Compiler Construction

Lecture 17: Code Generation Il (The Compiler)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/
P

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

ORMA WTHAACH
INIVER

Online Registration for
Seminars and Practical Courses (Praktika)
in Winter Term 2012/13

Who?
Students of: = Master Courses
= Bachelor Informatik (BraSeminar!)

Where?
web-info8.informatik.rwth-aachen.de/apse

When?
18.06.2012 - 01.07.2012

© Repetition: Intermediate Code

m Compiler Construction Summer Semester 2012 17.3

Syntax of EPL

Definition (Syntax of EPL)
The syntax of EPL is defined as follows:

Z: z (* z is an integer *)

Ide : / (* I is an identifier *)

AExp: A=z |Il|A1+Ax|...

BExp: B := A; <Ay|not B|Bjand By | B; or B
C

Cmd : w=1:=A|C;C|if B then G else (|
while Bdo C |10

Dcl - D ::= D¢ Dy Dp
Dc i=¢|const Iy :=z1,...,Ih 1= zp;
Dy :=c¢|var h,...,l,;
Dp ::= e | proc l1;Ky; ... ;proc In; Ky
Blk K::=DC
Pgm P ::=in/out I, ... ,I;; K.

mH Compiler Construction Summer Semester 2012 17.4

The Abstract Machine AM

Definition (Abstract machine for EPL)
The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC := N,
@ the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

Thus a state s = (/,d, p) € S is given by
@ a program label / € PC,
@ adatastack d=d.r:...:d.1 € DS, and
@ a procedure stack p=p.1:...:p.t € PS.

mH Compiler Construction Summer Semester 2012 17.5

Structure of Procedure Stack |

The semantics of procedure and transfer instructions requires a particular
structure of the procedure stack p € PS: it must be composed of frames
(or: activation records) of the form

slodlira:vy:...1 v
where

static link s/: points to frame of surrounding declaration environment
— used to access non-local variables

dynamic link dl: points to previous frame (i.e., of calling procedure)
—> used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
= used to continue program execution after termination
of procedure call

local variables v;: values of locally declared variables

mH Compiler Construction Summer Semester 2012 17.6

Structure of Procedure Stack IV

Observation:
@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

m Compiler Construction Summer Semester 2012 17.7

Structure of Procedure Stack IV

Observation:

@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

Example (cf. Example 16.9)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;

[.. PO ..]

[..x..y...Q0 ...

proc R;
[.. PO .]
[.. PO .].

Procedure stack after second call of P:

]

)
1
[o]o]o] |

| s 3 [1
ms[4] [[[s[4] [[[5[4] [[[4I3] |
| _ _

y z X y y sl dlirax
PO QO PO” . MAIN . 1/0

Compiler Construction

Summer Semester 2012

17.7

Structure of Procedure Stack IV

Observation:
@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

Example (cf. Example 16.9)

in/out x;
const ¢ = 10;

var y;
proc P; Procedure stack after second call of P:

var y, z; l 5 = - -
. [il[il[l [\
proc & [f5[4T [[[5[4] [[[5[4] [[[4[3] [[o[o]o] |
D] y 2z X z y z y-sldlirax
[.. PO .] PO° QO PO ! MAIN! /O
[X .. y.. Q0] P uses x = dif =2
proc R;
[.. PO ..]
[.. PO ...

y
y
i

mH Compiler Construction Summer Semester 2012 17.7

Structure of Procedure Stack IV

Observation:

@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

Example (cf. Example 16.9)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;

[.. PO ..]

[Xy .. QO ..

proc R;
[.. PO .]
[.. PO .].

]

Procedure stack after second call of P:

]

| s 3 [1 =]
m5[4] [[[s[4] [[[5[4] [[[4[3[[[oJofo] |
| _ _

y z X
PO] QO
Pusesy —> dif =0

y sl dlra x
MAIN @ 1/O

Compiler Construction

Summer Semester 2012 17.7

© Semantics of Procedure and Transfer Instructions

m Compiler Construction Summer Semester 2012 17.8

Semantics of Procedure Instructions

@ CALL(ca,dif ,loc) with

@ code address ca € PC
o level difference dif € N
o number of local variables loc € N

creates the new frame and jumps to the given address
(= starting address of procedure)

@ RET removes the topmost frame and returns to the calling site

m Compiler Construction Summer Semester 2012 17.9

Semantics of Procedure Instructions

@ CALL(ca,dif ,loc) with

@ code address ca € PC
o level difference dif € N
o number of local variables loc € N

creates the new frame and jumps to the given address
(= starting address of procedure)

@ RET removes the topmost frame and returns to the calling site

Definition 17.1 (Semantics of procedure instructions)

The semantics of a procedure instruction O, [O] : S --+ S, is defined as follows:
[CALL (ca, dif ,loc) (!, d, p)
= (ca,d, (base(p,dif)+ loc+2):(loc+2):(/+1):0:...:0:p
((base()) () (I+1) Loif)
S/ d/ ra ocC times
[RET](/,d,p.1:...: p.t)
= (p3,d,p.(p2+2):...:p.t) ift>p2+2
—— ——
ra dl

mH Compiler Construction Summer Semester 2012 17.9

Semantics of Transfer Instructions

@ LOAD(dif ,off) and STORE(dif, off) with

o level difference dif € N
o variable offset off € N

respectively load and store variable values between data and
procedure stack, following a chain of dif static links

