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Syntax of EPL

Definition (Syntax of EPL)
The syntax of EPL is defined as follows:

Z: z (* z is an integer *)

Ide : / (* I is an identifier *)

AExp: A=z |Il|A1+Ax|...

BExp: B := A; <Ay|not B|Bjand By | B; or B
C

Cmd : w=1:=A|C;C|if B then G else (|
while Bdo C |10

Dcl - D ::= D¢ Dy Dp
Dc i=¢|const Iy :=z1,...,Ih 1= zp;
Dy :=c¢|var h,...,l,;
Dp ::= e | proc l1;Ky; ... ;proc In; Ky
Blk K::=DC
Pgm P ::=in/out I, ... ,I;; K.
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The Abstract Machine AM

Definition (Abstract machine for EPL)
The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC := N,
@ the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

Thus a state s = (/,d, p) € S is given by
@ a program label / € PC,
@ adatastack d=d.r:...:d.1 € DS, and
@ a procedure stack p=p.1:...:p.t € PS.
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Structure of Procedure Stack |

The semantics of procedure and transfer instructions requires a particular
structure of the procedure stack p € PS: it must be composed of frames
(or: activation records) of the form

slodlira:vy:...1 v
where

static link s/: points to frame of surrounding declaration environment
— used to access non-local variables

dynamic link dl: points to previous frame (i.e., of calling procedure)
—> used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
= used to continue program execution after termination
of procedure call

local variables v;: values of locally declared variables
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Structure of Procedure Stack IV

Observation:
@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

m Compiler Construction Summer Semester 2012 17.7



Structure of Procedure Stack IV

Observation:

@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

Example (cf. Example 16.9)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;

[.. PO ..]

[..x..y...Q0 ...

proc R;
[.. PO .]
[.. PO .].

Procedure stack after second call of P:

]

)
1
[o]o]o] |

| s 3 [ 1
ms[4] [ [ [s[4] [ [ [5[4] [ [ [4I3] |
| _ _

y z X y y sl dlirax
PO QO PO” . MAIN . 1/0
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Structure of Procedure Stack IV

Observation:
@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

Example (cf. Example 16.9)

in/out x;
const ¢ = 10;

var y;
proc P; Procedure stack after second call of P:

var y, z; l 5 = - -
. [ il[ il[ l [ \
proc & [f5[4T [ [ [5[4] [ [ [5[4] [ [ [4[3] [ [o[o]o] |
D] y 2z X z y z y-sldlirax
[.. PO .] PO° QO PO ! MAIN! /O
[ X .. y.. Q0 ] P uses x = dif =2
proc R;
[.. PO ..]
[.. PO ...

y
y
i
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Structure of Procedure Stack IV

Observation:

@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

Example (cf. Example 16.9)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;

[.. PO ..]

[ Xy .. QO ..

proc R;
[.. PO .]
[.. PO .].

]

Procedure stack after second call of P:

]

| s 3 [ 1 =]
m5[4] [ [ [s[4] [ [ [5[4] [ [ [4[3[ [ [oJofo] |
| _ _

y z X
PO ] QO
Pusesy —> dif =0

y sl dlra x
MAIN @ 1/O
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© Semantics of Procedure and Transfer Instructions
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Semantics of Procedure Instructions

@ CALL(ca,dif ,loc) with

@ code address ca € PC
o level difference dif € N
o number of local variables loc € N

creates the new frame and jumps to the given address
(= starting address of procedure)

@ RET removes the topmost frame and returns to the calling site
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Semantics of Procedure Instructions

@ CALL(ca,dif ,loc) with

@ code address ca € PC
o level difference dif € N
o number of local variables loc € N

creates the new frame and jumps to the given address
(= starting address of procedure)

@ RET removes the topmost frame and returns to the calling site

Definition 17.1 (Semantics of procedure instructions)

The semantics of a procedure instruction O, [O] : S --+ S, is defined as follows:
[CALL (ca, dif ,loc) (!, d, p)
= (ca,d, (base(p,dif)+ loc+2):(loc+2):(/+1):0:...:0:p
( (base( ) ) ( ) (I+1) Loif )
S/ d/ ra ocC times
[RET](/,d,p.1:...: p.t)
= (p3,d,p.(p2+2):...:p.t) ift>p2+2
—— ——
ra dl
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Semantics of Transfer Instructions

@ LOAD(dif ,off) and STORE(dif, off) with

o level difference dif € N
o variable offset off € N

respectively load and store variable values between data and
procedure stack, following a chain of dif static links

@ LIT(z) loads the literal constant z € Z
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Semantics of Transfer Instructions

@ LOAD(dif ,off) and STORE(dif, off) with

o level difference dif € N
o variable offset off € N

respectively load and store variable values between data and
procedure stack, following a chain of dif static links

