
Compiler Construction
Lecture 17: Code Generation II (The Compiler)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Outline

1 Repetition: Intermediate Code

2 Semantics of Procedure and Transfer Instructions

3 The Symbol Table

4 Translation of Programs

5 Translation of Blocks

6 Translation of Declarations

7 Translation of Commands

8 Translation of Expressions

9 A Translation Example

10 Correctness of the Translation

11 Outlook

Compiler Construction Summer Semester 2012 17.3

Syntax of EPL

Definition (Syntax of EPL)

The syntax of EPL is defined as follows:

Z : z (* z is an integer *)

Ide : I (* I is an identifier *)

AExp : A ::= z | I | A1 + A2 | . . .

BExp : B ::= A1 < A2 | not B | B1 and B2 | B1 or B2

Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |
while B do C | I()

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε | proc I1;K1; . . . ;proc In;Kn;

Blk : K ::= D C

Pgm : P ::= in/out I1, . . . ,In;K.

Compiler Construction Summer Semester 2012 17.4

The Abstract Machine AM

Definition (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space

S := PC × DS × PS

with

the program counter PC := N,

the data stack DS := Z
∗ (top of stack to the right), and

the procedure stack (or: runtime stack) PS := Z
∗

(top of stack to the left).

Thus a state s = (l , d , p) ∈ S is given by

a program label l ∈ PC ,

a data stack d = d .r : . . . : d .1 ∈ DS , and

a procedure stack p = p.1 : . . . : p.t ∈ PS .

Compiler Construction Summer Semester 2012 17.5

Structure of Procedure Stack I

The semantics of procedure and transfer instructions requires a particular
structure of the procedure stack p ∈ PS : it must be composed of frames
(or: activation records) of the form

sl : dl : ra : v1 : . . . : vk

where

static link sl : points to frame of surrounding declaration environment
=⇒ used to access non-local variables

dynamic link dl : points to previous frame (i.e., of calling procedure)
=⇒ used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
=⇒ used to continue program execution after termination
of procedure call

local variables vi : values of locally declared variables

Compiler Construction Summer Semester 2012 17.6

Structure of Procedure Stack IV

Observation:

The usage of a variable in a procedure body refers to its innermost declaration.

If the level difference between the usage and the declaration is dif , then a chain of
dif static links has to be followed to access the corresponding frame.

Example (cf. Example 16.9)

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... P() ...]
[... x ... y ... Q() ...]

proc R;

[... P() ...]
[... P() ...].

Procedure stack after second call of P:

0

P() Q() P() MAIN I/O

15 4 5 4 5 4 4 3 0 0
rasl dl xyzyzxzy

P uses x =⇒ dif = 2 P uses y =⇒ dif = 0

Compiler Construction Summer Semester 2012 17.7

Outline

1 Repetition: Intermediate Code

2 Semantics of Procedure and Transfer Instructions

3 The Symbol Table

4 Translation of Programs

5 Translation of Blocks

6 Translation of Declarations

7 Translation of Commands

8 Translation of Expressions

9 A Translation Example

10 Correctness of the Translation

11 Outlook

Compiler Construction Summer Semester 2012 17.8

Semantics of Procedure Instructions

CALL(ca,dif ,loc) with

code address ca ∈ PC

level difference dif ∈ N

number of local variables loc ∈ N

creates the new frame and jumps to the given address
(= starting address of procedure)

RET removes the topmost frame and returns to the calling site

Definition 17.1 (Semantics of procedure instructions)

The semantics of a procedure instruction O, JOK : S 99K S , is defined as follows:

JCALL(ca,dif ,loc)K(l , d , p)

:= (ca, d , (base(p, dif) + loc + 2)
︸ ︷︷ ︸

sl

: (loc + 2)
︸ ︷︷ ︸

dl

: (l + 1)
︸ ︷︷ ︸

ra

: 0 : . . . : 0
︸ ︷︷ ︸

loc times

: p)

JRETK(l , d , p.1 : . . . : p.t)

:= (p.3
︸︷︷︸

ra

, d , p.(p.2
︸︷︷︸

dl

+2) : . . . : p.t) if t ≥ p.2 + 2

Compiler Construction Summer Semester 2012 17.9

Semantics of Transfer Instructions

LOAD(dif ,off) and STORE(dif ,off) with

level difference dif ∈ N

variable offset off ∈ N

respectively load and store variable values between data and
procedure stack, following a chain of dif static links