@ LIT(z) loads the literal constant z € Z

m Compiler Construction Summer Semester 2012 17.10

Semantics of Transfer Instructions

@ LOAD(dif ,off) and STORE(dif, off) with

o level difference dif € N
o variable offset off € N

respectively load and store variable values between data and
procedure stack, following a chain of dif static links

@ LIT(z) loads the literal constant z € Z

Definition 17.2 (Semantics of transfer instructions)

The semantics of a transfer instruction O, [O] : S --+ S, is defined as
follows:

[LOAD (dif ,of)|(I,d, p) := (I +1,d : p.(base(p, dif) + off + 2), p)
[STORE(dif ,off)](/,d : z,p) := (I + 1,d, p[base(p, dif) + off + 2 — z])
[LIT(D](l,d,p) == (I+1,d: z,p)

mH Compiler Construction Summer Semester 2012 17.10

AM Programs and Their Semantics

Definition 17.3 (Semantics of AM programs)

An AM program is a sequence of k > 1 labeled AM instructions:
P=1:0;...;k: O

The set of all AM programs is denoted by AM.

mH Compiler Construction Summer Semester 2012 17.11

AM Programs and Their Semantics

Definition 17.3 (Semantics of AM programs)
An AM program is a sequence of k > 1 labeled AM instructions:
P=1:01;...;k: O
The set of all AM programs is denoted by AM.
The semantics of AM programs is determined by
[.]: AM xS --»S

with

[P,) = {JRIOAC 02D EIE T

mH Compiler Construction Summer Semester 2012 17.11

© The Symbol Table

m Compiler Construction Summer Semester 2012 17.12

Structure of Symbol Table

Goal: define translation mapping trans : Pgm --+ AM

m Compiler Construction Summer Semester 2012 17.13

Structure of Symbol Table

Goal: define translation mapping trans : Pgm --+ AM
The translation employs a symbol table:
Tab := {st | st : Ide --» ({const} x Z)
U ({var} x Lev x Off)
U ({proc} x PC x Lev x Size)}
whose entries are created by declarations:
@ constant declarations: (const, z)
o valuezeZ
@ variable declarations: (var, lev, off)
o declaration level lev € Lev :=N (0 = 1/0, 1 = MAIN, ...)
e offset off € Off :=N
o offset and difference between usage and declaration level determine
procedure stack entry
@ procedure declarations: (proc, ca, lev, loc)
@ code address ca € PC
o declaration level lev € Lev
@ number of local variables loc € Size := N

mH Compiler Construction Summer Semester 2012 17.13

Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st, /) which specifies
the update of symbol table st according to declaration D (with respect to current
level /):

m Compiler Construction Summer Semester 2012 17.14

Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st, /) which specifies
the update of symbol table st according to declaration D (with respect to current
level /):

Definition 17.4 (update function)
update : Dcl x Tab x Lev --» Tab

is defined by

update(D¢c Dy Dp,st, [)
:= update(Dp, update(Dy, update(Dc, st, 1),), /)
if all identifiers in D¢c Dy Dp different
update(e, st, /)
=St
update(const h 1=z, ...,l, := z,;,st,/)
.= st[h — (const, z1),..., I, — (const, z,)]
update(var f, ..., l,;,st, /)
= st[h — (var,,1),..., 1, — (vaz,/, n)]
update(proc h;Ki; ...;proc l,; Ky;,st, /)
= st[h — (proc,as, /,size(K1)),. .., I, — (proc, ap, I, size(K,))]
with “fresh” addresses ay, ..., a,
where size(D¢ var I, ...,l,; DpC):=n
RWNTH Compiler Construction Summer Semester 2012 17.14

The Initial Symbol Table

Reminder: an EPL program P = in/out i, ... ,l,; K. € Pgm has a
semantics of type Z" --» Z".

m Compiler Construction Summer Semester 2012 17.15

The Initial Symbol Table

Reminder: an EPL program P = in/out i, ... ,l,; K. € Pgm has a
semantics of type Z" --» Z".

Given input values (zi,...,z,) € Z", we choose the initial state
s:=(1,60:0:0:2z1:...:2,) € S=PC x DS x PS
I/O frame

m Compiler Construction Summer Semester 2012 17.15

The Initial Symbol Table

Reminder: an EPL program P = in/out i, ... ,l,; K. € Pgm has a
semantics of type Z" --» Z".