@ LIT(z) loads the literal constant z € Z

Definition 17.2 (Semantics of transfer instructions)

The semantics of a transfer instruction O, [O] : S --+ S, is defined as
follows:

[LOAD (dif ,of)|(I,d, p) := (I +1,d : p.(base(p, dif) + off + 2), p)
[STORE(dif ,off)](/,d : z,p) := (I + 1,d, p[base(p, dif ) + off + 2 — z])
[LIT(D](l,d,p) == (I+1,d: z,p)
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AM Programs and Their Semantics

Definition 17.3 (Semantics of AM programs)

An AM program is a sequence of k > 1 labeled AM instructions:
P=1:0;...;k: O

The set of all AM programs is denoted by AM.
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AM Programs and Their Semantics

Definition 17.3 (Semantics of AM programs)
An AM program is a sequence of k > 1 labeled AM instructions:
P=1:01;...;k: O
The set of all AM programs is denoted by AM.
The semantics of AM programs is determined by
[.]: AM xS --»S

with

[P, ) = {JRIOAC 02D EIE T
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© The Symbol Table
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Structure of Symbol Table

Goal: define translation mapping trans : Pgm --+ AM
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Structure of Symbol Table

Goal: define translation mapping trans : Pgm --+ AM
The translation employs a symbol table:
Tab := {st | st : Ide --» ({const} x Z)
U ({var} x Lev x Off)
U ({proc} x PC x Lev x Size)}
whose entries are created by declarations:
@ constant declarations: (const, z)
o valuezeZ
@ variable declarations: (var, lev, off)
o declaration level lev € Lev :=N (0 = 1/0, 1 = MAIN, ...)
e offset off € Off :=N
o offset and difference between usage and declaration level determine
procedure stack entry
@ procedure declarations: (proc, ca, lev, loc)
@ code address ca € PC
o declaration level lev € Lev
@ number of local variables loc € Size := N
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Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st, /) which specifies
the update of symbol table st according to declaration D (with respect to current
level /):
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Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st, /) which specifies
the update of symbol table st according to declaration D (with respect to current
level /):

Definition 17.4 (update function)
update : Dcl x Tab x Lev --» Tab

is defined by

update(D¢c Dy Dp,st, [)
:= update(Dp, update(Dy, update(Dc, st, 1), ), /)
if all identifiers in D¢c Dy Dp different
update(e, st, /)
=St
update(const h 1=z, ...,l, := z,;,st,/)
.= st[h — (const, z1),..., I, — (const, z,)]
update(var f, ..., l,;,st, /)
= st[h — (var,,1),..., 1, — (vaz,/, n)]
update(proc h;Ki; ...;proc l,; Ky;,st, /)
= st[h — (proc,as, /,size(K1)),. .., I, — (proc, ap, I, size(K,))]
with “fresh” addresses ay, ..., a,
where size(D¢ var I, ...,l,; DpC):=n
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The Initial Symbol Table

Reminder: an EPL program P = in/out i, ... ,l,; K. € Pgm has a
semantics of type Z" --» Z".
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The Initial Symbol Table

Reminder: an EPL program P = in/out i, ... ,l,; K. € Pgm has a
semantics of type Z" --» Z".

Given input values (zi,...,z,) € Z", we choose the initial state
s:=(1,60:0:0:2z1:...:2,) € S=PC x DS x PS
I/O frame
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The Initial Symbol Table

Reminder: an EPL program P = in/out i, ... ,l,; K. € Pgm has a
semantics of type Z" --» Z".

Given input values (zi,...,z,) € Z", we choose the initial state
s:=(1,60:0:0:2z1:...:2,) € S=PC x DS x PS
I/O frame

Thus the corresponding initial symbol table has n entries:

st o(lj) := (var,0,)) for every j € [n]
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@ Translation of Programs
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Translation of Programs

Translation of in/out I, ...,l,;D C.:
© Create MAIN frame for executing C

© Stop program execution after return
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Translation of Programs

Translation of in/out I, ...,l,;D C.:
© Create MAIN frame for executing C

© Stop program execution after return

Definition 17.5 (Translation of programs)

The mapping
trans : Pgm --» AM
is defined by
trans(in/out h, ... ,l,; K.) :=1:CALL(a,0,size(K));
2:JMP(0);
kt(Kvstl/O)av 1)
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© Translation of Blocks
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Translation of Blocks

Translation of D C:
© Update symbol table according to D

© Create code for procedures declared in D
(using the updated symbol table — recursion!)

© Create code for C (using the updated symbol table)
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Translation of Blocks

Translation of D C:
© Update symbol table according to D

© Create code for procedures declared in D
(using the updated symbol table — recursion!)