LIT(z) loads the literal constant z ∈ Z

Definition 17.2 (Semantics of transfer instructions)

The semantics of a transfer instruction O, JOK : S 99K S , is defined as
follows:

JLOAD(dif ,off)K(l , d , p) := (l + 1, d : p.(base(p, dif) + off + 2), p)
JSTORE(dif ,off)K(l , d : z , p) := (l + 1, d , p[base(p, dif) + off + 2 7→ z])

JLIT(z)K(l , d , p) := (l + 1, d : z , p)

Compiler Construction Summer Semester 2012 17.10

AM Programs and Their Semantics

Definition 17.3 (Semantics of AM programs)

An AM program is a sequence of k ≥ 1 labeled AM instructions:

P = 1 : O1; . . . ; k : Ok

The set of all AM programs is denoted by AM.

The semantics of AM programs is determined by

J.K : AM × S 99K S

with

JPK(l , d , p) :=

{
JPK(JOlK(l , d , p)) if l ∈ [k]
(l , d , p) otherwise

Compiler Construction Summer Semester 2012 17.11

Outline

1 Repetition: Intermediate Code

2 Semantics of Procedure and Transfer Instructions

3 The Symbol Table

4 Translation of Programs

5 Translation of Blocks

6 Translation of Declarations

7 Translation of Commands

8 Translation of Expressions

9 A Translation Example

10 Correctness of the Translation

11 Outlook

Compiler Construction Summer Semester 2012 17.12

Structure of Symbol Table

Goal: define translation mapping trans : Pgm 99K AM

The translation employs a symbol table:

Tab := {st | st : Ide 99K ({const} × Z)
∪ ({var} × Lev × Off)
∪ ({proc} × PC × Lev × Size)}

whose entries are created by declarations:

constant declarations: (const, z)

value z ∈ Z

variable declarations: (var, lev , off)

declaration level lev ∈ Lev := N (0 ∼= I/O, 1 ∼= MAIN, ...)
offset off ∈ Off := N

offset and difference between usage and declaration level determine
procedure stack entry

procedure declarations: (proc, ca, lev , loc)

code address ca ∈ PC

declaration level lev ∈ Lev

number of local variables loc ∈ Size := N

Compiler Construction Summer Semester 2012 17.13

Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st, l) which specifies
the update of symbol table st according to declaration D (with respect to current
level l):

Definition 17.4 (update function)

update : Dcl × Tab × Lev 99K Tab
is defined by

update(DC DV DP , st, l)
:= update(DP , update(DV , update(DC , st, l), l), l)

if all identifiers in DC DV DP different
update(ε, st, l)
:= st

update(const I1 := z1, . . .,In := zn;, st, l)
:= st[I1 7→ (const, z1), . . . , In 7→ (const, zn)]

update(var I1, . . .,In;, st, l)
:= st[I1 7→ (var, l , 1), . . . , In 7→ (var, l , n)]

update(proc I1;K1; . . .;proc In;Kn;, st, l)
:= st[I1 7→ (proc, a1, l , size(K1)), . . . , In 7→ (proc, an, l , size(Kn))]

with “fresh” addresses a1, . . . , an
where size(DC var I1, . . . ,In; DPC) := n

Compiler Construction Summer Semester 2012 17.14

The Initial Symbol Table

Reminder: an EPL program P = in/out I1, . . . ,In;K. ∈ Pgm has a
semantics of type Z

n
99K Z

n.

