

From Merriam-Webster's Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as distinguished from its grammar and construction

From Merriam-Webster's Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as distinguished from its grammar and construction

- **Starting point:** source program P as a **character sequence**
 - Ω (finite) **character set** (e.g., ASCII, ISO Latin-1, Unicode, ...)
 - $a, b, c, \dots \in \Omega$ **characters** (= lexical atoms)
 - $P \in \Omega^*$ **source program**
(of course, not every $w \in \Omega^*$ is a valid program)

From Merriam-Webster's Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as distinguished from its grammar and construction

- **Starting point:** source program P as a **character sequence**
 - Ω (finite) **character set** (e.g., ASCII, ISO Latin-1, Unicode, ...)
 - $a, b, c, \dots \in \Omega$ **characters** (= lexical atoms)
 - $P \in \Omega^*$ **source program**
(of course, not every $w \in \Omega^*$ is a valid program)
- P exhibits **lexical structures**:
 - natural language for keywords, identifiers, ...
 - mathematical notation for numbers, formulae, ...
(e.g., $x^2 \rightsquigarrow x**2$)
 - spaces, linebreaks, indentation
 - comments and compiler directives (pragmas)
- Translation of P follows its **hierarchical structure** (later)

- ① Syntactic atoms (called **symbols**) are represented as sequences of input characters, called **lexemes**

First goal of lexical analysis

Decomposition of program text into a **sequence of lexemes**

Observations

- ① Syntactic atoms (called **symbols**) are represented as sequences of input characters, called **lexemes**

First goal of lexical analysis

Decomposition of program text into a **sequence of lexemes**

- ② Differences between similar lexemes are (mostly) irrelevant (e.g., identifiers do not need to be distinguished)
 - lexemes grouped into **symbol classes**
(e.g., identifiers, numbers, ...)
 - symbol classes abstractly represented by **tokens**
 - symbols identified by additional **attributes**
(e.g., identifier names, numerical values, ...; required for semantic analysis and code generation)

⇒ **symbol = (token, attribute)**

Second goal of lexical analysis

Transformation of a sequence of lexemes into a **sequence of symbols**

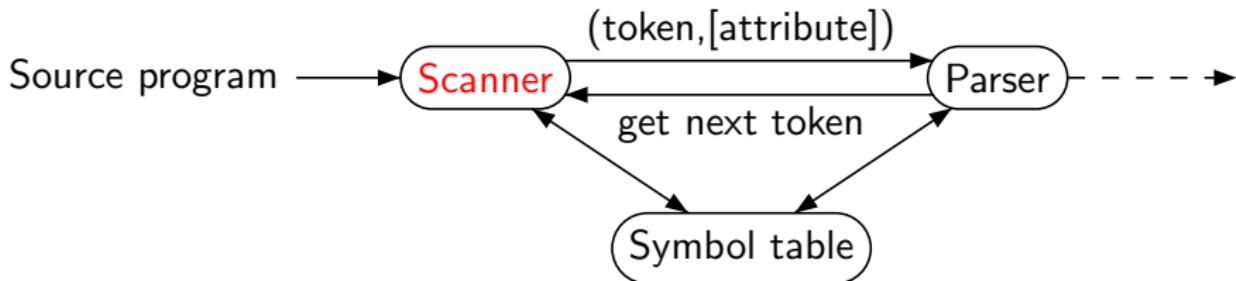
Definition 2.1

The goal of **lexical analysis** is to decompose a source program into a sequence of lexemes and their transformation into a sequence of symbols.

Definition 2.1

The goal of **lexical analysis** is to decompose a source program into a sequence of lexemes and their transformation into a sequence of symbols.