© Create code for C (using the updated symbol table)

Definition 17.6 (Translation of blocks)
The mapping

kt : Blk x Tab x PC x Lev --» AM
(“block translation™) is defined by

kt(D C,st,a,l) := dt(D,update(D,st, /), /)
ct(C,update(D,st, /), a, )
a’ : RET;
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© Translation of Declarations
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Translation of Declarations

Translation of D: generate code for the procedures declared in D
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Translation of Declarations

Translation of D: generate code for the procedures declared in D

Definition 17.7 (Translation of declarations)
The mapping
dt : Dcl x Tab x Lev --» AM
(“declaration translation”) is defined by
dt(Dc Dy Dp,st, 1)
= dt(Dp,st, /)
dt(e, st, /)
= €
dt(proc h;Ki; ... ;proc Ip; Kn;,st, /)
= kt(Kl,St, ai, l + ].)

kt(Khn, st, an, | + 1)
where st(/;) = (proc, aj, .. .,...) for every j € [n]

RWNTH Compiler Construction Summer Semester 2012
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@ Translation of Commands
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Translation of Commands

Definition 17.8 (Translation of commands)
The mapping

ct: Cmd x Tab x PC x Lev --» AM
(“command translation”) is defined by
ct(l := A, st,a,l) := at(A,st, a, /)
a’ : STORE(/ — lev,off) ;
if st(/) = (var, lev, off)
ct(1Q,st,a,l) ;= a: CALL(ca, ! — lev,loc) ;
if st(/) = (proc, ca, lev, loc)
ct(C; Gy sty a, 1) = ct(G, sty a, /)
(Cz,bt a’ /)
ct(if B then (G else (,st,a,/) := bt(B,st, a, /)

a: JFALSE(a”)
t(Cl,st a+1,0)
a’'—1: JMP(aHI)

( ,st,a”’, 1)
ct(while B do C,st,a,/) := (B st, a, /)
: JFALSE(a” +1);
( st,a’ +1,1)
L IMP(a) ;
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© Translation of Expressions
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Translation of Boolean Expressions

Definition 17.9 (Translation of Boolean expressions)

The mapping

bt : BExp x Tab x PC x Lev --» AM

(“Boolean expression translation”) is defined by

bt(Al < Ap,st, a, /)

bt(not B,st, a, /)

bt(Bl and B,,st, a, /)

bt(Bl or B,,st, a, /)

at(Ag,st, a, /)
at(Az,st, a', /)
a’ : LT;
bt(B, st, a, /)
a’ : NOT;
bt(By, st, a, /)
bt(Bg,st,a/, /)
a’ : AND;
bt(By, st, a, /)
bt(Bg,st,a/, /)
a” : OR;

Rer Compiler Construction
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Translation of Arithmetic Expressions

Definition 17.10 (Translation of arithmetic expressions)

The mapping
at : AExp x Tab x PC x Lev --+ AM

(“arithmetic expression translation™) is defined by
at(z,st,a,l) == a:LIT(2);
_ Ja:LIT(2); if st(/) = (const, z)
izt 2, ) = a:LOAD(/ — lev,off); if st(/) = (var, lev, off)
at(A1 + Ag,st, a,l) := at(Ag,st, a, /)
at(Ag,st,a’, /)
a’ : ADD;
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© A Translation Example
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x;
var y;
proc F;
if x > 1 then
y =y * X
X :=x - 1;
FO
y &= ig
FO;
X 1= y.

Summer Semester 2012 17.28
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:

in/out x; trans(in/out x;K.)
var y;
proc F;

if x

v :

X

1 then
y o* x5
x - 1;

nnwv

Wy 8= g
EOF
x = y.

trans(in/out h, ... ,Ih;K.) =
1:CALL(a,0,size(K));
2:JMP(0);
kt(K,St//o,a,l)

stjjo = [x = (var,0,1)]
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:

in/out x; 1:CALL(a0,0,1);
var y; 2: JMP(0);
proc F; kt(K,st; /0, a0, 1
if x 1 then ( e )
y y * x5
X x - 1;
FO
y := 1;
EOF
X = y.
kt(D C,st,a,l) :=
dt(D, update(D,st, 1), )
ct(C,update(D, st, /), a, )
a’ : RET;

nnwv

stjjo = [x — (var,0,1)]
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1: CALL(a0,0,1);
var y; 2 JMP(0) ;
proc F; dt(D,update(D, st/ /0, 1), 1)
if x > 1 then ct(C, update(D, st /0, 1), a0, 1)
sy e ay : RET;
x :=x - 1;
FO
y :=1;
FO;
x :=y.
update(var I, ... ,In;,st l)
st[h — (var,/,1),..., I, — (var,/, n)]
update(proc h; Ki; ... ,proc I,,,K,,, st, [) =
st[h — (proc, a1, /, size(K1)), . — (proc, an, /, size(Ky))]
st’ = [x — (var, 0, 1),
y H (Var7 17 1)7
F — (proc, a1, 1, 0)]
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(Ca9,0,1);
var y; 2 : JMP(0);
proc F; dt(D,st’, 1)
if x > 1 then Ct(C st’, ag ]_)
y =Yy *X; a> : RET;
x :=x - 1;
FO
y &= dg
FO;
X 1= y.

