Compiler Construction

Lecture 17: Code Generation Il (The Compiler)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/
P

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

ORMA WTHAACH
INIVER

Online Registration for
Seminars and Practical Courses (Praktika)
in Winter Term 2012/13

Who?
Students of: = Master Courses
= Bachelor Informatik (BraSeminar!)

Where?
web-info8.informatik.rwth-aachen.de/apse

When?
18.06.2012 - 01.07.2012

© Repetition: Intermediate Code

m Compiler Construction Summer Semester 2012 17.3

Syntax of EPL

Definition (Syntax of EPL)
The syntax of EPL is defined as follows:

Z: z (* z is an integer *)

Ide : / (* I is an identifier *)

AExp: A=z |Il|A1+Ax|...

BExp: B := A; <Ay|not B|Bjand By | B; or B
C

Cmd : w=1:=A|C;C|if B then G else (|
while Bdo C |10

Dcl - D ::= D¢ Dy Dp
Dc i=¢|const Iy :=z1,...,Ih 1= zp;
Dy :=c¢|var h,...,l,;
Dp ::= e | proc l1;Ky; ... ;proc In; Ky
Blk K::=DC
Pgm P ::=in/out I, ... ,I;; K.

mH Compiler Construction Summer Semester 2012 17.4

The Abstract Machine AM

Definition (Abstract machine for EPL)
The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC := N,
@ the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

Thus a state s = (/,d, p) € S is given by
@ a program label / € PC,
@ adatastack d=d.r:...:d.1 € DS, and
@ a procedure stack p=p.1:...:p.t € PS.

mH Compiler Construction Summer Semester 2012 17.5

Structure of Procedure Stack |

The semantics of procedure and transfer instructions requires a particular
structure of the procedure stack p € PS: it must be composed of frames
(or: activation records) of the form

slodlira:vy:...1 v
where

static link s/: points to frame of surrounding declaration environment
— used to access non-local variables

dynamic link dl: points to previous frame (i.e., of calling procedure)
—> used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
= used to continue program execution after termination
of procedure call

local variables v;: values of locally declared variables

mH Compiler Construction Summer Semester 2012 17.6

Structure of Procedure Stack IV

Observation:
@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a chain of
dif static links has to be followed to access the corresponding frame.

Example (cf. Example 16.9)

in/out x;
const ¢ = 10;
var y;

proc P; Procedure stack after second call of P:
MR | y Y] =
. [1 [I [I [\
proc & 15[4] [[[574[[[[5]4] [[T4[3[[[oJoJo[|
WRBE 3ip %5 y z X z y z y sl dlrax
[.. PO ..] PO] QO] PQ) . MAIN @ 1/0O

[% ¥y..Q0] pusesx = dif =2P usesy — dif =0
proc R;

[.. PO ..]
[.. PO ..].

mH Compiler Construction Summer Semester 2012 17.7

© Semantics of Procedure and Transfer Instructions

m Compiler Construction Summer Semester 2012 17.8

Semantics of Procedure Instructions

@ CALL(ca,dif ,loc) with

@ code address ca € PC
o level difference dif € N
o number of local variables loc € N

creates the new frame and jumps to the given address
(= starting address of procedure)

@ RET removes the topmost frame and returns to the calling site

Definition 17.1 (Semantics of procedure instructions)

The semantics of a procedure instruction O, [O] : S --+ S, is defined as follows:
[CALL (ca, dif ,loc) (!, d, p)
= (ca,d, (base(p,dif)+ loc+2):(loc+2):(/+1):0:...:0:p
((base()) () (I+1) Loif)
S/ d/ ra ocC times
[RET](/,d,p.1:...: p.t)
= (p3,d,p.(p2+2):...:p.t) ift>p2+2
—— ——
ra dl

mH Compiler Construction Summer Semester 2012 17.9

Semantics of Transfer Instructions

@ LOAD(dif ,off) and STORE(dif, off) with

o level difference dif € N
o variable offset off € N

respectively load and store variable values between data and
procedure stack, following a chain of dif static links

@ LIT(z) loads the literal constant z € Z

Definition 17.2 (Semantics of transfer instructions)

The semantics of a transfer instruction O, [O] : S --+ S, is defined as
follows:

[LOAD (dif ,of)|(I,d, p) := (I +1,d : p.(base(p, dif) + off + 2), p)
[STORE(dif ,off)](/,d : z,p) := (I + 1,d, p[base(p, dif) + off + 2 — z])
[LIT(D](l,d,p) == (I+1,d: z,p)

mH Compiler Construction Summer Semester 2012 17.10

AM Programs and Their Semantics

Definition 17.3 (Semantics of AM programs)
An AM program is a sequence of k > 1 labeled AM instructions:
P=1:01;...;k: O
The set of all AM programs is denoted by AM.
The semantics of AM programs is determined by
[.]: AM xS --»S

with

[P,) = {JRIOAC 02D EIE T

mH Compiler Construction Summer Semester 2012 17.11

© The Symbol Table

m Compiler Construction Summer Semester 2012 17.12

Structure of Symbol Table

Goal: define translation mapping trans : Pgm --+ AM
The translation employs a symbol table:
Tab := {st | st : Ide --» ({const} x Z)
U ({var} x Lev x Off)
U ({proc} x PC x Lev x Size)}
whose entries are created by declarations:
@ constant declarations: (const, z)
o valuezeZ
@ variable declarations: (var, lev, off)
o declaration level lev € Lev :=N (0 = 1/0, 1 = MAIN, ...)
e offset off € Off :=N
o offset and difference between usage and declaration level determine
procedure stack entry
@ procedure declarations: (proc, ca, lev, loc)
@ code address ca € PC
o declaration level lev € Lev
@ number of local variables loc € Size := N

mH Compiler Construction Summer Semester 2012 17.13

Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st, /) which specifies
the update of symbol table st according to declaration D (with respect to current
level /):

Definition 17.4 (update function)
update : Dcl x Tab x Lev --» Tab

is defined by

update(D¢c Dy Dp,st, [)
:= update(Dp, update(Dy, update(Dc, st, 1),), /)
if all identifiers in D¢c Dy Dp different
update(e, st, /)
=St
update(const h 1=z, ...,l, := z,;,st,/)
.= st[h — (const, z1),..., I, — (const, z,)]
update(var f, ..., l,;,st, /)
= st[h — (var,,1),..., 1, — (vaz,/, n)]
update(proc h;Ki; ...;proc l,; Ky;,st, /)
= st[h — (proc,as, /,size(K1)),. .., I, — (proc, ap, I, size(K,))]
with “fresh” addresses ay, ..., a,
where size(D¢ var I, ...,l,; DpC):=n
RWNTH Compiler Construction Summer Semester 2012 17.14

The Initial Symbol Table

Reminder: an EPL program P = in/out i, ... ,l,; K. € Pgm has a
semantics of type Z" --» Z".

Given input values (zi,...,z,) € Z", we choose the initial state
s:=(1,60:0:0:2z1:...:2,) € S=PC x DS x PS
I/O frame

Thus the corresponding initial symbol table has n entries:

st o(lj) := (var,0,)) for every j € [n]

m Compiler Construction Summer Semester 2012 17.15

@ Translation of Programs

m Compiler Construction Summer Semester 2012 17.16

Translation of Programs

Translation of in/out I, ...,l,;D C.:
© Create MAIN frame for executing C

© Stop program execution after return

Definition 17.5 (Translation of programs)

The mapping
trans : Pgm --» AM
is defined by
trans(in/out h, ... ,l,; K.) :=1:CALL(a,0,size(K));
2:JMP(0);
kt(Kvstl/O)av 1)

mH Compiler Construction Summer Semester 2012 17.17

© Translation of Blocks

m Compiler Construction Summer Semester 2012 17.18

Translation of Blocks

Translation of D C:
© Update symbol table according to D

© Create code for procedures declared in D
(using the updated symbol table — recursion!)

© Create code for C (using the updated symbol table)

Definition 17.6 (Translation of blocks)
The mapping

kt : Blk x Tab x PC x Lev --» AM
(“block translation™) is defined by

kt(D C,st,a,l) := dt(D,update(D,st, /), /)
ct(C,update(D,st, /), a,)
a’ : RET;

mH Compiler Construction Summer Semester 2012 17.19

© Translation of Declarations

m Compiler Construction Summer Semester 2012 17.20

Translation of Declarations

Translation of D: generate code for the procedures declared in D

Definition 17.7 (Translation of declarations)
The mapping
dt : Dcl x Tab x Lev --» AM
(“declaration translation”) is defined by
dt(Dc Dy Dp,st, 1)
= dt(Dp,st, /)
dt(e, st, /)
= €
dt(proc h;Ki; ... ;proc Ip; Kn;,st, /)
= kt(Kl,St, ai, l +].)

kt(Khn, st, an, | + 1)
where st(/;) = (proc, aj, .. .,...) for every j € [n]