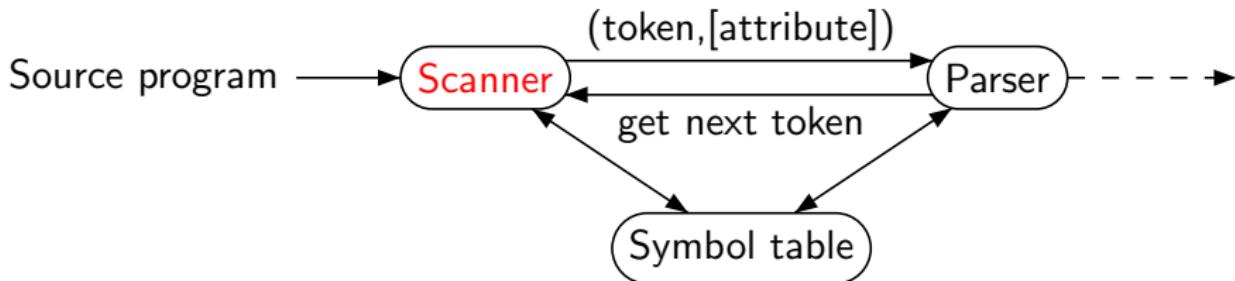
The corresponding program is called a **scanner** (or **lexer**):



Definition 2.1

The goal of **lexical analysis** is to decompose a source program into a sequence of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a **scanner** (or **lexer**):



Example:

... $x_1 := y_2 + 1 ; \dots$
↓
... (id, p_1)(gets,)(id, p_2)(plus,)(int, 1)(sem,) ...

Important Symbol Classes

Identifiers:

- for naming variables, constants, types, procedures, classes, ...
- usually a sequence of letters and digits (and possibly special symbols), starting with a letter
- keywords usually forbidden; length possibly restricted

Important Symbol Classes

Identifiers:

- for naming variables, constants, types, procedures, classes, ...
- usually a sequence of letters and digits (and possibly special symbols), starting with a letter
- keywords usually forbidden; length possibly restricted

Keywords:

- identifiers with a predefined meaning
- for representing control structures (`while`), operators (`and`),
...

Important Symbol Classes

Identifiers:

- for naming variables, constants, types, procedures, classes, ...
- usually a sequence of letters and digits (and possibly special symbols), starting with a letter
- keywords usually forbidden; length possibly restricted

Keywords:

- identifiers with a predefined meaning
- for representing control structures (`while`), operators (`and`),
...

Numerals: certain sequences of digits, `+`, `-`, `.`, letters (for exponent and hexadecimal representation)

Important Symbol Classes

Identifiers:

- for naming variables, constants, types, procedures, classes, ...
- usually a sequence of letters and digits (and possibly special symbols), starting with a letter
- keywords usually forbidden; length possibly restricted

Keywords:

- identifiers with a predefined meaning
- for representing control structures (`while`), operators (`and`), ...

Numerals: certain sequences of digits, `+`, `-`, `.`, letters (for exponent and hexadecimal representation)

Special symbols:

- one special character, e.g., `+`, `*`, `<`, `(`, `;`, ...
- ... or two or more special characters, e.g., `:=`, `**`, `<=`, ...
- each makes up a symbol class (`plus`, `gets`, ...)
- ... or several combined into one class (`arithOp`)

Important Symbol Classes

Identifiers:

- for naming variables, constants, types, procedures, classes, ...
- usually a sequence of letters and digits (and possibly special symbols), starting with a letter
- keywords usually forbidden; length possibly restricted

Keywords:

- identifiers with a predefined meaning
- for representing control structures (`while`), operators (`and`), ...

Numerals: certain sequences of digits, `+`, `-`, `.`, letters (for exponent and hexadecimal representation)

Special symbols:

- one special character, e.g., `+`, `*`, `<`, `(`, `;`, ...
- ... or two or more special characters, e.g., `:=`, `**`, `<=`, ...
- each makes up a symbol class (`plus`, `gets`, ...)
- ... or several combined into one class (`arithOp`)

White spaces:

- blanks, tabs, linebreaks, ...
- generally for separating symbols (exception: FORTRAN)
- usually not represented by token (but just removed)

Representation of symbols: **symbol = (token, attribute)**

Token: (binary) denotation of symbol class (**id**, **gets**, **plus**, ...)

Attribute: additional information required in later compilation phases

- reference to symbol table,
- value of numeral,
- concrete arithmetic/relational/Boolean operator, ...
- usually unused for singleton symbol classes

Representation of symbols: **symbol** = (token, attribute)

Token: (binary) denotation of symbol class (id, gets, plus, ...)