dt(proc h;Ki;...;proc In; Ka;,st,l) =
kt( K, st, a1, [ + 1)

kt(Kn, st, an, | + 1)
where st(/;) = (proc, aj, ..., ...) for every j € [n]

st’ = [x = (var, 0, 1),
y — (var, 1,1),
F — (proc, a1, 1,0)]
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(a0,0,1);
var y; 2 : JMP(0);
proc F; kt(Ke, st’, a1, 2)
if x > 1 then Ct(C,st',ao,l)
g oe= g a : RET;
X :=x - 1;
FO
y :=1;
FO;
X = y.

kt(D C,st,a,l) =
dt(D, update(D,st, 1), )
ct(C,update(D, st, /), a, )
a’ : RET;
st’ = [x — (var, 0, 1),
y H (Var7 17 1)7
F — (proc, a1, 1, 0)]
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(Ca0,0,1);
var y; 2: JMP(0);
proc F; ct( G, st’, a1, 2)
if x > 1 then as : RET;
y =y % % ct(C,st', ap, 1)
EE S : RET;
FO) *
y :=1;
FO;
X = y.
ct(if B then G else G, st,a,l) =
bt(B, st, a, /)

a’ : JFALSE(a");
ct(Ci,st,a’ +1,1)
a’ —1:JMP(a"");
ct(C,st,a”, 1)

"o,
a .

st’ = [x — (var, 0, 1),
y — (var, 1,1),

F — (proc, a1, 1, 0)]
-—
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(Ca9,0,1);
var y; 2 : JMP(0);
proc F; bt(x > 1,st’; a1,2)
if x > 1 then as : JFALSE(a3) ;
y i y o* x5 ct(Cl,st’,a4—|—1,2)
=x -1 a3 : RET;
. '_Fi) ct(C,st’, a0, 1)
FO . a» : RET;
x :=y.
bt(Ar > Az, st, a, /) := at(Aq,st, a, /)
at(As,st, a’, l)
'"": GT;
st’ = [x — (var, 0, 1),
y — (var, 1,1),
F — (proc, a1, 1,0)]
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1: CALL(a0,0,1);
var y; 2 JMP(0);
proc F; at(x, st’, a1, 2)
if x > 1 then at(l,st',a/,2)
y =y okx; aT
0 5SS = i as : JFALSE(a3) ;
.=F§). ct(Ci,st’,as +1,2)
go. ; a3 : RET;
% e - ct(C,st’, a, 1)
a> : RET;
at(l,st,a,l) =
a:LIT(z); if st(/) = (const, z)
a:LOAD(/ — lev,off); if st(l) = (var, lev, off)
st’ = [x — (var, 0, 1),
y H (Var’ 17 1)7
F — (proc, a1, 1,0)]
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(Ca9,0,1);
var y; 2 : JMP(0);
proc F; ar : LOAD(2,1);
if x > 1 then at(1,st’, a’,2)
V=¥ oxx; 5
X :=x - 1; as : JFALSE(a3) ;

FO ct(Cl,st’,a4—|—1,2)
TR as : RET;
208 ot(C,st’, 20,1)
X =y a» : RET;
(Lt( st,a,l) ;== a:LIT(2);
= [x — (var,0,1),
y — (var,1,1),
F — (proc, a1, 1,0)]
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1: CALL(a9,0,1);
var y; 2 : JMP(0);
proc F; ar : LOAD(2,1);
if x > 1 then LIT(1);
y =y * X GT;
X :=x -1 as : JFALSE(a3) ;
FO ct(Cl,st',a4—|—1,2)
y =1 as : RET;
FO; ct(C,st’, a0, 1)
X =7 a» : RET;
ct(l := A;st,a,l) =
at(A,st, a, /)
a’ : STORE(/ — lev,off ) ;
if st(/) = (var, lev, off)
st’ = [x — (var, 0, 1),
y H (Var7 17 1)7
F — (proc, a1, 1, 0)]
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(Ca9,0,1);
var y; 2 : JMP(0);
proc F; ar : LOAD(2,1);
if x > 1 then LIT(1);
y =y * X; GT;
X :=x - 1; as : JFALSE(a3);
FO at(y * x,st’,as+1,2)
y = 1; STORE(1,1);
FO; at(x - 1,st’,4’,2)
X =Y. STORE(2,1) ;
(Lt(Al + /4278137 a, l) = at(AhSt, a, /) Ct(F()zstlv a//v 2)
at(As,st, a’, l) a3 | RET;
2" : ADD; Ct(C,St/,ao7 1)
a» : RET;
st’ = [x + (var, 0, 1),
y — (var, 1,1),
F — (proc, a1, 1,0)]
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code:

