Structures Il

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump instruction,
transfer instruction, 1/O instruction, ...

Addressing modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many registers),
CISC (many [complex but slow] instructions, few registers)

Structures in intermediate code:
@ Data types and operations like PL
@ Data stack with basic operations
@ Jumping instructions for control structures
@ Runtime stack for blocks, procedures, and static data structures
@ Heap for dynamic data structures

mH Compiler Construction Summer Semester 2012 16.8

9 The Example Programming Language EPL

m Compiler Construction Summer Semester 2012 16.9

The Example Programming Language EPL

Structures of EPL:
@ Only integer and Boolean values

@ Arithmetic and Boolean expressions with strict and non-strict
semantics

@ Control structures: sequence, branching, iteration

@ Nested blocks and recursive procedures with local and global variables
(= dynamic memory management using runtime stack with static
links)

@ (not considered: procedure parameters and [dynamic] data structures)

mH Compiler Construction Summer Semester 2012 16.10

Syntax of EPL

Definition 16.2 (Syntax of EPL)
The syntax of EPL is defined as follows:

Z: z (* z is an integer *)

Ide : / (* I is an identifier *)

AExp: A=z |Il|A1+Ax|...

BExp: B := A; <Ay|not B|Bjand By | B; or B
C

Cmd : w=1:=A|C;C|if B then G else (|
while Bdo C |10

Dcl - D ::= D¢ Dy Dp
Dc i=¢|const Iy :=z1,...,Ih 1= zp;
Dy :=c¢|var h,...,l,;
Dp ::= e | proc l1;Ky; ... ;proc In; Ky
Blk K::=DC
Pgm P ::=in/out I, ... ,I;; K.

RWNTH Compiler Construction Summer Semester 2012 16.11

EPL Example: Factorial Function

Example 16.3 (Factorial function)

in/out x;
var y;
proc F;

if x >

1 then

=y*x;
=x - 1;

Compiler Construction

Summer Semester 2012

16.12

© Semantics of EPL

m Compiler Construction Summer Semester 2012 16.13

Static Semantics of EPL |

@ All identifiers in a declaration D have to be different.

m Compiler Construction Summer Semester 2012 16.14

Static Semantics of EPL |

@ All identifiers in a declaration D have to be different.

@ Every identifier occurring in the command C of a block D C must be
declared

@ in D or
@ in the declaration list of a surrounding block.

mH Compiler Construction Summer Semester 2012 16.14

Static Semantics of EPL |

@ All identifiers in a declaration D have to be different.

@ Every identifier occurring in the command C of a block D C must be
declared

@ in D or
@ in the declaration list of a surrounding block.

@ Multiple declarations of an identifier in different blocks are possible.
Each usage in a command C refers to the “innermost” declaration.

mH Compiler Construction Summer Semester 2012 16.14

Static Semantics of EPL |

@ All identifiers in a declaration D have to be different.

@ Every identifier occurring in the command C of a block D C must be
declared
@ in D or
@ in the declaration list of a surrounding block.
@ Multiple declarations of an identifier in different blocks are possible.
Each usage in a command C refers to the “innermost” declaration.

@ Static scoping: the usage of an identifier in the body of a called
procedure refers to its declaration environment (and not to its calling
environment).

mH Compiler Construction Summer Semester 2012 16.14

Static Semantics of EPL 1l

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[... z :=1; PO ..]

[.. PO .. RO ..]
proc R;
[.. PO ..]

[... x :=0; PO ..] .

mH Compiler Construction Summer Semester 2012 16.15

Static Semantics of EPL 1l

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[... z :=1; PO ..]

@ “Innermost” principle

[.. PO .. RO ..]
proc R;
[.. PO ..]

[... x :=0; PO ..] .

mH Compiler Construction Summer Semester 2012 16.15

Static Semantics of EPL 1l

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[... z :=1; PO ..]

@ “Innermost” principle

[.. PO .. RO ..]
proc R;
[.. PO ..]

[... x :=0; PO ..] .

mH Compiler Construction Summer Semester 2012 16.15

Static Semantics of EPL 1l

in/out x;
const ¢ = 10;

var y;) L
proc P; @ “Innermost” principle
var y, z; @ Static scoping: body of P can
proc Q; refer to x, y, Z

var x, z;
[... z :=1; PO ..]

[.. PO .. RO ..]
proc R;
[.. PO ..]

[... x :=0; PO ..] .

mH Compiler Construction Summer Semester 2012 16.15

Static Semantics of EPL Il

in/out x;
const ¢ = 10;

var y;) .
o @ “Innermost” principle
var y, z; @ Static scoping: body of P can
proc Q; refer tox, y, z
var x, z; o Later declaration: call of R in P
[... z :=1; PO ..] followed by declaration (in
[... PO ... RO ..] Pascal: forward declarations
proc R; for one-pass compilation)
[... PO ..]
[... x :=0; PO ..] .)

