Compiler Construction

Lecture 16: Code Generation | (Intermediate Code)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/
P

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

ORMA WTHAACH
INIVER

Online Registration for
Seminars and Practical Courses (Praktika)
in Winter Term 2012/13

Who?
Students of: = Master Courses
= Bachelor Informatik (BraSeminar!)

Where?
web-info8.informatik.rwth-aachen.de/apse

When?
18.06.2012 - 01.07.2012

@ Generation of Intermediate Code

m Compiler Construction Summer Semester 2012 16.3

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
Syntax analysis (Parser))

Y

(Semantic analysis)

w
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code

Target code
mH Compiler Construction Summer Semester 2012 16.4

Modularization of Code Generation |

Splitting of code generation for programming language PL:

trans code

PL — IC — MC

Frontend: trans generates machine-independent intermediate code (IC)
for abstract (stack) machine

Backend: code generates actual machine code (MC)

Advantages: |C machine independent —

Portability: much easier to write IC compiler/interpreter for a new
machine (as opposed to rewriting the whole compiler)

Fast compiler implementation: generating |C much easier than generating
MC

Code size: IC programs usually smaller than corresponding MC programs

Code optimization: division into machine-independent and
machine-dependent parts

mH Compiler Construction Summer Semester 2012 16.5

Modularization of Code Generation |l
Example 16.1

@ UNiversal Computer-Oriented Language (UNCOL; =~ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL; MC,
S el only n+ m translations
UNCOL : (in place of n- m)
—7 T~
PL, MC,,

© Pascal’s pseudocode (P-code; ~ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

© The Amsterdam Compiler Kit (TACK; = 1980;
http://tack.sourceforge.net/)

@ Java Virtual Machine (JVM; Sun; ~ 1996;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

© Common Intermediate Language (CIL; Microsoft .NET; =~ 2002;
http://en.wikipedia.org/wiki/Common_Intermediate_Language)

RWNTH Compiler Construction Summer Semester 2012 16.6

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Common_Intermediate_Language

Language Structures |

Structures in high-level programming languages:

Basic data types and basic operations
Static and dynamic data structures
Expressions and assignments

)
)
@ Control structures (sequences, branching statements, loops, ...)
@ Procedures and functions

)

Modularity: blocks, modules, and classes
Use of procedures and blocks:
@ FORTRAN: non-recursive and non-nested procedures
— static memory management (requirements determined at compile time)
@ C: recursive and non-nested procedures
= dynamic memory management using runtime stack (requirements only
known at runtime), no static links
@ Algol-like languages (Pascal, Modula): recursive and nested procedures
—> dynamic memory management using runtime stack with static links
@ Object-oriented languages (C++, Java): object creation and removal
—> dynamic memory management using heap

mH Compiler Construction Summer Semester 2012 16.7

Language Structures Il

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump instruction,
transfer instruction, 1/O instruction, ...

Addressing modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many registers),
CISC (many [complex but slow] instructions, few registers)

Structures in intermediate code:
@ Data types and operations like PL
@ Data stack with basic operations
@ Jumping instructions for control structures
@ Runtime stack for blocks, procedures, and static data structures
@ Heap for dynamic data structures

mH Compiler Construction Summer Semester 2012 16.8

9 The Example Programming Language EPL

m Compiler Construction Summer Semester 2012 16.9

The Example Programming Language EPL

Structures of EPL:
@ Only integer and Boolean values

@ Arithmetic and Boolean expressions with strict and non-strict
semantics

@ Control structures: sequence, branching, iteration

@ Nested blocks and recursive procedures with local and global variables
(= dynamic memory management using runtime stack with static
links)

@ (not considered: procedure parameters and [dynamic] data structures)

mH Compiler Construction Summer Semester 2012 16.10

Syntax of EPL

Definition 16.2 (Syntax of EPL)
The syntax of EPL is defined as follows:

Z: z (* z is an integer *)

Ide : / (* I is an identifier *)

AExp: A=z |Il|A1+Ax|...

BExp: B := A; <Ay|not B|Bjand By | B; or B
C

Cmd : w=1:=A|C;C|if B then G else (|
while Bdo C |10

Dcl - D ::= D¢ Dy Dp
Dc i=¢|const Iy :=z1,...,Ih 1= zp;
Dy :=c¢|var h,...,l,;
Dp ::= e | proc l1;Ky; ... ;proc In; Ky
Blk K::=DC
Pgm P ::=in/out I, ... ,I;; K.

RWNTH Compiler Construction Summer Semester 2012 16.11

EPL Example: Factorial Function

Example 16.3 (Factorial function)

in/out x;
var y;
proc F;

if x >

1 then

=y*x;
=x - 1;

Compiler Construction

Summer Semester 2012

16.12

© Semantics of EPL

m Compiler Construction Summer Semester 2012 16.13

Static Semantics of EPL |

@ All identifiers in a declaration D have to be different.

@ Every identifier occurring in the command C of a block D C must be
declared
@ in D or
@ in the declaration list of a surrounding block.
@ Multiple declarations of an identifier in different blocks are possible.
Each usage in a command C refers to the “innermost” declaration.