in/out x;
var y;
proc F;
if x > 1 then
=y * x;
x - 1;

y
X
FO
y :=1;
FO;
X = y.
ct(10,st,a,l) =
a:CALL(ca,l — lev,loc);
if st(/) = (proc, ca, lev, loc)

st’ = [x — (var, 0, 1),
y H (Var’ 17 1)7
F — (proc, a1, 1,0)]

Intermediate code:

: CALL(ap,0,1);
: JMP(0) ;
: LOAD(2,1);

LIT(1);
GT;

: JFALSE(a3) ;

LOAD(1,1);
LOAD(2,1);
MULT;
STORE(1,1);
LOAD(2,1);
LIT(1);

SUB;
STORE(2,1) ;
ct(FQ,st’,a”,2)

: RET;

ct(C,st’, a, 1)

: RET;

Compiler Construction
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:
in/out x; 1:CALL(a,0,1);
var y; 2: JMP(0);
proc F; a; : LOAD(2,1);
if x > 1 then LIT(1);
y =y * X; GT;
x 1=x -1 ay : JFALSE(a3) ;
FQO LOAD(1,1);
y =1 LOAD(2,1);
FO; MULT;
X =Y. STORE(1,1);
LOAD(2,1);
st’ = [x = (var, 0, 1), LIT(1);
SUB;
Y'_> (Vara]-?l)? STORE(2 1)
F — (proc, a1, 1,0)] CALL (2, ”1’6);
as : RET;
ct(C,st’, a0, 1)
a» : RET;
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Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:

in/out x; 1: CALL(a0,0,1);
var y; 2 : JMP(0);
proc F; ar : LOAD(2,1);
if x > 1 then LIT(1);
y * X; GT;
x - 1; ay : JFALSE(a3) ;
O LOAD(1,1);
y =1 LOAD(2,1);
FOj; MULT;
X STORE(1,1);
LOAD(2,1);
LIT(1);
SUB;
STORE(2,1) ;
CALL(a1,1,0);
as : RET;
ao : LIT(1);
STORE(0,1);
CALL(a1,0,0);
L0OAD(0,1);
STORE(1,1);
a> : RET;
-—
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st’ = [x + (var, 0, 1),
y — (var, 1,1),
F — (proc, a1, 1,0)]




Example: Factorial Function Il

Example 17.11 (Factorial function; continued)

Code with symbolic Linearized (ap = 17,21 = 3,22 = 22,23 = 16, a1 = 6):

addresses: 1: CALL(17,0,1);

1: CALL(a0,0,1); 2: JMP(0);

2: JMP(0); 3: LOAD(2,1);

ar : LOAD(2,1); 4 : LIT(1);
LIT(1); 5: GT;
GT; 6 : JFALSE(16) ;

as : JFALSE(a3); 7 : LOAD(1,1);
LOAD(1,1); 8 : LOAD(2,1);
LOAD(2,1); 9 : MULT;
MULT; 10 : STORE(1,1);
STORE(1,1); 11 : LOAD(2,1);
LOAD(2,1) ; 12 : LIT(1);
LIT(1); 13 : SUB;
SUB; 14 : STORE(2,1);
STORE(2,1) ; 15 : CALL(3,1,0);
CALL(a1,1,0); 16 : RET;

as : RET; 17 : LIT(1);

ao : LIT(1); 18 : STORE(0,1);
STORE(0,1) ; 19 : CALL(3,0,0);
CALL(a;,0,0) ; 20 : LOAD(0,1);
LOAD(0,1); 21 : STORE(1,1);
STORE(1,1) ; 22 : RET;

a» : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS

© CALL(17,0,1); 4E 0:0:0:2
: JMP(0) ;

- LOAD(2,1) ;
:LIT(1);

1 GT;

: JFALSE(16) ;
: LOAD(1,1);

- LOAD(2,1);

: MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 LIT(1);

13 : SUB;

14 : STORE(2,1) ;
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1) ;
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS

. CALL(17,0,1) ; & =

: JMP(0) ;

: LOAD(2,1);
: LIT(1);

1 GT;

: JFALSE(16) ;
: LOAD(1,1);
: LOAD(2,1);
: MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS P.

