Compiler Construction

Lecture 3: Lexical Analysis Il
(Extended Matching Problem)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

@ Repetition: Lexical Analysis

m Compiler Construction Summer Semester 2012 3.2

Lexical Analysis

Definition
The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of symbols.

The corresponding program is called a scanner (or lexer):

(token,[attribute])
Source program —><Scanner e

(Parser)— e

get next token

Symbol table

Example: e _,Xl_, : =y2+|_|1|_|;|_| N
N
... (id, p1)(gets,)(id, p2)(plus,)(int, 1)(sem,) . ..

Summer Semester 2012 33

mH Compiler Construction

The DFA Method |

Known from Formal Systems, Automata and Processes:

Algorithm (DFA method)

Input: regular expression oo € REq, input string w € Q*

Procedure: @ using Kleene's Theorem, construct 24, € NFAq such
that L(A,) = [
© apply powerset construction to obtain
A, =(Q,Q,0,q, F') € DFAq with
L(AG) = L(%a) = [o]
© solve the matching problem by deciding whether
8 (qgp,w) € F/

Output: ‘“yes” or “no”

v

a:=a*b|a* (cf. Example 2.8)

RWNTH Compiler Construction Summer Semester 2012 3.4

The DFA Method |1

The powerset construction involves the following concept:

Definition (e-closure)

Let A = (Q,Q,0, qo, F) € NFAq. The e-closure ¢(T) C Q of a subset
T C Q is defined by

@ T C¢g(T) and
o if g€ &(T), then §(g,e) Ce(T)

Definition (Powerset construction)
Let 2 = (Q, 9,6, qo, F) € NFAq. The powerset automaton
A =(Q,Q,¢,q,, F') € DFAq is defined by

o Q :=2@

O VT CQacQ:0(T,a)=¢ (quTé(q,a))

° qp = £({ao})

o Fl={TCQ|TNF#0

4

Rw.rH Compiler Construction Summer Semester 2012 35

© Complexity Analysis of Simple Matching

m Compiler Construction Summer Semester 2012 3.6

Complexity of DFA Method

© in construction phase:
@ Kleene method: time and space O(|al)
(where || := length of &)
o Powerset construction: time and space O(2/%=1) = O(2l)
(where |21, | :== # of states of 2,,)

m Compiler Construction Summer Semester 2012 3.7

Complexity of DFA Method

© in construction phase:
o Kleene method: time and space O(|a|)
(where || := length of &)
o Powerset construction: time and space O(2/%=1) = O(2l)
(where |21, | :== # of states of 2,,)
Q@ at runtime:
o Word problem: time O(|w|) (where |w| := length of w),
space O(1) (but O(2!°1) for storing DFA)

m Compiler Construction Summer Semester 2012 3.7

Complexity of DFA Method

© in construction phase:
o Kleene method: time and space O(|a|)
(where || := length of &)
o Powerset construction: time and space O(2/%=1) = O(2l)
(where |21, | :== # of states of 2,,)
Q@ at runtime:
o Word problem: time O(|w|) (where |w| := length of w),
space O(1) (but O(2!°1) for storing DFA)
= nice runtime behavior but memory requirements very high
(and exponential time in construction phase)

mH Compiler Construction Summer Semester 2012 3.7

The NFA Method

Idea: reduce memory requirements by applying powerset construction at
runtime, i.e., only “to the run of w through 21,”

m Compiler Construction Summer Semester 2012 3.8

The NFA Method

Idea: reduce memory requirements by applying powerset construction at
runtime, i.e., only “to the run of w through 21,”

Algorithm 3.1 (NFA method)

Input: automaton 2, = (Q,Q,6, qo, F) € NFAq,
input string w € Q*

mH Compiler Construction Summer Semester 2012 3.8

The NFA Method

Idea: reduce memory requirements by applying powerset construction at
runtime, i.e., only “to the run of w through 21,”

Algorithm 3.1 (NFA method)
Input: automaton 2, = (Q,Q,6, qo, F) € NFAq,
input string w € Q*
Variables: T C Q, a€ Q

Procedure: T :=¢e({qo});
while w # ¢ do

a := head(w);
Ti=¢ (Uger (a,2))
w = tail(w)

od

RWNTH Compiler Construction Summer Semester 2012 3.8

The NFA Method

Idea: reduce memory requirements by applying powerset construction at
runtime, i.e., only “to the run of w through 21,”