Given input values (zi,...,z,) € Z", we choose the initial state
s:=(1,60:0:0:2z1:...:2,) € S=PC x DS x PS
I/O frame

Thus the corresponding initial symbol table has n entries:

st o(lj) := (var,0,)) for every j € [n]

m Compiler Construction Summer Semester 2012 17.15

@ Translation of Programs

m Compiler Construction Summer Semester 2012 17.16

Translation of Programs

Translation of in/out I, ...,l,;D C.:
© Create MAIN frame for executing C

© Stop program execution after return

m Compiler Construction Summer Semester 2012 17.17

Translation of Programs

Translation of in/out I, ...,l,;D C.:
© Create MAIN frame for executing C

© Stop program execution after return

Definition 17.5 (Translation of programs)

The mapping
trans : Pgm --» AM
is defined by
trans(in/out h, ... ,l,; K.) :=1:CALL(a,0,size(K));
2:JMP(0);
kt(Kvstl/O)av 1)

mH Compiler Construction Summer Semester 2012 17.17

© Translation of Blocks

m Compiler Construction Summer Semester 2012 17.18

Translation of Blocks

Translation of D C:
© Update symbol table according to D

© Create code for procedures declared in D
(using the updated symbol table — recursion!)

© Create code for C (using the updated symbol table)

mH Compiler Construction Summer Semester 2012 17.19

Translation of Blocks

Translation of D C:
© Update symbol table according to D

© Create code for procedures declared in D
(using the updated symbol table — recursion!)

© Create code for C (using the updated symbol table)

Definition 17.6 (Translation of blocks)
The mapping

kt : Blk x Tab x PC x Lev --» AM
(“block translation™) is defined by

kt(D C,st,a,l) := dt(D,update(D,st, /), /)
ct(C,update(D,st, /), a,)
a’ : RET;

mH Compiler Construction Summer Semester 2012 17.19

© Translation of Declarations

m Compiler Construction Summer Semester 2012 17.20

Translation of Declarations

Translation of D: generate code for the procedures declared in D

m Compiler Construction Summer Semester 2012 17.21

Translation of Declarations

Translation of D: generate code for the procedures declared in D

Definition 17.7 (Translation of declarations)
The mapping
dt : Dcl x Tab x Lev --» AM
(“declaration translation”) is defined by
dt(Dc Dy Dp,st, 1)
= dt(Dp,st, /)
dt(e, st, /)
= €
dt(proc h;Ki; ... ;proc Ip; Kn;,st, /)
= kt(Kl,St, ai, l +].)

kt(Khn, st, an, | + 1)
where st(/;) = (proc, aj, .. .,...) for every j € [n]

RWNTH Compiler Construction Summer Semester 2012

17.21

@ Translation of Commands

m Compiler Construction Summer Semester 2012 17.22

Translation of Commands

Definition 17.8 (Translation of commands)
The mapping

ct: Cmd x Tab x PC x Lev --» AM
(“command translation”) is defined by
ct(l := A, st,a,l) := at(A,st, a, /)
a’ : STORE(/ — lev,off) ;
if st(/) = (var, lev, off)
ct(1Q,st,a,l) ;= a: CALL(ca, ! — lev,loc) ;
if st(/) = (proc, ca, lev, loc)
ct(C; Gy sty a, 1) = ct(G, sty a, /)
(Cz,bt a’ /)
ct(if B then (G else (,st,a,/) := bt(B,st, a, /)

a: JFALSE(a”)
t(Cl,st a+1,0)
a’'—1: JMP(aHI)

(,st,a”’, 1)
ct(while B do C,st,a,/) := (B st, a, /)
: JFALSE(a” +1);
(st,a’ +1,1)
L IMP(a) ;

mH Compiler Construction Summer Semester 2012 17.23

© Translation of Expressions

m Compiler Construction Summer Semester 2012 17.24

Translation of Boolean Expressions

Definition 17.9 (Translation of Boolean expressions)

The mapping

bt : BExp x Tab x PC x Lev --» AM

(“Boolean expression translation”) is defined by

bt(Al < Ap,st, a, /)

bt(not B,st, a, /)

bt(Bl and B,,st, a, /)

bt(Bl or B,,st, a, /)

at(Ag,st, a, /)
at(Az,st, a', /)
a’ : LT;
bt(B, st, a, /)
a’ : NOT;
bt(By, st, a, /)
bt(Bg,st,a/, /)
a’ : AND;
bt(By, st, a, /)
bt(Bg,st,a/, /)
a” : OR;

Rer Compiler Construction

Summer Semester 2012

17.25

Translation of Arithmetic Expressions

Definition 17.10 (Translation of arithmetic expressions)

The mapping
at : AExp x Tab x PC x Lev --+ AM

(“arithmetic expression translation™) is defined by
at(z,st,a,l) == a:LIT(2);
_ Ja:LIT(2); if st(/) = (const, z)
izt 2,) = a:LOAD(/ — lev,off); if st(/) = (var, lev, off)
at(A1 + Ag,st, a,l) := at(Ag,st, a, /)
at(Ag,st,a’, /)
a’ : ADD;

mH Compiler Construction Summer Semester 2012 17.26

© A Translation Example

m Compiler Construction Summer Semester 2012 17.27

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x;
var y;
proc F;
if x > 1 then
y =y * X
X :=x - 1;
FO
y &= ig
FO;
X 1= y.