. CALL(17,0,1) ; & =

: JMP(0) ; 18 1
: LOAD(2,1);

: LIT(1);

1 GT;

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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B
oo
N[N
oo
Ees
oo
oo
rlroi A

OCoO~NOOTAWN




Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1: CALL(17,0,1); l% i 4:3:2:0:8;8;8;%
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1);

5:GT;

6 : JFALSE(16) ;

7 :LOAD(1,1);

8 : LOAD(2,1);

9 : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1:CALL(17,0,1); l% i 4:3:2:0:8;8;8;%
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT;

6 : JFALSE(16) ;

7 : LOAD(1,1);

8 : LOAD(2,1);

9 : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS

: CALL(17,0,1);
: JMP(0) ;

: LOAD(2,1);

S LIT(1); 3

[y
©
NM M=o m

1 GT;

BB
W wlwlwlw
NN
Hinllolo
oojoloed

O|0|0|0|I0|T

O|0|0|0|I0|T

NINININININ N

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);
:LIT(1);

. SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;
:LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1);

: STORE(1,1);
: RET;

OCoO~NOOTHSWN
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS

: CALL(17,0,1);
: JMP(0) ;

: LOAD(2,1);

D LIT(1); 3

[y
©
NNO O = M

BBB R B
N[N N N[N
H=—olo

NININININININ N

. GT; 5

W[W|W[wW W|w
Olo|0|0|0|I0|d

oOlo|0|00|I0d

oOl0|0|00|I0d

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);
:LIT(1);

. SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;
:LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1);

: STORE(1,1);
: RET;

OCoO~NOOTAWN
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
! 0:0:0:2
1:CALL(17,0,1); 17 i 4:3:2:0:0:0:0:2
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
5 0 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
o P, HEBLIEivess
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 :LOAD(1,1);
8 : LOAD(2,1);
O : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2

: CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2

: JMP(0) ; 18 1 4:3:2:0:0:0:0:2
: LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2

S LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
 GT; 5 5.1 T 000
: JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2

: LOAD(1,1); 7 € 3:2:20:4:3:2:1:0:0:0:2

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);
:LIT(1);

. SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;
:LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1);

: STORE(1,1);
: RET;

N = = b e e e e e
CQOWONOOOITPAPWNHFHOOO~NOOTEAWN

N N
N =

mH Compiler Construction Summer Semester 2012 17.30



Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
=z 0:0:0:2

: CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2

: JMP(0) ; 18 1 4:3:2:0:0:0:0:2
: LOAD(2,1); 19 ¢ A R0 00 2

S LIT(1): 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
: JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2

: LOAD(1,1); 7 € 3:2:20:4:3:2:1:0:0:0:2
: LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2

: MULT;

: STORE(1,1);
: LOAD(2,1);
:LIT(1);

. SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;
:LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1);

: STORE(1,1);
: RET;

N = = b e e e e e
QCQOWONOOOITPAPWNHFHOOONOOTEAWN

N N
N =

mH Compiler Construction Summer Semester 2012 17.30



Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)
PC

O
a

Computation for x = 2:

: CALL(17,0,1);
: JMP(0) ;

: LOAD(2,1);

D LIT(1); 3

1 GT;

: JFALSE(16) ;

: LOAD(2,1);

oo~NoOhwWNH
HEOFRENDNO O RO 0
W|W|W|W|W|w|w
NN NN NI NN

4
5
6
: LOAD(1,1); 7
8
9

: MULT;

B B B R B Ea R
QO[] W | W W | W W W
O|0|O|O|0|0|0|0|O|0|

N[ NN N| N NN N N N
== == == olo

O[O|0O|O|0|0|0|0|O(0|

O[O|0O|O|0|0|0|0|O(0|

NININININININNNININY N

: STORE(1,1);
: LOAD(2,1);
:LIT(1);

. SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;
:LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1);

: STORE(1,1);
: RET;

RWNTH
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS

! 0:0:0:2
1:CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
5 0 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
oo P, HEBLIEivess
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 :LOAD(1,1); 7 € 3:2:20:4:3:2:1:0:0:0:2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
) d 10 2 3:2:20:4:3:2:1:0:0:0:2

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2

1:CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
. . 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
oo P, HEBLIEivess
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10 : STORé(l 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2

11 : LOAD(2,1);
12 : LIT(1);

13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2
1:CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 4:3:2:0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5 : GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € 3:2:20:4:3:2:1:0:0:0:2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1);
13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2
1:CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € 3:2:20:4:3:2:1:0:0:0:2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB;

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2

1:CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2

11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; 14 1 3:2:20:4:3:2:2:0:0:0:2

14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;

17 : LIT(1);