Attribute: additional information required in later compilation phases

- reference to symbol table,
- value of numeral,
- concrete arithmetic/relational/Boolean operator, ...
- usually unused for singleton symbol classes

Observation: symbol classes are **regular sets**

⇒

- specification by **regular expressions**
- recognition by **finite automata**
- enables **automatic generation** of scanners ([f]lex)

- 1 Problem Statement
- 2 Specification of Symbol Classes
- 3 The Simple Matching Problem

Definition 2.2 (Syntax of regular expressions)

Given some alphabet Ω , the set of **regular expressions** over Ω , RE_Ω , is the least set with

- $\emptyset \in RE_\Omega$,
- $\Omega \subseteq RE_\Omega$, and
- whenever $\alpha, \beta \in RE_\Omega$, also $\alpha \mid \beta, \alpha \cdot \beta, \alpha^* \in RE_\Omega$.

Definition 2.2 (Syntax of regular expressions)

Given some alphabet Ω , the set of **regular expressions** over Ω , RE_Ω , is the least set with

- $\emptyset \in RE_\Omega$,
- $\Omega \subseteq RE_\Omega$, and
- whenever $\alpha, \beta \in RE_\Omega$, also $\alpha \mid \beta, \alpha \cdot \beta, \alpha^* \in RE_\Omega$.

Remarks:

- abbreviations: $\alpha^+ := \alpha \cdot \alpha^*$, $\varepsilon := \emptyset^*$
- $\alpha \cdot \beta$ often written as $\alpha\beta$
- $*$ binds stronger than \cdot , \cdot binds stronger than \mid
(i.e., $a \mid b \cdot c^* := a \mid (b \cdot (c^*))$)

Regular Expressions II

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The **semantics of a regular expression** is defined by the mapping

$$[\![\cdot]\!] : RE_{\Omega} \rightarrow 2^{\Omega^*} \text{ where}$$

$$\begin{aligned} [\![\emptyset]\!] &:= \emptyset \\ [\![a]\!] &:= \{a\} \\ [\![\alpha \mid \beta]\!] &:= [\![\alpha]\!] \cup [\![\beta]\!] \\ [\![\alpha \cdot \beta]\!] &:= [\![\alpha]\!] \cdot [\![\beta]\!] \\ [\![\alpha^*]\!] &:= [\![\alpha]\!]^* \end{aligned}$$

Regular Expressions II

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The **semantics of a regular expression** is defined by the mapping

$$[\![\cdot]\!] : RE_{\Omega} \rightarrow 2^{\Omega^*} \text{ where}$$

$$\begin{aligned} [\![\emptyset]\!] &:= \emptyset \\ [\![a]\!] &:= \{a\} \\ [\![\alpha \mid \beta]\!] &:= [\![\alpha]\!] \cup [\![\beta]\!] \\ [\![\alpha \cdot \beta]\!] &:= [\![\alpha]\!] \cdot [\![\beta]\!] \\ [\![\alpha^*]\!] &:= [\![\alpha]\!]^* \end{aligned}$$

Remarks: for formal languages $L, M \subseteq \Omega^*$, we have

- $L \cdot M := \{vw \mid v \in L, w \in M\}$
- $L^* := \bigcup_{n=0}^{\infty} L^n$ where $L^0 := \{\varepsilon\}$ and $L^{n+1} := L \cdot L^n$
(thus $L^* = \{w_1 w_2 \dots w_n \mid n \in \mathbb{N}, w_i \in L\}$ and $\varepsilon \in L^*$)
- $[\![\varepsilon]\!] = [\![\emptyset^*]\!] = [\![\emptyset]\!]^* = \emptyset^* = \{\varepsilon\}$

Example 2.4

- ① A keyword: `begin`

Example 2.4

- ① A keyword: `begin`

- ② Identifiers:

$(a \mid \dots \mid z \mid A \mid \dots \mid Z)(a \mid \dots \mid z \mid A \mid \dots \mid Z \mid 0 \mid \dots \mid 9 \mid \$ \mid - \mid \dots)^*$