Summer Semester 2012 17.28

mH Compiler Construction

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:

in/out x; trans(in/out x;K.)
var y;
proc F;

if x

v :

X

1 then
y o* x5
x - 1;

nnwv

Wy 8= g
EOF
x = y.

trans(in/out h, ... ,Ih;K.) =
1:CALL(a,0,size(K));
2:JMP(0);
kt(K,St//o,a,l)

stjjo = [x = (var,0,1)]

mH Compiler Construction Summer Semester 2012 17.28

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:

in/out x; 1:CALL(a0,0,1);
var y; 2: JMP(0);
proc F; kt(K,st; /0, a0, 1
if x 1 then (e)
y y * x5
X x - 1;
FO
y := 1;
EOF
X = y.
kt(D C,st,a,l) :=
dt(D, update(D,st, 1),)
ct(C,update(D, st, /), a,)
a’ : RET;

nnwv

stjjo = [x — (var,0,1)]

mH Compiler Construction Summer Semester 2012 17.28

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1: CALL(a0,0,1);
var y; 2 JMP(0) ;
proc F; dt(D,update(D, st/ /0, 1), 1)
if x > 1 then ct(C, update(D, st /0, 1), a0, 1)
sy e ay : RET;
x :=x - 1;
FO
y :=1;
FO;
x :=y.
update(var I, ... ,In;,st l)
st[h — (var,/,1),..., I, — (var,/, n)]
update(proc h; Ki; ... ,proc I,,,K,,, st, [) =
st[h — (proc, a1, /, size(K1)), . — (proc, an, /, size(Ky))]
st’ = [x — (var, 0, 1),
y H (Var7 17 1)7
F — (proc, a1, 1, 0)]

mH Compiler Construction Summer Semester 2012 17.28

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(Ca9,0,1);
var y; 2 : JMP(0);
proc F; dt(D,st’, 1)
if x > 1 then Ct(C st’, ag]_)
y =Yy *X; a> : RET;
x :=x - 1;
FO
y &= dg
FO;
X 1= y.

dt(proc h;Ki;...;proc In; Ka;,st,l) =
kt(K, st, a1, [+ 1)

kt(Kn, st, an, | + 1)
where st(/;) = (proc, aj, ..., ...) for every j € [n]

st’ = [x = (var, 0, 1),
y — (var, 1,1),
F — (proc, a1, 1,0)]

mH Compiler Construction Summer Semester 2012 17.28

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(a0,0,1);
var y; 2 : JMP(0);
proc F; kt(Ke, st’, a1, 2)
if x > 1 then Ct(C,st',ao,l)
g oe= g a : RET;
X :=x - 1;
FO
y :=1;
FO;
X = y.

kt(D C,st,a,l) =
dt(D, update(D,st, 1),)
ct(C,update(D, st, /), a,)
a’ : RET;
st’ = [x — (var, 0, 1),
y H (Var7 17 1)7
F — (proc, a1, 1, 0)]

mH Compiler Construction Summer Semester 2012 17.28

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(Ca0,0,1);
var y; 2: JMP(0);
proc F; ct(G, st’, a1, 2)
if x > 1 then as : RET;
y =y % % ct(C,st', ap, 1)
EE S : RET;
FO) *
y :=1;
FO;
X = y.
ct(if B then G else G, st,a,l) =
bt(B, st, a, /)

a’ : JFALSE(a");
ct(Ci,st,a’ +1,1)
a’ —1:JMP(a"");
ct(C,st,a”, 1)

"o,
a .

st’ = [x — (var, 0, 1),
y — (var, 1,1),

F — (proc, a1, 1, 0)]
-—
mH Compiler Construction Summer Semester 2012 17.28

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(Ca9,0,1);
var y; 2 : JMP(0);
proc F; bt(x > 1,st’; a1,2)
if x > 1 then as : JFALSE(a3) ;
y i y o* x5 ct(Cl,st’,a4—|—1,2)
=x -1 a3 : RET;
. '_Fi) ct(C,st’, a0, 1)
FO . a» : RET;
x :=y.
bt(Ar > Az, st, a, /) := at(Aq,st, a, /)
at(As,st, a’, l)
'"": GT;
st’ = [x — (var, 0, 1),
y — (var, 1,1),
F — (proc, a1, 1,0)]

mH Compiler Construction Summer Semester 2012 17.28

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1: CALL(a0,0,1);
var y; 2 JMP(0);
proc F; at(x, st’, a1, 2)
if x > 1 then at(l,st',a/,2)
y =y okx; aT
0 5SS = i as : JFALSE(a3) ;
.=F§). ct(Ci,st’,as +1,2)
go. ; a3 : RET;
% e - ct(C,st’, a, 1)
a> : RET;
at(l,st,a,l) =
a:LIT(z); if st(/) = (const, z)
a:LOAD(/ — lev,off); if st(l) = (var, lev, off)
st’ = [x — (var, 0, 1),
y H (Var’ 17 1)7
F — (proc, a1, 1,0)]

mH Compiler Construction Summer Semester 2012 17.28

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(Ca9,0,1);
var y; 2 : JMP(0);
proc F; ar : LOAD(2,1);
if x > 1 then at(1,st’, a’,2)
V=¥ oxx; 5
X :=x - 1; as : JFALSE(a3) ;

