Compiler Construction

Lecture 2: Lexical Analysis | (Introduction)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/
P

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Conceptual Structure of a Compiler

Source code

q_exical analysis (Scanner)

Y
Syntax analysis (Parser))

Y

(Semantic analysis)

A
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code

Target code
mH Compiler Construction Summer Semester 2012 22

© Problem Statement

m Compiler Construction Summer Semester 2012 23

Lexical Structures

From Merriam-Webster's Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

mH Compiler Construction Summer Semester 2012 2.4

Lexical Structures

From Merriam-Webster's Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

@ Starting point: source program P as a character sequence
o Q (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
e a,b,c,... € Q characters (= lexical atoms)
o P € Q" source program
(of course, not every w € Q* is a valid program)

mH Compiler Construction Summer Semester 2012 2.4

Lexical Structures

From Merriam-Webster's Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

@ Starting point: source program P as a character sequence
o Q (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
e a,b,c,... € Q characters (= lexical atoms)
o P € Q" source program
(of course, not every w € Q* is a valid program)
@ P exhibits lexical structures:
o natural language for keywords, identifiers, ...
@ mathematical notation for numbers, formulae, ...
(e.g., X% ~ x*%2)
@ spaces, linebreaks, indentation
@ comments and compiler directives (pragmas)

@ Translation of P follows its hierarchical structure (later)

mH Compiler Construction Summer Semester 2012 2.4

© Syntactic atoms (called symbols) are represented as sequences of
input characters, called lexemes

First goal of lexical analysis

Decomposition of program text into a sequence of lexemes

mH Compiler Construction Summer Semester 2012 25

© Syntactic atoms (called symbols) are represented as sequences of
input characters, called lexemes

First goal of lexical analysis

Decomposition of program text into a sequence of lexemes

@ Differences between similar lexemes are (mostly) irrelevant
(e.g., identifiers do not need to be distinguished)
@ lexemes grouped into symbol classes
(e.g., identifiers, numbers, ...)
@ symbol classes abstractly represented by tokens
@ symbols identified by additional attributes
(e.g., identifier names, numerical values, ...; required for semantic
analysis and code generation)
= symbol = (token, attribute)

Second goal of lexical analysis

Transformation of a sequence of lexemes into a sequence of symbols

mH Compiler Construction Summer Semester 2012 25

Lexical Analysis

Definition 2.1

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of symbols.

mH Compiler Construction Summer Semester 2012 2.6

Lexical Analysis

Definition 2.1
The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a scanner (or lexer):

(token,[attribute])
Source program —><Scanner e

(Parser)— e

get next token

Symbol table

Summer Semester 2012 2.6

mH Compiler Construction

Lexical Analysis

Definition 2.1
The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a scanner (or lexer):

(token,[attribute])
Source program —><Scanner e

(Parser)— e

get next token

Symbol table

Example: e _,Xl_, : =y2+|_|1|_|;|_| N
N
... (id, p1)(gets,)(id, p2)(plus,)(int, 1)(sem,) . ..

Summer Semester 2012 2.6

mH Compiler Construction

Important Symbol Classes

Identifiers: @ for naming variables, constants, types, procedures, classes, ...
@ usually a sequence of letters and digits (and possibly special
symbols), starting with a letter
@ keywords usually forbidden; length possibly restricted

mH Compiler Construction Summer Semester 2012 2.7

Important Symbol Classes

Identifiers: @ for naming variables, constants, types, procedures, classes, ...
@ usually a sequence of letters and digits (and possibly special
symbols), starting with a letter
@ keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators (and),

mH Compiler Construction Summer Semester 2012 2.7

Important Symbol Classes

Identifiers: @ for naming variables, constants, types, procedures, classes, ...
@ usually a sequence of letters and digits (and possibly special
symbols), starting with a letter
@ keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators (and),

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

mH Compiler Construction Summer Semester 2012 2.7

Important Symbol Classes

Identifiers: @ for naming variables, constants, types, procedures, classes, ...
@ usually a sequence of letters and digits (and possibly special
symbols), starting with a letter
@ keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators (and),

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

Special symbols: @ one special character, e.g., +, *, <, (, ;, ...
@ ... or two or more special characters, e.g., :=, **, <=
@ each makes up a symbol class (plus, gets, ...)
@ ... or several combined into one class (arithOp)

mH Compiler Construction Summer Semester 2012 2.7

Important Symbol Classes

Identifiers: @ for naming variables, constants, types, procedures, classes, ...
@ usually a sequence of letters and digits (and possibly special
symbols), starting with a letter
@ keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators (and),

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

Special symbols: @ one special character, e.g., +, *, <, (, ;, ...
@ ... or two or more special characters, e.g., :=, **, <=

each makes up a symbol class (plus, gets, ...)
. or several combined into one class (arithOp)