Given input values (z1, . . . , zn) ∈ Z
n, we choose the initial state

s := (1, ε, 0 : 0 : 0 : z1 : . . . : zn
︸ ︷︷ ︸

I/O frame

) ∈ S = PC × DS × PS

Thus the corresponding initial symbol table has n entries:

stI/O(Ij) := (var, 0, j) for every j ∈ [n]

Compiler Construction Summer Semester 2012 17.15

Outline

1 Repetition: Intermediate Code

2 Semantics of Procedure and Transfer Instructions

3 The Symbol Table

4 Translation of Programs

5 Translation of Blocks

6 Translation of Declarations

7 Translation of Commands

8 Translation of Expressions

9 A Translation Example

10 Correctness of the Translation

11 Outlook

Compiler Construction Summer Semester 2012 17.16

Translation of Programs

Translation of in/out I1, . . . ,In;D C.:

1 Create MAIN frame for executing C

2 Stop program execution after return

Definition 17.5 (Translation of programs)

The mapping

trans : Pgm 99K AM

is defined by

trans(in/out I1, . . . ,In;K.) := 1 : CALL(a,0,size(K));
2 : JMP(0);
kt(K , stI/O , a, 1)

Compiler Construction Summer Semester 2012 17.17

Outline

1 Repetition: Intermediate Code

2 Semantics of Procedure and Transfer Instructions

3 The Symbol Table

4 Translation of Programs

5 Translation of Blocks

6 Translation of Declarations

7 Translation of Commands

8 Translation of Expressions

9 A Translation Example

10 Correctness of the Translation

11 Outlook

Compiler Construction Summer Semester 2012 17.18

Translation of Blocks

Translation of D C :

1 Update symbol table according to D

2 Create code for procedures declared in D

(using the updated symbol table – recursion!)

3 Create code for C (using the updated symbol table)

Definition 17.6 (Translation of blocks)

The mapping

kt : Blk × Tab × PC × Lev 99K AM

(“block translation”) is defined by

kt(D C , st, a, l) := dt(D,update(D, st, l), l)
ct(C ,update(D, st, l), a, l)
a′ : RET;

Compiler Construction Summer Semester 2012 17.19

Outline

1 Repetition: Intermediate Code

2 Semantics of Procedure and Transfer Instructions

3 The Symbol Table

4 Translation of Programs

5 Translation of Blocks

6 Translation of Declarations

7 Translation of Commands

8 Translation of Expressions

9 A Translation Example

10 Correctness of the Translation

11 Outlook

Compiler Construction Summer Semester 2012 17.20

Translation of Declarations

Translation of D: generate code for the procedures declared in D

Definition 17.7 (Translation of declarations)

The mapping

dt : Dcl × Tab × Lev 99K AM

(“declaration translation”) is defined by

dt(DC DV DP , st, l)

:= dt(DP , st, l)

dt(ε, st, l)

:= ε

dt(proc I1;K1; . . . ;proc In;Kn;, st, l)

:= kt(K1, st, a1, l + 1)
...

kt(Kn, st, an, l + 1)
where st(Ij) = (proc, aj , . . . , . . .) for every j ∈ [n]

Compiler Construction Summer Semester 2012 17.21

Outline

1 Repetition: Intermediate Code

2 Semantics of Procedure and Transfer Instructions

3 The Symbol Table

4 Translation of Programs

5 Translation of Blocks

6 Translation of Declarations

7 Translation of Commands

8 Translation of Expressions

9 A Translation Example

10 Correctness of the Translation

11 Outlook

Compiler Construction Summer Semester 2012 17.22

Translation of Commands

Definition 17.8 (Translation of commands)

The mapping
ct : Cmd × Tab × PC × Lev 99K AM

(“command translation”) is defined by
ct(I := A, st, a, l) := at(A, st, a, l)

a′ : STORE(l − lev,off);
if st(I) = (var, lev , off)

ct(I(), st, a, l) := a : CALL(ca,l − lev,loc);
if st(I) = (proc, ca, lev , loc)

ct(C1;C2, st, a, l) := ct(C1, st, a, l)
ct(C2, st, a

′
, l)

ct(if B then C1 else C2, st, a, l) := bt(B, st, a, l)
a′ : JFALSE(a′′);
ct(C1, st, a

′ + 1, l)
a′′ − 1 : JMP(a′′′);
ct(C2, st, a

′′
, l)

a′′′ :
ct(while B do C , st, a, l) := bt(B, st, a, l)

a′ : JFALSE(a′′ + 1);
ct(C , st, a′ + 1, l)
a′′ : JMP(a);