FO ct(Cl,st’,a4—|—1,2)
TR as : RET;
208 ot(C,st’, 20,1)
X =y a» : RET;
(Lt(st,a,l) ;== a:LIT(2);
= [x — (var,0,1),
y — (var,1,1),
F — (proc, a1, 1,0)]

mH Compiler Construction Summer Semester 2012 17.28

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1: CALL(a9,0,1);
var y; 2 : JMP(0);
proc F; ar : LOAD(2,1);
if x > 1 then LIT(1);
y =y * X GT;
X :=x -1 as : JFALSE(a3) ;
FO ct(Cl,st',a4—|—1,2)
y =1 as : RET;
FO; ct(C,st’, a0, 1)
X =7 a» : RET;
ct(l := A;st,a,l) =
at(A,st, a, /)
a’ : STORE(/ — lev,off) ;
if st(/) = (var, lev, off)
st’ = [x — (var, 0, 1),
y H (Var7 17 1)7
F — (proc, a1, 1, 0)]

mH Compiler Construction Summer Semester 2012 17.28

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(Ca9,0,1);
var y; 2 : JMP(0);
proc F; ar : LOAD(2,1);
if x > 1 then LIT(1);
y =y * X; GT;
X :=x - 1; as : JFALSE(a3);
FO at(y * x,st’,as+1,2)
y = 1; STORE(1,1);
FO; at(x - 1,st’,4’,2)
X =Y. STORE(2,1) ;
(Lt(Al + /4278137 a, l) = at(AhSt, a, /) Ct(F()zstlv a//v 2)
at(As,st, a’, l) a3 | RET;
2" : ADD; Ct(C,St/,ao7 1)
a» : RET;
st’ = [x + (var, 0, 1),
y — (var, 1,1),
F — (proc, a1, 1,0)]

mH Compiler Construction Summer Semester 2012 17.28

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code:

in/out x;
var y;
proc F;
if x > 1 then
=y * x;
x - 1;

y
X
FO
y :=1;
FO;
X = y.
ct(10,st,a,l) =
a:CALL(ca,l — lev,loc);
if st(/) = (proc, ca, lev, loc)

st’ = [x — (var, 0, 1),
y H (Var’ 17 1)7
F — (proc, a1, 1,0)]

Intermediate code:

: CALL(ap,0,1);
: JMP(0) ;
: LOAD(2,1);

LIT(1);
GT;

: JFALSE(a3) ;

LOAD(1,1);
LOAD(2,1);
MULT;
STORE(1,1);
LOAD(2,1);
LIT(1);

SUB;
STORE(2,1) ;
ct(FQ,st’,a”,2)

: RET;

ct(C,st’, a, 1)

: RET;

Compiler Construction

Summer Semester 2012

17.28

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(a,0,1);
var y; 2: JMP(0);
proc F; a; : LOAD(2,1);
if x > 1 then LIT(1);
y =y * X; GT;
x 1=x -1 ay : JFALSE(a3) ;
FQO LOAD(1,1);
y =1 LOAD(2,1);
FO; MULT;
X =Y. STORE(1,1);
LOAD(2,1);
st’ = [x = (var, 0, 1), LIT(1);
SUB;
Y'_> (Vara]-?l)? STORE(2 1)
F — (proc, a1, 1,0)] CALL (2, ”1’6);
as : RET;
ct(C,st’, a0, 1)
a» : RET;

Compiler Construction

Summer Semester 2012

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:

in/out x; 1: CALL(a0,0,1);
var y; 2 : JMP(0);
proc F; ar : LOAD(2,1);
if x > 1 then LIT(1);
y * X; GT;
x - 1; ay : JFALSE(a3) ;
O LOAD(1,1);
y =1 LOAD(2,1);
FOj; MULT;
X STORE(1,1);
LOAD(2,1);
LIT(1);
SUB;
STORE(2,1) ;
CALL(a1,1,0);
as : RET;
ao : LIT(1);
STORE(0,1);
CALL(a1,0,0);
L0OAD(0,1);
STORE(1,1);
a> : RET;
-—
mH Compiler Construction Summer Semester 2012 17.28

1]
<

st’ = [x + (var, 0, 1),
y — (var, 1,1),
F — (proc, a1, 1,0)]

Example: Factorial Function Il

Example 17.11 (Factorial function; continued)

Code with symbolic Linearized (ap = 17,21 = 3,22 = 22,23 = 16, a1 = 6):

addresses: 1: CALL(17,0,1);

1: CALL(a0,0,1); 2: JMP(0);