©

White spaces: blanks, tabs, linebreaks, ...
generally for separating symbols (exception: FORTRAN)

usually not represented by token (but just removed)

mH Compiler Construction Summer Semester 2012 2.7

Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)
Token: (binary) denotation of symbol class (id, gets, plus, ...)
Attribute: additional information required in later compilation phases

@ reference to symbol table,

@ value of numeral,

@ concrete arithmetic/relational /Boolean operator, ...
@ usually unused for singleton symbol classes

mH Compiler Construction Summer Semester 2012

2.8

Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)
Token: (binary) denotation of symbol class (id, gets, plus, ...)
Attribute: additional information required in later compilation phases

@ reference to symbol table,

@ value of numeral,

@ concrete arithmetic/relational /Boolean operator, ...
@ usually unused for singleton symbol classes

Observation: symbol classes are regular sets

—> @ specification by regular expressions
@ recognition by finite automata

@ enables automatic generation of scanners ([£]1lex)

mH Compiler Construction Summer Semester 2012

2.8

@ Specification of Symbol Classes

m Compiler Construction Summer Semester 2012 29

Regular Expressions |

Definition 2.2 (Syntax of regular expressions)

Given some alphabet €2, the set of regular expressions over Q, REq, is the
least set with

) @E REQ,
o) C REq, and
@ whenever o, 5 € REq, also a | B, - B,a* € REq.

mH Compiler Construction Summer Semester 2012 2.10

Regular Expressions |

Definition 2.2 (Syntax of regular expressions)

Given some alphabet €2, the set of regular expressions over Q, REq, is the
least set with

) @E REQ,
o) C REq, and
@ whenever o, 5 € REq, also a | B, - B,a* € REq.

Remarks:
@ abbreviations: o = a - a*, ¢ 1= 0*
@ « - [often written as a8

@ * binds stronger than -, - binds stronger than |
(ie., alb-c*:=a|(b-(c*)))

mH Compiler Construction Summer Semester 2012 2.10

Regular Expressions ||

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)
The semantics of a regular expression is defined by the mapping
[]: REq — 2% where
[0] :=0
[a] == {a}
[B] =[] U [A]
[oc- 8] := [a] - [A]
[or] = [ed”

mH Compiler Construction Summer Semester 2012 211

Regular Expressions ||

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)
The semantics of a regular expression is defined by the mapping
[]: REq — 2% where
[0] :=0
[a] == {a}
[B] =[] U [A]
[oc- 8] := [a] - [A]
[or] = [ed”

Remarks: for formal languages L, M C Q*, we have
o L- M:={w|velweM}
o L* =)0, L" where L% :={e} and L™ =L L"
(thus L* = {wiwa...w, | n € N,w; € L} and ¢ € L¥)
o [e] = [0°] = [0]" = 0 = {e}

mH Compiler Construction Summer Semester 2012 211

Regular Expressions |1l

Example 2.4

O A keyword: begin

mH Compiler Construction Summer Semester 2012 212

Regular Expressions |1l

Example 2.4

O A keyword: begin
Q ldentifiers:
(al...|z|A|...|Z)(al|...|z|A]...|Z]|O]...]9]8%]|-]...)

mH Compiler Construction Summer Semester 2012 212

Regular Expressions |1l

Example 2.4

O A keyword: begin

Q Identifiers:
(al...|z|A]...12Z)(al|...|z|A|...]Z]|O|...]9]|$]|-|..)
© (Unsigned) Integer numbers: (0| ... |9)"

mH Compiler Construction Summer Semester 2012 212

Regular Expressions |1l

Example 2.4

O A keyword: begin

Q Identifiers:
(al...|z|A]...12Z)(al|...|z|A|...]Z]|O|...]9]|$]|-|..)
© (Unsigned) Integer numbers: (0| ... |9)"

@ (Unsigned) Fixed-point numbers:
(@] ...19)F.0]...19%) [((O]...]9)*(0]...]9)")

mH Compiler Construction Summer Semester 2012 212

© The Simple Matching Problem

m Compiler Construction Summer Semester 2012 213

The Simple Matching Problem |

Problem 2.5 (Simple matching problem)

Given o € REq and w € Q*, decide whether w € [a] or not.

m Compiler Construction Summer Semester 2012 2.14

The Simple Matching Problem |

Problem 2.5 (Simple matching problem)

Given o € REq and w € Q*, decide whether w € [a] or not.