Summer Semester 2012 16.15

mH Compiler Construction

Dynamic Semantics of EPL

(omitting the details)
@ To “run” a program, execute the main block in the state which is
given by the input values

m Compiler Construction Summer Semester 2012 16.16

Dynamic Semantics of EPL

(omitting the details)
@ To “run” a program, execute the main block in the state which is
given by the input values
o Effect of statement = modification of state
@ assignment / := A: update of / by value of A
o composition C; C,: sequential execution
@ branching if B then (i else (;: test of B, followed by jump to
respective branch
@ iteration while B do C: execution of C as long as B is true
o call /(): transfer control to body of / and return to subsequent
statement afterwards

mH Compiler Construction Summer Semester 2012 16.16

Dynamic Semantics of EPL

(omitting the details)
@ To “run” a program, execute the main block in the state which is
given by the input values
o Effect of statement = modification of state
@ assignment / := A: update of / by value of A
o composition C; C,: sequential execution
@ branching if B then (i else (;: test of B, followed by jump to
respective branch
@ iteration while B do C: execution of C as long as B is true
o call /(): transfer control to body of / and return to subsequent
statement afterwards
@ Consequently, an EPL program P = in/out h, ... ,l;; K. € Pgm
has as semantics a function

M[P] : Z" --» Z"

mH Compiler Construction Summer Semester 2012 16.16

Dynamic Semantics of EPL

(omitting the details)
@ To “run” a program, execute the main block in the state which is
given by the input values
o Effect of statement = modification of state
@ assignment / := A: update of / by value of A
o composition C; C,: sequential execution
@ branching if B then (i else (;: test of B, followed by jump to
respective branch
@ iteration while B do C: execution of C as long as B is true
o call /(): transfer control to body of / and return to subsequent
statement afterwards
@ Consequently, an EPL program P = in/out h, ... ,l;; K. € Pgm
has as semantics a function

M[P] : Z" --» Z"

Example 16.5 (Factorial function; cf. Example 16.3)
here n =1 and M[P](x) = x! (where x! :=1 for x < 1)

mH Compiler Construction Summer Semester 2012 16.16

@ Intermediate Code for EPL

m Compiler Construction Summer Semester 2012 16.17

The Abstract Machine AM

Definition 16.6 (Abstract machine for EPL)
The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC := N,
@ the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

mH Compiler Construction Summer Semester 2012 16.18

The Abstract Machine AM

Definition 16.6 (Abstract machine for EPL)
The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC := N,
@ the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

Thus a state s = (/,d, p) € S is given by
@ a program label / € PC,
@ adatastack d=d.r:...:d.1 € DS, and
@ a procedure stack p=p.1:...:p.t € PS.

mH Compiler Construction Summer Semester 2012 16.18

AM Instructions

Definition 16.7 (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca € PC)
procedure instructions: CALL(ca,dif ,loc) (ca € PC, dif,loc € N), RET

transfer instructions: LOAD(dif ,off), STORE(dif ,off) (dif,off € N),
LIT(2) (z € Z)

mH Compiler Construction Summer Semester 2012 16.19

Semantics of Instructions

Definition 16.8 (Semantics of AM instructions (1st part))

The semantics of an AM instruction O

[O]:S--+S
is defined as follows:
[ADD[(/,d : z1 : zo,p) := (I +1,d : z1 + 22, p)
[NOT](/,d : b,p) := (I +1,d : =b, p) if be {0,1}
[[AND]](/ d: b;: bz,) = (/-l— 1,d: by A bz,p) if by, by € {0,1}
[[OR]](/,d 2 by : by,) = (/-l— 1,d: bV bz,p) if by, by € {0,1}
. _JU+1,d:1,p) ifz1 <2z
ILT](/,d : z1 : 2o,)_{(/—l—l,d:O,p) if 21 > 2
[3vP(ca)](/,d, p) := (ca,d, p)
. [(cadp) #b=0
[IJFALSE(ca)|(/,d : b, p) := {(/Jrl’d’p) b1

Compiler Construction

Summer Semester 2012 16.20

© The Procedure Stack

m Compiler Construction Summer Semester 2012 16.21

Structure of Procedure Stack |

The semantics of procedure and transfer instructions requires a particular
structure of the procedure stack p € PS: it must be composed of frames
(or: activation records) of the form

slodlira:vy:...1 v
where

static link s/: points to frame of surrounding declaration environment
— used to access non-local variables

dynamic link dl: points to previous frame (i.e., of calling procedure)
—> used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
= used to continue program execution after termination
of procedure call

local variables v;: values of locally declared variables

mH Compiler Construction Summer Semester 2012 16.22

Structure of Procedure Stack |l

@ Frames are created whenever a procedure call is performed
@ Two special frames:

I/O frame: for keeping values of in/out variables
(sl =dl =ra=0)
MAIN frame: for keeping values of top-level block
(sl = dl =1/0 frame)

m Compiler Construction Summer Semester 2012 16.23

Structure of Procedure Stack Il

Example 16.9 (cf. Example 16.4)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[.. PO ..]
[QO ..]
proc R;
[.. PO .]
[.. PO ..].