2: JMP(0); 3: LOAD(2,1);

ar : LOAD(2,1); 4 : LIT(1);
LIT(1); 5: GT;
GT; 6 : JFALSE(16) ;

as : JFALSE(a3); 7 : LOAD(1,1);
LOAD(1,1); 8 : LOAD(2,1);
LOAD(2,1); 9 : MULT;
MULT; 10 : STORE(1,1);
STORE(1,1); 11 : LOAD(2,1);
LOAD(2,1) ; 12 : LIT(1);
LIT(1); 13 : SUB;
SUB; 14 : STORE(2,1);
STORE(2,1) ; 15 : CALL(3,1,0);
CALL(a1,1,0); 16 : RET;

as : RET; 17 : LIT(1);

ao : LIT(1); 18 : STORE(0,1);
STORE(0,1) ; 19 : CALL(3,0,0);
CALL(a;,0,0) ; 20 : LOAD(0,1);
LOAD(0,1); 21 : STORE(1,1);
STORE(1,1) ; 22 : RET;

a» : RET;

Compiler Construction

Summer Semester 2012

17.29

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS

© CALL(17,0,1); 4E 0:0:0:2
: JMP(0) ;

- LOAD(2,1) ;
:LIT(1);

1 GT;

: JFALSE(16) ;
: LOAD(1,1);

- LOAD(2,1);

: MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 LIT(1);

13 : SUB;

14 : STORE(2,1) ;
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1) ;
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

OCO~NOOTAWN

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS

. CALL(17,0,1) ; & =

: JMP(0) ;

: LOAD(2,1);
: LIT(1);

1 GT;

: JFALSE(16) ;
: LOAD(1,1);
: LOAD(2,1);
: MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

OCoO~NOOTAWN

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS P.

. CALL(17,0,1) ; & =

: JMP(0) ; 18 1
: LOAD(2,1);

: LIT(1);

1 GT;

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

B
oo
N[N
oo
Ees
oo
oo
rlroi A

OCoO~NOOTAWN

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1: CALL(17,0,1); l% i 4:3:2:0:8;8;8;%
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1);

5:GT;

6 : JFALSE(16) ;

7 :LOAD(1,1);

8 : LOAD(2,1);

9 : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1:CALL(17,0,1); l% i 4:3:2:0:8;8;8;%
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT;

6 : JFALSE(16) ;

7 : LOAD(1,1);

8 : LOAD(2,1);

9 : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS

: CALL(17,0,1);
: JMP(0) ;

: LOAD(2,1);

S LIT(1); 3

[y
©
NM M=o m

1 GT;

BB
W wlwlwlw
NN
Hinllolo
oojoloed

O|0|0|0|I0|T

O|0|0|0|I0|T

NINININININ N

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);
:LIT(1);

. SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;
:LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1);

: STORE(1,1);
: RET;

OCoO~NOOTHSWN

Compiler Construction

Summer Semester 2012

17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS

: CALL(17,0,1);
: JMP(0) ;

: LOAD(2,1);

D LIT(1); 3

[y
©
NNO O = M

BBB R B
N[N N N[N
H=—olo

NININININININ N

. GT; 5

W[W|W[wW W|w
Olo|0|0|0|I0|d

oOlo|0|00|I0d

oOl0|0|00|I0d

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);
:LIT(1);

. SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;
:LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1);

: STORE(1,1);
: RET;

OCoO~NOOTAWN

Compiler Construction

Summer Semester 2012

17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
! 0:0:0:2
1:CALL(17,0,1); 17 i 4:3:2:0:0:0:0:2
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
5 0 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
o P, HEBLIEivess
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 :LOAD(1,1);
8 : LOAD(2,1);
O : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2

: CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2

: JMP(0) ; 18 1 4:3:2:0:0:0:0:2
: LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2

S LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
 GT; 5 5.1 T 000
: JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2

: LOAD(1,1); 7 € 3:2:20:4:3:2:1:0:0:0:2

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);
:LIT(1);

. SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;
:LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1);

: STORE(1,1);
: RET;

N = = b e e e e e
CQOWONOOOITPAPWNHFHOOO~NOOTEAWN

N N
N =

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
=z 0:0:0:2

: CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2

: JMP(0) ; 18 1 4:3:2:0:0:0:0:2
: LOAD(2,1); 19 ¢ A R0 00 2

S LIT(1): 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
: JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2

: LOAD(1,1); 7 € 3:2:20:4:3:2:1:0:0:0:2
: LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2

: MULT;

: STORE(1,1);
: LOAD(2,1);
:LIT(1);

. SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;
:LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1);

: STORE(1,1);
: RET;

N = = b e e e e e
QCQOWONOOOITPAPWNHFHOOONOOTEAWN

N N
N =

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)
PC

O
a

Computation for x = 2:

: CALL(17,0,1);
: JMP(0) ;

: LOAD(2,1);

D LIT(1); 3

1 GT;

: JFALSE(16) ;

: LOAD(2,1);

oo~NoOhwWNH
HEOFRENDNO O RO 0
W|W|W|W|W|w|w
NN NN NI NN

4
5
6
: LOAD(1,1); 7
8
9

: MULT;

B B B R B Ea R
QO[] W | W W | W W W
O|0|O|O|0|0|0|0|O|0|

N[NN N| N NN N N N
== == == olo

O[O|0O|O|0|0|0|0|O(0|

O[O|0O|O|0|0|0|0|O(0|

NININININININNNININY N

: STORE(1,1);
: LOAD(2,1);
:LIT(1);

. SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;
:LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1);

: STORE(1,1);
: RET;

RWNTH

Compiler Construction

Summer Semester 2012

17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS

! 0:0:0:2
1:CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
5 0 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
oo P, HEBLIEivess
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 :LOAD(1,1); 7 € 3:2:20:4:3:2:1:0:0:0:2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
) d 10 2 3:2:20:4:3:2:1:0:0:0:2

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2

1:CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
. . 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
oo P, HEBLIEivess
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10 : STORé(l 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2

11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2
1:CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 4:3:2:0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5 : GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € 3:2:20:4:3:2:1:0:0:0:2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1);
13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2
1:CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € 3:2:20:4:3:2:1:0:0:0:2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2

1:CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2

11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; 14 1 3:2:20:4:3:2:2:0:0:0:2

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1:CALL(17,0,1); l% i 4:3:2:0:8;8;8;%
2: JMP(0) ; 18 1 4:3:2:0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5 : GT; 5 3.1 IR T 000
6 : JFALSE(16); 6 1 3.2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 ¢ 3:2:20:4:3:2:1:0:0:0:2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
10 : STORE(1,1); 11 & SILI20) 430202 QL0002
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; 14 1 3:2:20:4:3:2:2:0:0:0:2
14 : STORE(2,1); 15 ¢ 3:2:20:4:3:2:2:0:0:0:1
15 : CALL(3,1,0);

16 : RET;

17 : LIT(1);

18 : STORE(0,1);

19 : CALL(3,0,0);

20 : LOAD(0,1);

21 : STORE(1,1);

22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1:CALL(17,0,1); l% i 4:3:2:0:8;8;8;%
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
4 LIT(1); 3 e 3:2:20:4:3:2:1:0:0:0:2
5 : GT; 5 3.1 IR T 000
6 : JFALSE(16) ; 6 1 3:0:20:4:3:2:1:0:0:0:9
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT; 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10 : STORE(1,1); 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %‘51 1 %%%833338885
14 : STORE(2,1) ; c o165 50 TS5
15 : CALL(3,1,0); 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET;
17 : LIT(1);
18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2

1:CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
4:LIT(1); 3 € 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2

10:STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2

11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2

12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2

13 : SUB; 14 1 3:3:38:4:3:3:3:8:8:8:%

14 : STORE(2,1) ; 15 ¢ 12 14:3:2:2:0:0:0:
. TR 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1

15: CALL(3,1,0); 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1

16 : RET;

17 : LIT(1);

18 : STORE(0,1);

19 : CALL(3,0,0);

20 : LOAD(0,1);

21 : STORE(1,1);

22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2
1:CALL(17,0,1); 17 i 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10:STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; 14 1 3:3:38:4:3:3:3:8:8:8:%
. . 15 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl B2 9:B:2oA0:4:8:2:2:0:.0:0:1
17 : LIT(1);
18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2
1:CALL(17,0,1); 17 i 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10:STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; 14 1 3:3:38:4:3:3:3:8:8:8:%
. . 15 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁil())s 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1) ;
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2
%:gﬁrﬁ%é)ﬂ,oﬁ); 17 . 4:3:2:0:0:0:0:2
: 8 18 1 4:3:2:0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
. . 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
151—:5;]5?(1), 4 2 3:2:20:4:3:2:1:0:0:0:2
) ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10:STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %4 1 3:3:38:4:3:3:3:8:8:8:%
. . 5 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1); 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2
%:gﬁrﬁ%é)ﬂ,oﬁ); 17 . 4:3:2:0:0:0:0:2
: 8 18 1 4:3:2:0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
. . 3 € 3:2:20:4:3:2:1:0:0:0:2
151—:5;]5?(1), 4 2 3:2:20:4:3:2:1:0:0:0:2
) ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %4 1 3:3:38:4:3:3:3:8:8:8:%
. . 5 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1); 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
19 : CALL(3,0,0) ; 16 ¢ 3:2:20:4:3:2:2:0:0:0:1
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2
%:gﬁrﬁ%é)ﬂ,oﬁ); 17 . 4:3:2:0:0:0:0:2
: 8 18 1 4:3:2:0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
. . 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
151—:5;]5?(1), 4 2 3:2:20:4:3:2:1:0:0:0:2
) ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %4 1 3:3:38:4:3:3:3:8:8:8:%
. . 5 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1); %g 5 6:2:16:%:%'%8:2:%:%:%:8:8:8:i
10 : CALL(3,0,0); c 12:20:4:3:2:2:0:0:0:
20 LOAD(0.1); 20 € 4:3:2:2:0:0:0:1
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2
1:CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %4 1 3:3:38:4:3:3:3:8:8:8:%
. . 5 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1); 16 ¢ 6:2:16:%:%'%8:2:%:%:%:8:8:8:i
. . 16 ¢ 12 :4:3:2:2:0:0:0:
égjgéklﬁgg’?;?)’ 20 - 4503520110 QL0EIDEL]
: 35/ 21 2 4:3:2:2:0:0:0:1
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2
1:CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %4 1 3:3:38:4:3:3:3:8:8:8:%
. . 5 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1); 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
19 : CALL(3,0,0); %8 € 3'2'20'?1;%;%;%;8;8;8;%
20 : LOAD(0,1); 5 e e
35/ 21 2 4:3:2:2:0:0:0:1
21 : STORE(1,1); 2 & 4:3:2:2:0:0:0:2
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2

1:CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
2 : JMP(0) ; 18 1 T3P 0:0:0:0:2
3:L0OAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2

11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %4 1 3:3:38:4:3:3:3:8:8:8:%
. . 5 ¢ 12 14:3:2:2:0:0:0:

iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1

16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1); 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
19 : CALL(3,0,0); %8 € 3'2'20'?1;%;%;%;8;8;8;%
20 : LOAD(0,1); 5 e e
35/ 21 2 4:3:2:2:0:0:0:1

21 : STORE(1,1); 2 & 4:3:2:2:0:0:0:2
22 : RET; 2 ¢ 0:0:0:2

mH Compiler Construction Summer Semester 2012 17.30

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2:

: CALL(17,0,1);
: JMP(0) ;

: LOAD(2,1);

: LIT(1);

1 GT;

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);
:LIT(1);

. SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1);

: STORE(1,1);
: RET;

OCoO~NOOTAWN

PC DS PS
1 ¢ 0:0:0:2
17 ¢ 4:3:2:0:0:0:0:2
18 1 4:3:2:0:0:0:0:2
19 ¢ 4:3:2:1:0:0:0:2
3 ¢ 3:2:20:4:3:2:1:0:0:0:2
4 2 3:2:20:4:3:2:1:0:0:0:2
5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 1 3:2:20:4:3:2:1:0:0:0:2
7 ¢ 3:2:20:4:3:2:1:0:0:0:2
8 1 3:2:20:4:3:2:1:0:0:0:2
9 1:2 3:2:20:4:3:2:1:0:0:0:2
10 2 3:2:20:4:3:2:1:0:0:0:2
11 ¢ 3:2:20:4:3:2:2:0:0:0:2
12 2 3:2:20:4:3:2:2:0:0:0:2
13 2:1 3:2:20:4:3:2:2:0:0:0:2
14 1 3:2:20:4:3:2:2:0:0:0:2
15 ¢ 3:2:20:4:3:2:2:0:0:0:1
3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
5 1:1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 ¢ 3:2:20:4:3:2:2:0:0:0:1
20 ¢ 4:3:2:2:0:0:0:1
21 2 4:3:2:2:0:0:0:1
22 ¢ 4:3:2:2:0:0:0:2
2 ¢ 0:0:0:2
0 e 0:0:0:2

Compiler Construction Summer Semester 2012 17.30

@ Correctness of the Translation

m Compiler Construction Summer Semester 2012 17.31

Correctness of the Translation

Theorem 17.12 (Correctness of translation)

For every P € Pgm, n€ N, and (z1,...,2z,),(21,...,2}) € Z":

MIPI(z1,...,2z0) = (21,---,2))
<= [trans(P)](1,6,0:0:0:2z;:...:2,)=(0,6,0:0:0: 2 :...:2z)

mH Compiler Construction Summer Semester 2012 17.32

Correctness of the Translation

Theorem 17.12 (Correctness of translation)

For every P € Pgm, n€ N, and (z1,...,2z,),(21,...,2}) € Z":

MIPI(z1,...,2z0) = (21,---,2))
<= [trans(P)](1,6,0:0:0:2z;:...:2,)=(0,6,0:0:0: 2 :...:2z)

see M. Mohnen: A Compiler Correctness Proof for the Static Link
Technique by means of Evolving Algebras, Fundamenta Informaticae
29(3), 1997, pp. 257-303 O

mH Compiler Construction Summer Semester 2012 17.32

@ Outlook

m Compiler Construction Summer Semester 2012 17.33

© More about code generation:

o Handling of procedure parameters

o Static & dynamic data structures

@ Compiler backend (register allocation, instruction selection &
placement, ...)

o Code analysis & optimization
= Static Program Analysis in Winter semester

mH Compiler Construction Summer Semester 2012 17.34

© More about code generation:
o Handling of procedure parameters
Static & dynamic data structures
@ Compiler backend (register allocation, instruction selection &
placement, ...)
Code analysis & optimization
= Static Program Analysis in Winter semester

@ June 27/28, July 4: Computational Differentiation [Naumann]
© July 11: preparation of exam (question time)
Q July 12: 1st exam

©

<

m Compiler Construction Summer Semester 2012 17.34

	Repetition: Intermediate Code
	Semantics of Procedure and Transfer Instructions
	The Symbol Table
	Translation of Programs
	Translation of Blocks
	Translation of Declarations
	Translation of Commands
	Translation of Expressions
	A Translation Example
	Correctness of the Translation
	Outlook