Algorithm 3.1 (NFA method)

Input: automaton 2, = (Q,Q,6, qo, F) € NFAq,
input string w € Q*
Variables: T C Q, a€ Q2

Procedure: T :=¢e({qo});
while w # ¢ do

a := head(w);
Ti=¢ (Uger (a,2))
w = tail(w)

od

Output: if TN F # 0 then “yes” else “no”

RWNTH Compiler Construction Summer Semester 2012 3.8

Complexity Analysis

For NFA method at runtime:
@ Space: O(|a|) (for storing NFA and T)

e Time: O(lal - |w|)
(in the loop’s body, | T| states need to be considered)

— trades exponential space for increase in time

mH Compiler Construction Summer Semester 2012 3.9

Complexity Analysis

For NFA method at runtime:
@ Space: O(|a|) (for storing NFA and T)
e Time: O(lal - |w|)
(in the loop’s body, | T| states need to be considered)

— trades exponential space for increase in time

Comparison:

Method | Space Time (for “w € [a]?")
DFA | O(21*)) O(|w)
NFA | O(Jol) O(la] - [wl)

mH Compiler Construction Summer Semester 2012 3.9

Complexity Analysis

For NFA method at runtime:
@ Space: O(|a|) (for storing NFA and T)
e Time: O(lal - |w|)
(in the loop’s body, | T| states need to be considered)

— trades exponential space for increase in time

Comparison: i
Method | Space Time (for “w € [a]?")

DFA | O(2leTy O(|w|)
NFA | O(lal) O(lal - [wl)

In practice:

@ Exponential blowup of DFA method usually does not occur in “real”
applications (= used in [f]lex)

o Improvement of NFA method: caching of transitions ¢§'(T, a)
= combination of both methods

mH Compiler Construction Summer Semester 2012 3.9

© The Extended Matching Problem

m Compiler Construction Summer Semester 2012 3.10

The Extended Matching Problem |

Definition 3.2

Let n>1and ag,...,a, € REq with ¢ ¢ [a;] # (for every i € [n]
(={1,...,n}). Let X :={Tq,..., Ty} be an alphabet of corresponding
tokens and w € Q7. If wy, ..., wx € QT such that

@ W= w...w and
o for every j € [K] there exists i; € [n] such that w; € [a;],

then
@ (wi,...,w) is called a decomposition and
@ (Tj,..., Tj) is called an analysis

of ww.rt. ag,...,an.

mH Compiler Construction Summer Semester 2012 3.11

The Extended Matching Problem |

Definition 3.2

Let n>1and ag,...,a, € REq with ¢ ¢ [a;] # (for every i € [n]
(={1,...,n}). Let X :={Tq,..., Ty} be an alphabet of corresponding
tokens and w € Q7. If wy, ..., wx € QT such that

@ W= w...w and
o for every j € [K] there exists i; € [n] such that w; € [a;],

then
@ (wi,...,w) is called a decomposition and
@ (Tj,..., Tj) is called an analysis

of ww.rt. ag,...,an.

Problem 3.3 (Extended matching problem)

Given a1, ...,a, € REq and w € Q%, decide whether there exists a
decomposition of w w.r.t. ai,...,a, and determine a corresponding

analysis.
Rw.rH Compiler Construction Summer Semester 2012

The Extended Matching Problem I

Observation: neither the decomposition nor the analysis are uniquely
determined

Example 3.4

Qa=a",w=aa
— two decompositions (aa) and (a, a) with respective (unique)
analyses (T1) and (Ty, T1)

mH Compiler Construction Summer Semester 2012 3.12

The Extended Matching Problem I

Observation: neither the decomposition nor the analysis are uniquely
determined

Example 3.4
Qa=a",w=aa
— two decompositions (aa) and (a, a) with respective (unique)
analyses (T1) and (71, T1)
Qar=albay=alc,w=a
— unique decomposition (a) but two analyses (T1) and (T>)

mH Compiler Construction Summer Semester 2012 3.12

The Extended Matching Problem I

Observation: neither the decomposition nor the analysis are uniquely
determined

Example 3.4
Qa=a",w=aa
— two decompositions (aa) and (a, a) with respective (unique)
analyses (T1) and (71, T1)
Qar=albay=alc,w=a
— unique decomposition (a) but two analyses (T1) and (T>)