RWNTH Compiler Construction Summer Semester 2012 16.24

Structure of Procedure Stack Il

Example 16.9 (cf. Example 16.4)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[.. PO ..]
[QO ..]
proc R;
[.. PO .]
[.. PO ..].

Procedure stack after second call of P:
’ I Wl[1 1 I —
slal [[[s[a]l [[[s]a]l [[[4]3] [[ofo]o] |

y z: x z: y z y fs/ dl ra x
PO : QO 1 PO 1 MAIN 1 1/0

el L

Structure of Procedure Stack IV

Observation:
@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

m Compiler Construction Summer Semester 2012 16.25

Structure of Procedure Stack IV

Observation:

@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

Example 16.10 (cf. Example 16.9)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;

[.. PO ..]

[..x..y...Q0 ...

proc R;
[.. PO .]
[.. PO .].

Procedure stack after second call of P:

]

)
1
[o]o]o] |

| s 3 [1
ms[4] [[[s[4] [[[5[4] [[[4I3] |
| _ _

y z X y y sl dlirax
PO QO PO” . MAIN . 1/0

Compiler Construction

Summer Semester 2012

16.25

Structure of Procedure Stack IV

Observation:
@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

Example 16.10 (cf. Example 16.9)

in/out x;
const ¢ = 10;

var y;
proc P; Procedure stack after second call of P:

var y, z; l 5 = - -
. [il[il[l [\
proc & [f5[4T [[[5[4] [[[5[4] [[[4[3] [[o[o]o] |
D] y 2z X z y z y-sldlirax
[.. PO .] PO° QO PO ! MAIN! /O
[X .. y.. Q0] P uses x = dif =2
proc R;
[.. PO ..]
[.. PO ...

y
y
i

mH Compiler Construction Summer Semester 2012 16.25

Structure of Procedure Stack IV

Observation:
@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

Example 16.10 (cf. Example 16.9)

in/out x;
const ¢ = 10;

var y;
proc P; Procedure stack after second call of P:

ver ¥ = [Ny I] ——
proc & [5[4] [[[5[4] [[[5[4] [[[4[3] [[o[o]o] |
> y z X z y z y-sldira x
[.. PO ..] PO 1 QO © PO" I MAIN . 1/0

[x.y..Q0 .] Pusesy — dif =0

proc R;
[.. PO ..]

[.. PO ...

mH Compiler Construction Summer Semester 2012 16.25

The base Function

Upon procedure call, the static link information is computed by the
following auxiliary function which, given a procedure stack and a level
difference, determines the begin of the corresponding frame.

Definition 16.11 (base function)
The function

base: PS x N --» N

is given by base(p,0) =1
base(p, dif + 1) := base(p, dif) + p.base(p, dif)

mH Compiler Construction Summer Semester 2012 16.26

The base Function

Upon procedure call, the static link information is computed by the
following auxiliary function which, given a procedure stack and a level
difference, determines the begin of the corresponding frame.

Definition 16.11 (base function)

The function

base: PS x N --» N

is given by base(p,0) =1
base(p, dif + 1) := base(p, dif) + p.base(p, dif)

Example 16.12 (cf. Example 16.10)

In the second call of P (from Q): dif =2
base(p,0) =1

mH Compiler Construction Summer Semester 2012 16.26

The base Function

Upon procedure call, the static link information is computed by the
following auxiliary function which, given a procedure stack and a level
difference, determines the begin of the corresponding frame.

Definition 16.11 (base function)

The function

base: PS x N --» N

is given by base(p,0) =1
base(p, dif + 1) := base(p, dif) + p.base(p, dif)

Example 16.12 (cf. Example 16.10)

In the second call of P (from Q): dif =2

base(p,0) =1
= base(p,1) =1+ p.1 =6

mH Compiler Construction Summer Semester 2012 16.26

The base Function

Upon procedure call, the static link information is computed by the
following auxiliary function which, given a procedure stack and a level
difference, determines the begin of the corresponding frame.

Definition 16.11 (base function)

The function

base: PS x N --» N

is given by base(p,0) =1
base(p, dif + 1) := base(p, dif) + p.base(p, dif)

Example 16.12 (cf. Example 16.10)

In the second call of P (from Q): dif =2
base(p,0) =1
— base(p,1) =1+ p.1

6
= base(p,2) =6+ p.6 =1

1

mH Compiler Construction Summer Semester 2012 16.26

The base Function

Upon procedure call, the static link information is computed by the
following auxiliary function which, given a procedure stack and a level
difference, determines the begin of the corresponding frame.

Definition 16.11 (base function)

The function

base: PS x N --» N

is given by base(p,0) =1
base(p, dif + 1) := base(p, dif) + p.base(p, dif)

Example 16.12 (cf. Example 16.10)

In the second call of P (from Q): dif =2
base(p,0) =1
= base(p,1) =1+ p.1 =6
— base(p,2) =6+ p.6 =11
= s/ = base(p,2) +_2 + 2d, =15
Y,z ra,

mH Compiler Construction Summer Semester 2012 16.26

	Generation of Intermediate Code
	The Example Programming Language EPL
	Semantics of EPL
	Intermediate Code for EPL
	The Procedure Stack