@ Static scoping: the usage of an identifier in the body of a called
procedure refers to its declaration environment (and not to its calling
environment).

mH Compiler Construction Summer Semester 2012 16.14

Static Semantics of EPL Il

Example 16.4

in/out x;
const ¢ = 10;
var y; " SR
o @ “Innermost” principle
var y, z; @ Static scoping: body of P can
proc Q; refer tox, y, z
var x, z; o Later declaration: call of R in P
[... z := 1; PO ..] followed by declaration (in
[... PO ... RO ..] Pascal: forward declarations
proc R; for one-pass compilation)
[... PO ..]
[... x :=0; PO ..] .

mH Compiler Construction Summer Semester 2012 16.15

Dynamic Semantics of EPL

(omitting the details)
@ To “run” a program, execute the main block in the state which is
given by the input values
o Effect of statement = modification of state
@ assignment / := A: update of / by value of A
o composition C; C,: sequential execution
@ branching if B then (i else (;: test of B, followed by jump to
respective branch
@ iteration while B do C: execution of C as long as B is true
o call /(): transfer control to body of / and return to subsequent
statement afterwards
@ Consequently, an EPL program P = in/out h, ... ,l;; K. € Pgm
has as semantics a function

M[P] : Z" --» Z"

Example 16.5 (Factorial function; cf. Example 16.3)
here n =1 and M[P](x) = x! (where x! :=1 for x < 1)

mH Compiler Construction Summer Semester 2012 16.16

@ Intermediate Code for EPL

m Compiler Construction Summer Semester 2012 16.17

The Abstract Machine AM

Definition 16.6 (Abstract machine for EPL)
The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC := N,
@ the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

Thus a state s = (/,d, p) € S is given by
@ a program label / € PC,
@ adatastack d=d.r:...:d.1 € DS, and
@ a procedure stack p=p.1:...:p.t € PS.

mH Compiler Construction Summer Semester 2012 16.18

AM Instructions

Definition 16.7 (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca € PC)
procedure instructions: CALL(ca,dif ,loc) (ca € PC, dif,loc € N), RET

transfer instructions: LOAD(dif ,off), STORE(dif ,off) (dif,off € N),
LIT(2) (z € Z)

mH Compiler Construction Summer Semester 2012 16.19

Semantics of Instructions

Definition 16.8 (Semantics of AM instructions (1st part))

The semantics of an AM instruction O

[O]:S--+S
is defined as follows:
[ADD[(/,d : z1 : zo,p) := (I +1,d : z1 + 22, p)
[NOT](/,d : b,p) := (I +1,d : =b, p) if be {0,1}
[[AND]](/ d: b;: bz,) = (/-l— 1,d: by A bz,p) if by, by € {0,1}
[[OR]](/,d 2 by : by,) = (/-l— 1,d: bV bz,p) if by, by € {0,1}
. _JU+1,d:1,p) ifz1 <2z
ILT](/,d : z1 : 2o,)_{(/—l—l,d:O,p) if 21 > 2
[3vP(ca)](/,d, p) := (ca,d, p)
. [(cadp) #b=0
[IJFALSE(ca)|(/,d : b, p) := {(/Jrl’d’p) b1

Compiler Construction

Summer Semester 2012 16.20

© The Procedure Stack

m Compiler Construction Summer Semester 2012 16.21

Structure of Procedure Stack |

The semantics of procedure and transfer instructions requires a particular
structure of the procedure stack p € PS: it must be composed of frames
(or: activation records) of the form

slodlira:vy:...1 v
where

static link s/: points to frame of surrounding declaration environment
— used to access non-local variables

dynamic link dl: points to previous frame (i.e., of calling procedure)
—> used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
= used to continue program execution after termination
of procedure call

local variables v;: values of locally declared variables

mH Compiler Construction Summer Semester 2012 16.22

Structure of Procedure Stack |l

@ Frames are created whenever a procedure call is performed
@ Two special frames:

I/O frame: for keeping values of in/out variables
(sl =dl =ra=0)
MAIN frame: for keeping values of top-level block
(sl = dl =1/0 frame)

m Compiler Construction Summer Semester 2012 16.23

Structure of Procedure Stack Il

Example 16.9 (cf. Example 16.4)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[.. PO ..]
[QO ..]
proc R;
[.. PO .]
[.. PO ..].

Procedure stack after second call of P:
’ I Wl[1 1 I —
slal [[[s[a]l [[[s]a]l [[[4]3] [[ofo]o] |

y z: x z: y z y fs/ dl ra x
PO : QO 1 PO 1 MAIN 1 1/0

el L

Structure of Procedure Stack IV

Observation:
@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

Example 16.10 (cf. Example 16.9)

in/out x;
const ¢ = 10;

var y;

proc P; Procedure stack after second call of P:
MR | y Y] =
. [1 [I [I [\
proc & 15[4] [[[574[[[[5]4] [[T4[3[[[oJoJo[|
WRBE 3ip %5 y z X z y z y sl dlrax
[.. PO ..] PO] QO] PQ) . MAIN @ 1/0O

[% ¥y..Q0] pusesx = dif =2P usesy — dif =0
proc R;

[.. PO ..]
[.. PO ..].

mH Compiler Construction Summer Semester 2012 16.25

The base Function

Upon procedure call, the static link information is computed by the
following auxiliary function which, given a procedure stack and a level
difference, determines the begin of the corresponding frame.

Definition 16.11 (base function)

The function

base: PS x N --» N

is given by base(p,0) =1
base(p, dif + 1) := base(p, dif) + p.base(p, dif)

Example 16.12 (cf. Example 16.10)

In the second call of P (from Q): dif =2
base(p,0) =1
= base(p,1) =1+ p.1 =6
— base(p,2) =6+ p.6 =11
= s/ = base(p,2) +_2 + 2d, =15
Y,z ra,

mH Compiler Construction Summer Semester 2012 16.26

	Generation of Intermediate Code
	The Example Programming Language EPL
	Semantics of EPL
	Intermediate Code for EPL
	The Procedure Stack