Goal: make both unique = deterministic scanning

mH Compiler Construction Summer Semester 2012 3.12

@ First-Longest-Match Analysis

m Compiler Construction Summer Semester 2012 3.13

Ensuring Uniqueness

Two principles:
@ Principle of the longest match (“maximal munch tokenization™)

o for uniqueness of decomposition
@ make lexemes as long as possible

@ motivated by applications: e.g., every (non-empty) prefix of an
identifier is also an identifier

mH Compiler Construction Summer Semester 2012 3.14

Ensuring Uniqueness

Two principles:

@ Principle of the longest match (“maximal munch tokenization™)
o for uniqueness of decomposition
@ make lexemes as long as possible
@ motivated by applications: e.g., every (non-empty) prefix of an

identifier is also an identifier

© Principle of the first match
o for uniqueness of analysis
@ choose first matching regular expression (in the given order)
o therefore: arrange keywords before identifiers (if keywords protected)

mH Compiler Construction Summer Semester 2012 3.14

Principle of the Longest Match

Definition 3.5 (Longest-match decomposition)
A decomposition (wq,...,wg) of w € QT w.rt. asg,...,a, € REq is
called a longest-match decomposition (LM decomposition) if, for every
i €[k], x€ QF, and y € QF,

W = w;...w;xy = thereis no j € [n] such that w;x € [o;]

Summer Semester 2012 3.15

mH Compiler Construction

Principle of the Longest Match

Definition 3.5 (Longest-match decomposition)

A decomposition (wq,...,wg) of w € QT w.rt. asg,...,a, € REq is
called a longest-match decomposition (LM decomposition) if, for every
i €[k], x€ QF, and y € QF,

W = w;...w;xy = thereis no j € [n] such that w;x € [o;]

Corollary 3.6

Given w and aq, ..., ap,

| A\

@ at most one LM decomposition of w exists (clear by definition) and

RWNTH Compiler Construction Summer Semester 2012 3.15

Principle of the Longest Match

Definition 3.5 (Longest-match decomposition)

A decomposition (wq,...,wg) of w € QT w.rt. asg,...,a, € REq is
called a longest-match decomposition (LM decomposition) if, for every
i €[k], x€ QF, and y € QF,

W = w;...w;xy = thereis no j € [n] such that w;x € [o;]

Corollary 3.6
Given w and aq, ..., ap,
@ at most one LM decomposition of w exists (clear by definition) and

@ jt is possible that w has a decomposition but no LM decomposition
(see following example).

Example 3.7

w = aab, a; = a’, ap = ab
— (a, ab) is a decomposition but no LM decomposition exists

Rw.rH Compiler Construction Summer Semester 2012 3.15

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated
analyses (since [oi] N [oj] # 0 with i # j is possible; cf. keyword /identifier
problem)

m Compiler Construction Summer Semester 2012 3.16

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated
analyses (since [oi] N [oj] # 0 with i # j is possible; cf. keyword /identifier
problem)

Definition 3.8 (First-longest-match analysis)

Let (wi,...,wx) be the LM decomposition of w € QT w.r.t.
a1,...,an € REq. Its first-longest-match analysis (FLM analysis)
(Ti,..., T;) is determined by

ij -= min{/ € [n] | w; € [/}

for every j € [k].

mH Compiler Construction Summer Semester 2012 3.16

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated
analyses (since [oi] N [oj] # 0 with i # j is possible; cf. keyword /identifier
problem)

Definition 3.8 (First-longest-match analysis)

Let (wi,...,wx) be the LM decomposition of w € QT w.r.t.
a1,...,an € REq. Its first-longest-match analysis (FLM analysis)
(Ti,..., T;) is determined by

j = min{l € [n] | wj € [ar]}
for every j € [K].

Corollary 3.9

Given w and aq, . .., ap, there is at most one FLM analysis of w.
It exists iff the LM decomposition of w exists.

mH Compiler Construction Summer Semester 2012 3.16

© mplementation of FLM Analysis

m Compiler Construction Summer Semester 2012 3.17

Implementation of FLM Analysis

Algorithm 3.10 (FLM analysis—overview)

Input: expressions aa,...,an € REq, tokens {T1,..., Ty},
input word w € QT

RWNTH Compiler Construction Summer Semester 2012 3.18

Implementation of FLM Analysis

Algorithm 3.10 (FLM analysis—overview)

Input: expressions aa,...,an € REq, tokens {T1,..., Ty},
input word w € QT

Procedure: @ for every i € [n], construct A; € DFAq such that
L(A;) = [ai] (see DFA method; Alg. 2.9)