Compiler Construction Summer Semester 2012 17.23

Outline

1 Repetition: Intermediate Code

2 Semantics of Procedure and Transfer Instructions

3 The Symbol Table

4 Translation of Programs

5 Translation of Blocks

6 Translation of Declarations

7 Translation of Commands

8 Translation of Expressions

9 A Translation Example

10 Correctness of the Translation

11 Outlook

Compiler Construction Summer Semester 2012 17.24

Translation of Boolean Expressions

Definition 17.9 (Translation of Boolean expressions)

The mapping

bt : BExp × Tab × PC × Lev 99K AM

(“Boolean expression translation”) is defined by

bt(A1 < A2, st, a, l) := at(A1, st, a, l)
at(A2, st, a

′
, l)

a′′ : LT;

bt(not B , st, a, l) := bt(B , st, a, l)
a′ : NOT;

bt(B1 and B2, st, a, l) := bt(B1, st, a, l)
bt(B2, st, a

′
, l)

a′′ : AND;

bt(B1 or B2, st, a, l) := bt(B1, st, a, l)
bt(B2, st, a

′
, l)

a′′ : OR;

Compiler Construction Summer Semester 2012 17.25

Translation of Arithmetic Expressions

Definition 17.10 (Translation of arithmetic expressions)

The mapping

at : AExp × Tab × PC × Lev 99K AM

(“arithmetic expression translation”) is defined by

at(z , st, a, l) := a : LIT(z);

at(I , st, a, l) :=

{
a : LIT(z); if st(I) = (const, z)
a : LOAD(l − lev,off); if st(I) = (var, lev , off)

at(A1 + A2, st, a, l) := at(A1, st, a, l)
at(A2, st, a

′
, l)

a′′ : ADD;

Compiler Construction Summer Semester 2012 17.26

Outline

1 Repetition: Intermediate Code

2 Semantics of Procedure and Transfer Instructions

3 The Symbol Table

4 Translation of Programs

5 Translation of Blocks

6 Translation of Declarations

7 Translation of Commands

8 Translation of Expressions

9 A Translation Example

10 Correctness of the Translation

11 Outlook

Compiler Construction Summer Semester 2012 17.27

Example: Factorial Function I

Example 17.11 (Factorial function; cf. Example 16.3)

Source code:

in/out x;
var y;
proc F;
if x > 1 then
y := y * x;
x := x - 1;
F()

y := 1;
F();
x := y.

trans(in/out I1, . . . ,In;K.) :=
1 : CALL(a,0,size(K));
2 : JMP(0);
kt(K , stI/O , a, 1)

kt(D C , st, a, l) :=

dt(D ,update(D , st, l), l)
ct(C ,update(D , st, l), a, l)
a′ : RET;

update(var I1, . . . ,In;, st, l) :=
st[I1 7→ (var, l , 1), . . . , In 7→ (var, l , n)]

update(proc I1;K1; . . . ;proc In;Kn;, st, l) :=
st[I1 7→ (proc, a1, l , size(K1)), . . . , In 7→ (proc, an, l , size(Kn))]

kt(K1, st, a1, l + 1)
...

kt(Kn, st, an, l + 1)
where st(I) = (proc, a , . . . , . . .) for every j ∈ [n]

ct(if B then C1 else C2, st, a, l) :=

Intermediate code:

trans(in/out x;K.)1 : CALL(a0,0,1);
2 : JMP(0);

kt(K , stI/O , a0, 1)
1 : CALL(a0,0,1);
2 : JMP(0);

dt(D ,update(D , stI/O
ct(C ,update(D , stI/O

a2 : RET;
1 : CALL(a0,0,1);
2 : JMP(0);

dt(D , st′, 1)
ct(C , st′, a0, 1)

a2 : RET;
1 : CALL(a0,0,1);
2 : JMP(0);

kt(KF, st
′
, a1, 2)

ct(C , st′, a0, 1)
a2 : RET;
1 : CALL(a0,0,1);
2 : JMP(0);

ct(CF, st
′
, a1, 2)

a3 : RET;
ct(C , st′, a0, 1)Compiler Construction Summer Semester 2012 17.28

Example: Factorial Function II

Example 17.11 (Factorial function; continued)

Code with symbolic
addresses:

1 : CALL(a0,0,1);
2 : JMP(0);
a1 : LOAD(2,1);