Example 2.4

① A keyword: `begin`

② Identifiers:

$(a \mid \dots \mid z \mid A \mid \dots \mid Z)(a \mid \dots \mid z \mid A \mid \dots \mid Z \mid 0 \mid \dots \mid 9 \mid \$ \mid - \mid \dots)^*$

③ (Unsigned) Integer numbers: $(0 \mid \dots \mid 9)^+$

Example 2.4

① A keyword: `begin`

② Identifiers:

$$(a \mid \dots \mid z \mid A \mid \dots \mid Z)(a \mid \dots \mid z \mid A \mid \dots \mid Z \mid 0 \mid \dots \mid 9 \mid \$ \mid - \mid \dots)^*$$

③ (Unsigned) Integer numbers: $(0 \mid \dots \mid 9)^+$

④ (Unsigned) Fixed-point numbers:

$$((0 \mid \dots \mid 9)^+.(0 \mid \dots \mid 9)^*) \mid ((0 \mid \dots \mid 9)^*. (0 \mid \dots \mid 9)^+)$$

- 1 Problem Statement
- 2 Specification of Symbol Classes
- 3 The Simple Matching Problem

The Simple Matching Problem I

Problem 2.5 (Simple matching problem)

Given $\alpha \in RE_{\Omega}$ and $w \in \Omega^*$, decide whether $w \in \llbracket \alpha \rrbracket$ or not.

The Simple Matching Problem I

Problem 2.5 (Simple matching problem)

Given $\alpha \in RE_\Omega$ and $w \in \Omega^*$, decide whether $w \in \llbracket \alpha \rrbracket$ or not.

This problem can be solved using the following concept:

Definition 2.6 (Finite automaton)

A **nondeterministic finite automaton (NFA)** is of the form

$\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle$ where

- Q is a finite set of **states**
- Ω denotes the **input alphabet**
- $\delta : Q \times \Omega_\varepsilon \rightarrow 2^Q$ is the **transition function** where $\Omega_\varepsilon := \Omega \cup \{\varepsilon\}$
(notation: $q \xrightarrow{x} q'$ for $q' \in \delta(q, x)$)
- $q_0 \in Q$ is the **initial state**
- $F \subseteq Q$ is the set of **final states**

The set of all NFA over Ω is denoted by NFA_Ω .

If $\delta(q, \varepsilon) = \emptyset$ and $|\delta(q, a)| = 1$ for every $q \in Q$ and $a \in \Omega$ (i.e., $\delta : Q \times \Omega \rightarrow Q$), then \mathfrak{A} is called **deterministic (DFA)**. Notation: DFA_Ω

Definition 2.7 (Acceptance condition)

Let $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in \text{NFA}_\Omega$ and $w = a_1 \dots a_n \in \Omega^*$.

- A w -labeled \mathfrak{A} -run from q_1 to q_2 is a sequence of transitions

$$q_1 \xrightarrow{\varepsilon^*} \xrightarrow{a_1} \xrightarrow{\varepsilon^*} \xrightarrow{a_2} \xrightarrow{\varepsilon^*} \dots \xrightarrow{\varepsilon^*} \xrightarrow{a_n} \xrightarrow{\varepsilon^*} q_2$$

- \mathfrak{A} accepts w if there is a w -labeled \mathfrak{A} -run from q_0 to some $q \in F$
- The language recognized by \mathfrak{A} is

$$L(\mathfrak{A}) := \{w \in \Omega^* \mid \mathfrak{A} \text{ accepts } w\}$$

- A language $L \subseteq \Omega^*$ is called **NFA-recognizable** if there exists a NFA \mathfrak{A} such that $L(\mathfrak{A}) = L$

Definition 2.7 (Acceptance condition)

Let $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in \text{NFA}_\Omega$ and $w = a_1 \dots a_n \in \Omega^*$.