RWNTH Compiler Construction Summer Semester 2012 3.18

Implementation of FLM Analysis

Algorithm 3.10 (FLM analysis—overview)

Input: expressions aa,...,an € REq, tokens {T1,..., Ty},
input word w € QT
Procedure: @ for every i € [n], construct A; € DFAq such that
L(A;) = [ai] (see DFA method; Alg. 2.9)
@ construct the product automaton 2 € DFAq such that

L(A) = Uity o]

RWNTH Compiler Construction Summer Semester 2012 3.18

Implementation of FLM Analysis

Algorithm 3.10 (FLM analysis—overview)

Input: expressions aa,...,an € REq, tokens {T1,..., Ty},
input word w € QT
Procedure: @ for every i € [n], construct A; € DFAq such that

L(A;) = [ai] (see DFA method; Alg. 2.9)

@ construct the product automaton 2 € DFAq such that
L(A) = UiZy [ev]

© partition the set of final states of 2 to follow the
first-match principle

RWNTH Compiler Construction Summer Semester 2012 3.18

Implementation of FLM Analysis

Algorithm 3.10 (FLM analysis—overview)

Input: expressions aa,...,an € REq, tokens {T1,..., Ty},
input word w € QT

Procedure: @ for every i € [n], construct A; € DFAq such that

L(A;) = [ai] (see DFA method; Alg. 2.9)

@ construct the product automaton 2 € DFAq such that
L) = U7y o]

© partition the set of final states of 2 to follow the
first-match principle

@ extend the resulting DFA to a backtracking DFA which
implements the longest-match principle, and let it run
on w

Rw.rH Compiler Construction Summer Semester 2012 3.18

Implementation of FLM Analysis

Algorithm 3.10 (FLM analysis—overview)

Input: expressions aa,...,an € REq, tokens {T1,..., Ty},
input word w € QT

Procedure: @ for every i € [n], construct A; € DFAq such that

L(A;) = [ai] (see DFA method; Alg. 2.9)

@ construct the product automaton 2 € DFAq such that
L) = U7y o]

© partition the set of final states of 2 to follow the
first-match principle

@ extend the resulting DFA to a backtracking DFA which
implements the longest-match principle, and let it run
on w

Output: FLM analysis of w (if existing)

Rw.rH Compiler Construction Summer Semester 2012 3.18

(2) The Product Automaton

Definition 3.11 (Product automaton)

Let 2; = (Q;, Q, 05, q(()i), Fi) € DFAq for every i € [n]. The product
automaton A = (Q,Q, 4, qo, F) € DFAq is defined by

@ Q:=Q1 x...xQ,
° qo:=(q",...,a")
0 5((gW,..., qM) a) := (61(¢V, a),...,0,(q'™, a))

o (¢M,...,q(M) € F iff there ex. i € [n] such that ¢() € F;

mH Compiler Construction Summer Semester 2012 3.19

(2) The Product Automaton

Definition 3.11 (Product automaton)

Let 2; = (Q;, Q, 05, q(()i), Fi) € DFAq for every i € [n]. The product
automaton A = (Q,Q, 4, qo, F) € DFAq is defined by

@ Q:=Q1 x...xQ,
° qo:=(q",...,a")
0 5((gW,..., qM) a) := (61(¢V, a),...,0,(q'™, a))

o (¢M,...,q(M) € F iff there ex. i € [n] such that ¢() € F;

The above construction yields L(2) = |Ji_; L(2;) (= U [«i]).

mH Compiler Construction Summer Semester 2012 3.19

(2) The Product Automaton

Definition 3.11 (Product automaton)

Let 2; = (Q;, Q, 05, q(()i), Fi) € DFAq for every i € [n]. The product
automaton A = (Q,Q, 4, qo, F) € DFAq is defined by

@ Q:=Q1 x...xQ,
° qo:=(q",...,a")
0 5((gW,..., qM) a) := (61(¢V, a),...,0,(q'™, a))

o (¢M,...,q(M) € F iff there ex. i € [n] such that ¢() € F;

The above construction yields L(2) = |Ji_; L(2;) (= U [«i]).