RWNTH Compiler Construction Summer Semester 2012

17.21

@ Translation of Commands

m Compiler Construction Summer Semester 2012 17.22

Translation of Commands

Definition 17.8 (Translation of commands)
The mapping

ct: Cmd x Tab x PC x Lev --» AM
(“command translation”) is defined by
ct(l := A, st,a,l) := at(A,st, a, /)
a’ : STORE(/ — lev,off) ;
if st(/) = (var, lev, off)
ct(1Q,st,a,l) ;= a: CALL(ca, ! — lev,loc) ;
if st(/) = (proc, ca, lev, loc)
ct(C; Gy sty a, 1) = ct(G, sty a, /)
(Cz,bt a’ /)
ct(if B then (G else (,st,a,/) := bt(B,st, a, /)

a: JFALSE(a”)
t(Cl,st a+1,0)
a’'—1: JMP(aHI)

(,st,a”’, 1)
ct(while B do C,st,a,/) := (B st, a, /)
: JFALSE(a” +1);
(st,a’ +1,1)
L IMP(a) ;

mH Compiler Construction Summer Semester 2012 17.23

© Translation of Expressions

m Compiler Construction Summer Semester 2012 17.24

Translation of Boolean Expressions

Definition 17.9 (Translation of Boolean expressions)

The mapping

bt : BExp x Tab x PC x Lev --» AM

(“Boolean expression translation”) is defined by

bt(Al < Ap,st, a, /)

bt(not B,st, a, /)

bt(Bl and B,,st, a, /)

bt(Bl or B,,st, a, /)

at(Ag,st, a, /)
at(Az,st, a', /)
a’ : LT;
bt(B, st, a, /)
a’ : NOT;
bt(By, st, a, /)
bt(Bg,st,a/, /)
a’ : AND;
bt(By, st, a, /)
bt(Bg,st,a/, /)
a” : OR;

Rer Compiler Construction

Summer Semester 2012

17.25

Translation of Arithmetic Expressions

Definition 17.10 (Translation of arithmetic expressions)

The mapping
at : AExp x Tab x PC x Lev --+ AM

(“arithmetic expression translation™) is defined by
at(z,st,a,l) == a:LIT(2);
_ Ja:LIT(2); if st(/) = (const, z)
izt 2,) = a:LOAD(/ — lev,off); if st(/) = (var, lev, off)
at(A1 + Ag,st, a,l) := at(Ag,st, a, /)
at(Ag,st,a’, /)
a’ : ADD;

mH Compiler Construction Summer Semester 2012 17.26

© A Translation Example

m Compiler Construction Summer Semester 2012 17.27

Example: Factorial Function |

Example 17.11 (Factorial function; cf. Example 16.3)

Source code: Intermediate code:

in/out x; trans(in/out x;K.)1:
var y;
proc F;
if x > 1 then 1
y =y * x; 2
X :=x - 1;
FO
y := 1;
EOF ai
X = y. 5
trans(in/out I, ..., K.) =
1:CALL(a,0,size(K));kt(D C,st,a,l) :=
2:JMP(0); a
kt(K,St//o,a,l) %
dt(D, update(D,st, /),!) update(var I, ..., l;,st, /) = :
ct(C,update(D,st, /), a,l) st[h — (var,/,1),..., I, — (var,/, n)]

2’ : RET; update(proc h;Ki; ...

kt(Ki,st, a1, + 1)

1 s

2: JMP(0);

: CALL(a0,0,1);
: JMP(0) ;

: RET;
: CALL(ap,0,1);
: JMP(0) ;

;proc I,,;Kn;,s_‘cc/t :
st[h — (proc, a1, I, size(K1)), ..., ﬁ{»j—>c Tz[:o& an
ct(if B then Ci 156 p (8 4 !

CALL(a0,0,1);

kt(K, St//o7 ao, 1)

dt(D, update(D, st
ct(C, update(D, st

dt(D,st’, 1)
ct(C,st’, a0, 1)
RET;
CALL(ap,0,1);
JMP (0) ;

kt(Kr, st’, a1,2)
%St/, 4o, 1)
llﬁi;ze(K
@2 1) =
ct(G, st’, a1, 2)

;A a3 : RET;
Compiler Construction Summer Semester 2012 17.28

~ —

S

Example: Factorial Function Il

Example 17.11 (Factorial function; continued)

Code with symbolic Linearized (ap = 17,21 = 3,22 = 22,23 = 16, a1 = 6):

addresses: 1: CALL(17,0,1);

1: CALL(a0,0,1); 2: JMP(0);