18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

mH Compiler Construction Summer Semester 2012 17.30




Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1:CALL(17,0,1); l% i 4:3:2:0:8;8;8;%
2: JMP(0) ; 18 1 4:3:2:0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5 : GT; 5 3.1 IR T 000
6 : JFALSE(16); 6 1 3.2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 ¢ 3:2:20:4:3:2:1:0:0:0:2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
10 : STORE(1,1); 11 & SILI20) 430202 QL0002
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; 14 1 3:2:20:4:3:2:2:0:0:0:2
14 : STORE(2,1); 15 ¢ 3:2:20:4:3:2:2:0:0:0:1
15 : CALL(3,1,0);

16 : RET;

17 : LIT(1);

18 : STORE(0,1);

19 : CALL(3,0,0);

20 : LOAD(0,1);

21 : STORE(1,1);

22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1:CALL(17,0,1); l% i 4:3:2:0:8;8;8;%
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
4 LIT(1); 3 e 3:2:20:4:3:2:1:0:0:0:2
5 : GT; 5 3.1 IR T 000
6 : JFALSE(16) ; 6 1 3:0:20:4:3:2:1:0:0:0:9
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT; 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10 : STORE(1,1); 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %‘51 1 %%%833338885
14 : STORE(2,1) ; c o165 50 TS5
15 : CALL(3,1,0); 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET;
17 : LIT(1);
18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2

1:CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
4:LIT(1); 3 € 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2

10:STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2

11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2

12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2

13 : SUB; 14 1 3:3:38:4:3:3:3:8:8:8:%

14 : STORE(2,1) ; 15 ¢ 12 14:3:2:2:0:0:0:
. TR 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1

15: CALL(3,1,0); 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1

16 : RET;

17 : LIT(1);

18 : STORE(0,1);

19 : CALL(3,0,0);

20 : LOAD(0,1);

21 : STORE(1,1);

22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2
1:CALL(17,0,1); 17 i 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10:STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; 14 1 3:3:38:4:3:3:3:8:8:8:%
. . 15 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl B2 9:B:2oA0:4:8:2:2:0:.0:0:1
17 : LIT(1);
18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2
1:CALL(17,0,1); 17 i 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10:STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; 14 1 3:3:38:4:3:3:3:8:8:8:%
. . 15 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁil())s 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1) ;
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2
%:gﬁrﬁ%é)ﬂ,oﬁ); 17 . 4:3:2:0:0:0:0:2
: 8 18 1 4:3:2:0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
. . 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
151—:5;]5?(1), 4 2 3:2:20:4:3:2:1:0:0:0:2
) ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10:STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %4 1 3:3:38:4:3:3:3:8:8:8:%
. . 5 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1); 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2
%:gﬁrﬁ%é)ﬂ,oﬁ); 17 . 4:3:2:0:0:0:0:2
: 8 18 1 4:3:2:0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
. . 3 € 3:2:20:4:3:2:1:0:0:0:2
151—:5;]5?(1), 4 2 3:2:20:4:3:2:1:0:0:0:2
) ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %4 1 3:3:38:4:3:3:3:8:8:8:%
. . 5 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1); 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
19 : CALL(3,0,0) ; 16 ¢ 3:2:20:4:3:2:2:0:0:0:1
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 0:0:0:2
%:gﬁrﬁ%é)ﬂ,oﬁ); 17 . 4:3:2:0:0:0:0:2
: 8 18 1 4:3:2:0:0:0:0:2
3:L0OAD(2,1); 19 ¢ A R0 00 2
. . 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
151—:5;]5?(1), 4 2 3:2:20:4:3:2:1:0:0:0:2
) ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %4 1 3:3:38:4:3:3:3:8:8:8:%
. . 5 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1); %g 5 6:2:16:%:%'%8:2:%:%:%:8:8:8:i
10 : CALL(3,0,0); c 12:20:4:3:2:2:0:0:0:
20 LOAD(0.1); 20 € 4:3:2:2:0:0:0:1
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2
1:CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %4 1 3:3:38:4:3:3:3:8:8:8:%
. . 5 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1); 16 ¢ 6:2:16:%:%'%8:2:%:%:%:8:8:8:i
. . 16 ¢ 12 :4:3:2:2:0:0:0:
égjgéklﬁgg’?;?)’ 20 - 4503520110 QL0EIDEL]
: 35/ 21 2 4:3:2:2:0:0:0:1
21 : STORE(1,1);
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2
1:CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
2: JMP(0) ; 18 1 T3P 0:0:0:0:2
3:LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %4 1 3:3:38:4:3:3:3:8:8:8:%
. . 5 ¢ 12 14:3:2:2:0:0:0:
iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1); 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
19 : CALL(3,0,0); %8 € 3'2'20'?1;%;%;%;8;8;8;%
20 : LOAD(0,1); 5 e e
35/ 21 2 4:3:2:2:0:0:0:1
21 : STORE(1,1); 2 & 4:3:2:2:0:0:0:2
22 : RET;
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2: PC DS PS
1 ¢ 0:0:0:2

1:CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
2 : JMP(0) ; 18 1 T3P 0:0:0:0:2
3:L0OAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
4:LIT(1); 3 ¢ 3:2:20:4:3:2:1:0:0:0:2
5:GT; 5 5:1 SR e T i 00
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); 7 € B2 A g 0:00a2
8 : LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2
9 : MULT: 9 1:2 3:2:20:4:3:2:1:0:0:0:2
10'STOR]::(1 1) 10 2 3:2:20:4:3:2:1:0:0:0:2
: A 11 ¢ 3:2:20:4:3:2:2:0:0:0:2

11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB; %4 1 3:3:38:4:3:3:3:8:8:8:%
. . 5 ¢ 12 14:3:2:2:0:0:0:

iggigi%gﬁilés 3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
: sV 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1

16 : RET; 5 dcl Br2ip:B:Z2oA):4:8:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1); 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
19 : CALL(3,0,0); %8 € 3'2'20'?1;%;%;%;8;8;8;%
20 : LOAD(0,1); 5 e e
35/ 21 2 4:3:2:2:0:0:0:1

21 : STORE(1,1); 2 & 4:3:2:2:0:0:0:2
22 : RET; 2 ¢ 0:0:0:2
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Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2:

: CALL(17,0,1);
: JMP(0) ;

: LOAD(2,1);

: LIT(1);

1 GT;

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);
:LIT(1);

. SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1);

: STORE(1,1);
: RET;

OCoO~NOOTAWN

PC DS PS
1 ¢ 0:0:0:2
17 ¢ 4:3:2:0:0:0:0:2
18 1 4:3:2:0:0:0:0:2
19 ¢ 4:3:2:1:0:0:0:2
3 ¢ 3:2:20:4:3:2:1:0:0:0:2
4 2 3:2:20:4:3:2:1:0:0:0:2
5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 1 3:2:20:4:3:2:1:0:0:0:2
7 ¢ 3:2:20:4:3:2:1:0:0:0:2
8 1 3:2:20:4:3:2:1:0:0:0:2
9 1:2 3:2:20:4:3:2:1:0:0:0:2
10 2 3:2:20:4:3:2:1:0:0:0:2
11 ¢ 3:2:20:4:3:2:2:0:0:0:2
12 2 3:2:20:4:3:2:2:0:0:0:2
13 2:1 3:2:20:4:3:2:2:0:0:0:2
14 1 3:2:20:4:3:2:2:0:0:0:2
15 ¢ 3:2:20:4:3:2:2:0:0:0:1
3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
5 1:1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 ¢ 3:2:20:4:3:2:2:0:0:0:1
20 ¢ 4:3:2:2:0:0:0:1
21 2 4:3:2:2:0:0:0:1
22 ¢ 4:3:2:2:0:0:0:2
2 ¢ 0:0:0:2
0 e 0:0:0:2
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@ Correctness of the Translation
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Correctness of the Translation

Theorem 17.12 (Correctness of translation)

For every P € Pgm, n€ N, and (z1,...,2z,),(21,...,2}) € Z":

MIPI(z1,...,2z0) = (21,---,2))
<= [trans(P)](1,6,0:0:0:2z;:...:2,)=(0,6,0:0:0: 2 :...:2z)
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Correctness of the Translation

Theorem 17.12 (Correctness of translation)

For every P € Pgm, n€ N, and (z1,...,2z,),(21,...,2}) € Z":

MIPI(z1,...,2z0) = (21,---,2))
<= [trans(P)](1,6,0:0:0:2z;:...:2,)=(0,6,0:0:0: 2 :...:2z)

see M. Mohnen: A Compiler Correctness Proof for the Static Link
Technique by means of Evolving Algebras, Fundamenta Informaticae
29(3), 1997, pp. 257-303 O
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@ Outlook

m Compiler Construction Summer Semester 2012 17.33



© More about code generation:

o Handling of procedure parameters

o Static & dynamic data structures

@ Compiler backend (register allocation, instruction selection &
placement, ...)

o Code analysis & optimization
= Static Program Analysis in Winter semester
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© More about code generation:
o Handling of procedure parameters
Static & dynamic data structures
@ Compiler backend (register allocation, instruction selection &
placement, ...)
Code analysis & optimization
= Static Program Analysis in Winter semester

@ June 27/28, July 4: Computational Differentiation [Naumann]
© July 11: preparation of exam (question time)
Q July 12: 1st exam

©

<
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