Remark: similar construction for intersection (F := Fy X ... X Fp)

mH Compiler Construction Summer Semester 2012 3.19

(3) Partitioning the Final States

Definition 3.13 (Partitioning of final states)

Let A = (Q, 9,6, qo, F) € DFAq be the product automaton as constructed

before. Its set of final states is partitioned into F = [H7_, F(/) by the
requirement

(@V,....¢dM) e F) —= g eFandVje[i—1]:qY) ¢ F
(or: F() .= (Ql \F) x oo X (Qim1 \ Fim1) X Fi X Qi1 X ... X @n)

mH Compiler Construction Summer Semester 2012

3.20

(3) Partitioning the Final States
Definition 3.13 (Partitioning of final states)

Let A = (Q, 9,6, qo, F) € DFAq be the product automaton as constructed
before. Its set of final states is partitioned into F = 4], F() by the
requirement

(@V,....¢dM) e F) —= g eFandVje[i—1]:qY) ¢ F
(or: F() .= (Ql \F) x oo X (Qim1 \ Fim1) X Fi X Qi1 X ... X @n)

Corollary 3.14

The above construction yields (w € QF, i € [n]):

=1

d(qo, w) € FU) iff w € [ai] and w ¢ | J[y].
j=1

RWNTH Compiler Construction Summer Semester 2012 3.20

(3) Partitioning the Final States
Definition 3.13 (Partitioning of final states)

Let A = (Q, 9,6, qo, F) € DFAq be the product automaton as constructed
before. Its set of final states is partitioned into F = 4], F() by the
requirement

@V, ..M e F) — ¢ eFandVjecli—1]:qY) ¢ F;
(or: FO = (@ \ F1) x ... x (Qi—1\ Fim1) X Fi X Qiz1 X ... X Q))

Corollary 3.14

The above construction yields (w € QF, i € [n]):

i—1
d(qo, w) € FU) iff w € [ai] and w ¢ | J[y].
j=1

Definition 3.15 (Productive states)

Given 2(as above, g € Q is called productive if there exists w € Q* such
that 0(q, w) € F. Notation: productive states P C Q (thus F C P).

R RRRRRRRRRRRERRRRRRRRRRRRRRRRERRRRBRRRCREEEEEBEEIQEDES—SBwRRE

Rw.rH Compiler Construction Summer Semester 2012 3.20

(4) The Backtracking DFA |

Goal: extend 2 to the backtracking DFA B with output by equipping the input
tape with two pointers: a backtracking head for marking the last encountered
match, and a lookahead for determining the longest match.

mH Compiler Construction Summer Semester 2012 3.21

(4) The Backtracking DFA |

Goal: extend 2 to the backtracking DFA B with output by equipping the input
tape with two pointers: a backtracking head for marking the last encountered
match, and a lookahead for determining the longest match.

A configuration of 8 has three components
(remember: X := {Ty,..., T,} denotes the set of tokens):
Q@ amode me {N}wx:
e m= N (“normal"): look for first match (no final state reached yet)
@ m=T € X: token T has been recognized, looking for possible longer
match

mH Compiler Construction Summer Semester 2012 3.21

(4) The Backtracking DFA |

Goal: extend 2 to the backtracking DFA B with output by equipping the input
tape with two pointers: a backtracking head for marking the last encountered
match, and a lookahead for determining the longest match.

A configuration of 8 has three components
(remember: X := {Ty,..., T,} denotes the set of tokens):
Q@ amode me {N}wx:
e m= N (“normal"): look for first match (no final state reached yet)
@ m=T € X: token T has been recognized, looking for possible longer
match
@ an input tape vgw € Q* - Q - Q*:
o v: lookahead part of input (v £ = meX)

@ @: current state of A
@ w: remaining input

mH Compiler Construction Summer Semester 2012 3.21

(4) The Backtracking DFA |

Goal: extend 2 to the backtracking DFA B with output by equipping the input
tape with two pointers: a backtracking head for marking the last encountered
match, and a lookahead for determining the longest match.

A configuration of 8 has three components
(remember: X := {Ty,..., T,} denotes the set of tokens):
Q@ amode me {N}wx:
e m= N (“normal"): look for first match (no final state reached yet)
@ m=T € X: token T has been recognized, looking for possible longer
match
@ an input tape vgw € Q* - Q - Q*:
o v: lookahead part of input (v £ = meX)
@ @: current state of A
@ w: remaining input
© an output tape W € X* - {¢, lexerr}:

@ X*: sequence of tokens recognized so far
o lexerr: a lexical error has occurred (i.e., a non-productive state was
entered or the suffix of the input is not a valid lexeme)

mH Compiler Construction Summer Semester 2012 3.21

(4) The Backtracking DFA 11

Definition 3.16 (Backtracking DFA)

@ The set of configurations of B is given by
{NIUD)x Q" - Q-Q" x " - {e, lexerr}
@ The initial configuration for an input word w € Q* is (N, gow, €).