2: JMP(0); 3: LOAD(2,1);

ar : LOAD(2,1); 4 : LIT(1);
LIT(1); 5: GT;
GT; 6 : JFALSE(16) ;

as : JFALSE(a3); 7 : LOAD(1,1);
LOAD(1,1); 8 : LOAD(2,1);
LOAD(2,1); 9 : MULT;
MULT; 10 : STORE(1,1);
STORE(1,1); 11 : LOAD(2,1);
LOAD(2,1) ; 12 : LIT(1);
LIT(1); 13 : SUB;
SUB; 14 : STORE(2,1);
STORE(2,1) ; 15 : CALL(3,1,0);
CALL(a1,1,0); 16 : RET;

as : RET; 17 : LIT(1);

ao : LIT(1); 18 : STORE(0,1);
STORE(0,1) ; 19 : CALL(3,0,0);
CALL(a;,0,0) ; 20 : LOAD(0,1);
LOAD(0,1); 21 : STORE(1,1);
STORE(1,1) ; 22 : RET;

a» : RET;

Compiler Construction

Summer Semester 2012

17.29

Example: Factorial Function IlI

Example 17.11 (Factorial function; continued)

Computation for x = 2:

: CALL(17,0,1);
: JMP(0) ;

: LOAD(2,1);

S LIT(D);

. GT;

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);

s LIT(D);

. SUB;

: STORE(2,1);
: CALL(3,1,0);
. RET;

S LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1);

: STORE(1,1);
. RET;

N b= = b e e e e e
QOO NOOOITPAPWNHFHOOONOOTEAWN

N N
N =

PC DS PS
1 ¢ 0:0:0:2
17 ¢ 4:3:2:0:0:0:0:2
18 1 4:3:2:0:0:0:0:2
19 ¢ 4:3:2:1:0:0:0:2
3 ¢ 3:2:20:4:3:2:1:0:0:0:2
4 2 3:2:20:4:3:2:1:0:0:0:2
5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 1 3:2:20:4:3:2:1:0:0:0:2
7 ¢ 3:2:20:4:3:2:1:0:0:0:2
8 1 3:2:20:4:3:2:1:0:0:0:2
9 1:2 3:2:20:4:3:2:1:0:0:0:2
10 2 3:2:20:4:3:2:1:0:0:0:2
11 ¢ 3:2:20:4:3:2:2:0:0:0:2
12 2 3:2:20:4:3:2:2:0:0:0:2
13 2:1 3:2:20:4:3:2:2:0:0:0:2
14 1 3:2:20:4:3:2:2:0:0:0:2
15 ¢ 3:2:20:4:3:2:2:0:0:0:1
3 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
5 1:1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
16 ¢ 3:2:20:4:3:2:2:0:0:0:1
20 ¢ 4:3:2:2:0:0:0:1
21 2 4:3:2:2:0:0:0:1
22 ¢ 4:3:2:2:0:0:0:2
2 ¢ 0:0:0:2
0 e 0:0:0:2

Compiler Construction Summer Semester 2012 17.30

@ Correctness of the Translation

m Compiler Construction Summer Semester 2012 17.31

Correctness of the Translation

Theorem 17.12 (Correctness of translation)

For every P € Pgm, n€ N, and (z1,...,2z,),(21,...,2}) € Z":

MIPI(z1,...,2z0) = (21,---,2))
<= [trans(P)](1,6,0:0:0:2z;:...:2,)=(0,6,0:0:0: 2 :...:2z)

see M. Mohnen: A Compiler Correctness Proof for the Static Link
Technique by means of Evolving Algebras, Fundamenta Informaticae
29(3), 1997, pp. 257-303 O

mH Compiler Construction Summer Semester 2012 17.32

@ Outlook

m Compiler Construction Summer Semester 2012 17.33

© More about code generation:
o Handling of procedure parameters
Static & dynamic data structures
@ Compiler backend (register allocation, instruction selection &
placement, ...)
Code analysis & optimization
= Static Program Analysis in Winter semester

@ June 27/28, July 4: Computational Differentiation [Naumann]
© July 11: preparation of exam (question time)
Q July 12: 1st exam

©

<

m Compiler Construction Summer Semester 2012 17.34

	Repetition: Intermediate Code
	Semantics of Procedure and Transfer Instructions
	The Symbol Table
	Translation of Programs
	Translation of Blocks
	Translation of Declarations
	Translation of Commands
	Translation of Expressions
	A Translation Example
	Correctness of the Translation
	Outlook