- A w -labeled \mathfrak{A} -run from q_1 to q_2 is a sequence of transitions

$$q_1 \xrightarrow{\varepsilon^* a_1} \xrightarrow{\varepsilon^* a_2} \dots \xrightarrow{\varepsilon^* a_n} q_2$$

- \mathfrak{A} accepts w if there is a w -labeled \mathfrak{A} -run from q_0 to some $q \in F$
- The language recognized by \mathfrak{A} is

$$L(\mathfrak{A}) := \{w \in \Omega^* \mid \mathfrak{A} \text{ accepts } w\}$$

- A language $L \subseteq \Omega^*$ is called **NFA-recognizable** if there exists a NFA \mathfrak{A} such that $L(\mathfrak{A}) = L$

Example 2.8

NFA for $a^*b \mid a^*$ (on the board)

Remarks:

- NFA as specified in Definition 2.6 are sometimes called **NFA with ϵ -transitions (ϵ -NFA)**.

Remarks:

- NFA as specified in Definition 2.6 are sometimes called **NFA with ε -transitions (ε -NFA)**.
- For $\mathfrak{A} \in DFA_{\Omega}$, the acceptance condition yields $\widehat{\delta} : Q \times \Omega^* \rightarrow Q$ with $\widehat{\delta}(q, \varepsilon) = q$ and $\widehat{\delta}(q, aw) = \widehat{\delta}(\delta(q, a), w)$, and

$$L(\mathfrak{A}) = \{w \in \Omega^* \mid \widehat{\delta}(q_0, w) \in F\}.$$

Known from *Formal Systems, Automata and Processes*:

Algorithm 2.9 (DFA method)

Input: regular expression $\alpha \in RE_{\Omega}$, input string $w \in \Omega^*$

Known from *Formal Systems, Automata and Processes*:

Algorithm 2.9 (DFA method)

Input: regular expression $\alpha \in RE_\Omega$, input string $w \in \Omega^*$

Procedure:

- ① using Kleene's Theorem, construct $\mathfrak{A}_\alpha \in NFA_\Omega$ such that $L(\mathfrak{A}_\alpha) = \llbracket \alpha \rrbracket$
- ② apply powerset construction to obtain $\mathfrak{A}'_\alpha = \langle Q', \Omega, \delta', q'_0, F' \rangle \in DFA_\Omega$ with $L(\mathfrak{A}'_\alpha) = L(\mathfrak{A}_\alpha) = \llbracket \alpha \rrbracket$
- ③ solve the matching problem by deciding whether $\hat{\delta}'(q'_0, w) \in F'$

Known from *Formal Systems, Automata and Processes*:

Algorithm 2.9 (DFA method)

Input: regular expression $\alpha \in RE_\Omega$, input string $w \in \Omega^*$

Procedure:

- ① using Kleene's Theorem, construct $\mathfrak{A}_\alpha \in NFA_\Omega$ such that $L(\mathfrak{A}_\alpha) = \llbracket \alpha \rrbracket$
- ② apply powerset construction to obtain $\mathfrak{A}'_\alpha = \langle Q', \Omega, \delta', q'_0, F' \rangle \in DFA_\Omega$ with $L(\mathfrak{A}'_\alpha) = L(\mathfrak{A}_\alpha) = \llbracket \alpha \rrbracket$
- ③ solve the matching problem by deciding whether $\hat{\delta}'(q'_0, w) \in F'$

Output: “yes” or “no”

The powerset construction involves the following concept:

Definition 2.10 (ε -closure)

Let $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$. The **ε -closure** $\varepsilon(T) \subseteq Q$ of a subset $T \subseteq Q$ is defined by

- $T \subseteq \varepsilon(T)$ and
- if $q \in \varepsilon(T)$, then $\delta(q, \varepsilon) \subseteq \varepsilon(T)$

The powerset construction involves the following concept:

Definition 2.10 (ε -closure)

Let $\mathfrak{A} = \langle Q, \Omega, \delta, q_0, F \rangle \in NFA_{\Omega}$. The **ε -closure** $\varepsilon(T) \subseteq Q$ of a subset $T \subseteq Q$ is defined by

- $T \subseteq \varepsilon(T)$ and
- if $q \in \varepsilon(T)$, then $\delta(q, \varepsilon) \subseteq \varepsilon(T)$

Example 2.11

- ❶ Kleene's Theorem (on the board)
- ❷ Powerset construction (on the board)