Rw.rH Compiler Construction Summer Semester 2012 3.22

(4) The Backtracking DFA 11

Definition 3.16 (Backtracking DFA)

@ The set of configurations of B is given by

{NIUD)x Q" - Q-Q" x " - {e, lexerr}
@ The initial configuration for an input word w € Q* is (N, gow, €).
@ The transitions of B are defined as follows (where ¢’ := d(q, a)):

o normal mode: look for a match

(T:, q'w, W) if ¢ € F()

(N, gaw, W) = ¢ (N, g'w, W) ifg e P\ F
output: W -lexerr if ¢’ ¢ P

Summer Semester 2012 3.22

Rw.rH Compiler Construction

(4) The Backtracking DFA 11

Definition 3.16 (Backtracking DFA)
@ The set of configurations of B is given by
{NIUD)x Q" - Q-Q" x " - {e, lexerr}
@ The initial configuration for an input word w € Q* is (N, gow, €).
@ The transitions of B are defined as follows (where ¢’ := d(q, a)):

@ normal mode: look for a match
Tiq'w, W) if ¢ € F
(N, gaw, W) = ¢ (N, g'w, W) ifg e P\ F
output: W -lexerr if ¢’ ¢ P

@ backtrack mode: look for longest match
(Ti,q'w, W) if ¢ € FO)
(T,vgaw, W) = < (T,vag'w, W) ifqg € P\F
(N, govaw, WT) if g’ ¢ P

Summer Semester 2012 3.22

Compiler Construction

(4) The Backtracking DFA 11

Definition 3.16 (Backtracking DFA)

@ The set of configurations of B is given by
{NIUD)x Q" - Q-Q" x " - {e, lexerr}
@ The initial configuration for an input word w € Q* is (N, gow, €).
@ The transitions of B are defined as follows (where ¢’ := d(q, a)):
@ normal mode: look for a match
(Tiq'w, W) if ¢ € F
(N, gaw, W) = ¢ (N, g'w, W) ifg e P\ F
output: W -lexerr if ¢’ ¢ P
@ backtrack mode: look for longest match
(Ti,q'w, W) if ¢ € FO
(T,vgaw, W) = < (T,vag'w, W) ifqg € P\F
(N, govaw, WT) if g’ ¢ P

o end of input

(T,q, W) F output: WT ifgeF
(N, g, W) I output: W -lexerr if g€ P\ F
(T,vaq, W) = (N, gova, WT) ifge P\ F
Summer Semester 2012 3.22

Compiler Construction

(4) The Backtracking DFA IlI

Given the backtracking DFA B as before and w € QT,

Wex* iff Wisthe FLM analysis of w

(N, gow,e) {W -lexerr iff no FLM analysis of w exists

mH Compiler Construction Summer Semester 2012 3.23

(4) The Backtracking DFA IlI

Given the backtracking DFA B as before and w € QT,

Wex* iff Wisthe FLM analysis of w

(N, gow,e) {W -lexerr iff no FLM analysis of w exists

Example 3.18

a = (ab)™, w = abaa (on the board)

mH Compiler Construction Summer Semester 2012 3.23

(4) The Backtracking DFA 1V

Remarks:

@ Time complexity: O(|w|?) in worst case

Example 3.19

a1 =a, ap = a*b, w = a™ requires O(m?)

m Compiler Construction Summer Semester 2012 3.24

(4) The Backtracking DFA 1V

Remarks:

@ Time complexity: O(|w|?) in worst case

Example 3.19

a1 =a, ap = a*b, w = a™ requires O(m?)

@ Improvement by tabular method (similar to Knuth-Morris-Pratt
Algorithm for pattern matching in strings)
Literature: Th. Reps: “Maximal-Munch” Tokenization in Linear
Time, ACM TOPLAS 20(2), 1998, 259-273

mH Compiler Construction Summer Semester 2012 3.24

	Repetition: Lexical Analysis
	Complexity Analysis of Simple Matching
	The Extended Matching Problem
	First-Longest-Match Analysis
	Implementation of FLM Analysis