This problem can be solved using the following concept:

Definition 2.6 (Finite automaton)

A nondeterministic finite automaton (NFA) is of the form
A=(Q,Q,0,qo, F) where

® @ is a finite set of states

o () denotes the input alphabet

@ §: @ x Q. — 29 is the transition function where Q. := QU {¢}

(notation: g — ¢’ for ' € §(q, x))

@ g € Q is the initial state

@ F C @ is the set of final states
The set of all NFA over € is denoted by NFAq.
If 6(q,) =0 and |6(g,a)| =1 for every g € Q and a € Q (i.e.,
d:Q xQ— Q), then A is called deterministic (DFA). Notation: DFAq

Rw.rH Compiler Construction Summer Semester 2012 2.14

The Simple Matching Problem Il

Definition 2.7 (Acceptance condition)
Let A = (Q,Q,4,q0,F) € NFAq and w = a; ... a, € Q*.

o A w-labeled 2A-run from g1 to go is a sequence of transitions

e * a e * a g = e * ap g =
Gp— —— S . T @
@ 2 accepts w if there is a w-labeled 2(-run from gg to some g € F
@ The language recognized by 2 is
L(A) :={w € Q" | A accepts w}

@ A language L C Q" is called NFA-recognizable if there exists a NFA I
such that L(2() = L

4

RWNTH Compiler Construction Summer Semester 2012 2.15

The Simple Matching Problem Il
Definition 2.7 (Acceptance condition)

Let A = (Q,Q,4,q0,F) € NFAq and w = a; ... a, € Q*.
o A w-labeled 2A-run from g1 to go is a sequence of transitions

*

€ a e * a g * e * ap e *
qQ — — — ——> ——> ...——> — — Q2

@ 2 accepts w if there is a w-labeled 2(-run from gg to some g € F
@ The language recognized by 2 is
L(A) :={w € Q" | A accepts w}

@ A language L C Q" is called NFA-recognizable if there exists a NFA I
such that L(2() = L

4

Example 2.8
NFA for a*b | a* (on the board)

Rw.rH Compiler Construction Summer Semester 2012 2.15

The Simple Matching Problem IlI

Remarks:

@ NFA as specified in Definition 2.6 are sometimes called NFA with
e-transitions (e-NFA).

m Compiler Construction Summer Semester 2012 2.16

The Simple Matching Problem IlI

Remarks:

@ NFA as specified in Definition 2.6 are sometimes called NFA with
e-transitions (e-NFA).

o For 2l € DFAq, the acceptance condition yields 5 Q x Q* — Q with
d(q,€) = g and 6(q, aw) = 6((q, a), w), and

~

L(A) = {w € Q" | 0(qo,w) € F}.

m Compiler Construction Summer Semester 2012 2.16

The DFA Method |

Known from Formal Systems, Automata and Processes:

Algorithm 2.9 (DFA method)

Input: regular expression o« € REq, input string w € Q*

mH Compiler Construction Summer Semester 2012 217

The DFA Method |

Known from Formal Systems, Automata and Processes:

Algorithm 2.9 (DFA method)
Input: regular expression o« € REq, input string w € Q*
Procedure: @ using Kleene's Theorem, construct 2, € NFAq such

that L(A,) =[]

© apply powerset construction to obtain
A, =(Q,Q,0',qp, F') € DFAq with
L(A,) = L(Aa) = [e]

© solve the matching problem by deciding whether
8 (qgo,w) € F/

mH Compiler Construction Summer Semester 2012 217

The DFA Method |

Known from Formal Systems, Automata and Processes:

Algorithm 2.9 (DFA method)
Input: regular expression o« € REq, input string w € Q*
Procedure: @ using Kleene's Theorem, construct 2, € NFAq such

that L(A,) =[]

© apply powerset construction to obtain
A, =(Q,Q,0',qp, F') € DFAq with
L(A,) = L(2Aa) = [o]

© solve the matching problem by deciding whether
8 (qgo,w) € F/

Output: ‘“yes” or “no”

mH Compiler Construction Summer Semester 2012 217

The DFA Method |1

The powerset construction involves the following concept:

Definition 2.10 (e-closure)

Let A = (Q,Q,0,qo, F) € NFAq. The e-closure ¢(T) C Q of a subset
T C Q is defined by

@ T C¢g(T) and
@ if g€ (T), then §(q,e) C (T)

mH Compiler Construction

Summer Semester 2012 2.18

The DFA Method |1

The powerset construction involves the following concept:

Definition 2.10 (e-closure)

Let A = (Q,Q,0,qo, F) € NFAq. The e-closure ¢(T) C Q of a subset
T C Q is defined by

@ T C¢g(T) and
@ if g€ (T), then §(q,e) C (T)

Q Kleene's Theorem (on the board)

@ Powerset construction (on the board)

mH Compiler Construction

Summer Semester 2012 2.18

	Problem Statement
	Specification of Symbol Classes
	The Simple Matching Problem