LIT(1);
GT;

a4 : JFALSE(a3);
LOAD(1,1);
LOAD(2,1);
MULT;
STORE(1,1);
LOAD(2,1);
LIT(1);
SUB;
STORE(2,1);
CALL(a1,1,0);

a3 : RET;
a0 : LIT(1);

STORE(0,1);
CALL(a1,0,0);
LOAD(0,1);
STORE(1,1);

a2 : RET;

Linearized (a0 = 17, a1 = 3, a2 = 22, a3 = 16, a4 = 6):

1 : CALL(17,0,1);
2 : JMP(0);
3 : LOAD(2,1);
4 : LIT(1);
5 : GT;
6 : JFALSE(16);
7 : LOAD(1,1);
8 : LOAD(2,1);
9 : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);
13 : SUB;
14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;
17 : LIT(1);
18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

Compiler Construction Summer Semester 2012 17.29

Example: Factorial Function III

Example 17.11 (Factorial function; continued)

Computation for x = 2:

1 : CALL(17,0,1);
2 : JMP(0);
3 : LOAD(2,1);
4 : LIT(1);
5 : GT;
6 : JFALSE(16);
7 : LOAD(1,1);
8 : LOAD(2,1);
9 : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);
13 : SUB;
14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;
17 : LIT(1);
18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

PC DS PS
1 ε 0 : 0 : 0 : 2

17 ε 4 : 3 : 2 : 0 : 0 : 0 : 0 : 2
18 1 4 : 3 : 2 : 0 : 0 : 0 : 0 : 2
19 ε 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
3 ε 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
4 2 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
5 2 : 1 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
6 1 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
7 ε 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
8 1 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
9 1 : 2 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2

10 2 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
11 ε 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
12 2 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
13 2 : 1 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
14 1 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
15 ε 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
3 ε 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
4 1 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
5 1 : 1 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
6 0 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1

16 ε 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
16 ε 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
20 ε 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
21 2 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
22 ε 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
2 ε 0 : 0 : 0 : 2
0 ε 0 : 0 : 0 : 2

Compiler Construction Summer Semester 2012 17.30

Outline

1 Repetition: Intermediate Code

2 Semantics of Procedure and Transfer Instructions

3 The Symbol Table

4 Translation of Programs

5 Translation of Blocks

6 Translation of Declarations

7 Translation of Commands

8 Translation of Expressions

9 A Translation Example

10 Correctness of the Translation

11 Outlook

Compiler Construction Summer Semester 2012 17.31

Correctness of the Translation

Theorem 17.12 (Correctness of translation)

For every P ∈ Pgm, n ∈ N, and (z1, . . . , zn), (z
′

1, . . . , z
′

n) ∈ Z
n:

MJPK(z1, . . . , zn) = (z ′1, . . . , z
′

n)
⇐⇒ Jtrans(P)K(1, ε, 0 : 0 : 0 : z1 : . . . : zn) = (0, ε, 0 : 0 : 0 : z ′1 : . . . : z

′

n)

Proof.

see M. Mohnen: A Compiler Correctness Proof for the Static Link

Technique by means of Evolving Algebras, Fundamenta Informaticae
29(3), 1997, pp. 257–303

Compiler Construction Summer Semester 2012 17.32

Outline

1 Repetition: Intermediate Code

2 Semantics of Procedure and Transfer Instructions

3 The Symbol Table

4 Translation of Programs

5 Translation of Blocks

6 Translation of Declarations

7 Translation of Commands

8 Translation of Expressions

9 A Translation Example

10 Correctness of the Translation

11 Outlook

Compiler Construction Summer Semester 2012 17.33

Outlook

1 More about code generation:

Handling of procedure parameters
Static & dynamic data structures
Compiler backend (register allocation, instruction selection &
placement, ...)
Code analysis & optimization
=⇒ Static Program Analysis in Winter semester

2 June 27/28, July 4: Computational Differentiation [Naumann]

3 July 11: preparation of exam (question time)

4 July 12: 1st exam

Compiler Construction Summer Semester 2012 17.34

	Repetition: Intermediate Code
	Semantics of Procedure and Transfer Instructions
	The Symbol Table
	Translation of Programs
	Translation of Blocks
	Translation of Declarations
	Translation of Commands
	Translation of Expressions
	A Translation Example
	Correctness of the Translation
	Outlook

