Compiler Construction

Lecture 4: Lexical Analysis Il
(Practical Aspects)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

@ Repetition: The Extended Matching Problem

m Compiler Construction Summer Semester 2012 4.2

The Extended Matching Problem |

Definition

Let n>1and ag,...,a, € REq with ¢ ¢ [a;] # (for every i € [n]
(={1,...,n}). Let X :={Tq,..., Ty} be an alphabet of corresponding
tokens and w € Q7. If wy, ..., wx € QT such that

@ W= w...w and
o for every j € [K] there exists i; € [n] such that w; € [a;],

then
@ (wi,...,w) is called a decomposition and
@ (Tj,..., Tj) is called an analysis

of ww.rt. ag,...,an.

Problem (Extended matching problem)

Given a1, ...,a, € REq and w € Q%, decide whether there exists a
decomposition of w w.r.t. ai,...,a, and determine a corresponding

analysis.
Rw.rH Compiler Construction Summer Semester 2012

Ensuring Uniqueness

Two principles:

@ Principle of the longest match (“maximal munch tokenization™)
o for uniqueness of decomposition
@ make lexemes as long as possible
@ motivated by applications: e.g., every (non-empty) prefix of an

identifier is also an identifier

© Principle of the first match
o for uniqueness of analysis
@ choose first matching regular expression (in the given order)
o therefore: arrange keywords before identifiers (if keywords protected)

mH Compiler Construction Summer Semester 2012 4.4

Implementation of FLM Analysis

Algorithm (FLM analysis—overview)

Input: expressions aa,...,an € REq, tokens {T1,..., Ty},
input word w € QT

Procedure: @ for every i € [n], construct A; € DFAq such that

L(A;) = [ai] (see DFA method; Alg. 2.9)

@ construct the product automaton 2 € DFAq such that
L) = U7y o]

© partition the set of final states of 2 to follow the
first-match principle

@ extend the resulting DFA to a backtracking DFA which
implements the longest-match principle, and let it run
on w

Output: FLM analysis of w (if existing)

RWNTH Compiler Construction Summer Semester 2012 4.5

(4) The Backtracking DFA

Definition (Backtracking DFA)

@ The set of configurations of B is given by

{NIUD)x Q" - Q-Q" x " - {e, lexerr}
@ The initial configuration for an input word w € Q* is (N, gow, €).
@ The transitions of B are defined as follows (where ¢’ := d(q, a)):

o normal mode: look for a match

(T:, q'w, W) if ¢ € F()

(N, gaw, W) = ¢ (N, g'w, W) ifg e P\ F
output: W -lexerr if ¢’ ¢ P

@ backtrack mode: look for longest match
(Ti,q'w, W) if ¢ € FO)
(T,vgaw, W) = < (T,vag'w, W) ifqg € P\F
(N, govaw, WT) if g’ ¢ P

o end of input

(T,q, W) F output: WT ifgeF
(N, g, W) I output: W -lexerr if g€ P\ F
(T,vaq, W) = (N, gova, WT) ifge P\ F
Summer Semester 2012 4.6

Compiler Construction

@ First-Longest-Match Analysis with NFA

m Compiler Construction Summer Semester 2012 4.7

A Backtracking NFA

A similar construction i_s possible for the NFA method:
Q 2 = (Q,9Q,6, 4\, F) € NFAq (i € [n]) by NFA method

m Compiler Construction Summer Semester 2012 4.8

A Backtracking NFA

A similar construction i_s possible for the NFA method:
Q 2 = (Q,9Q,6, 4\, F) € NFAq (i € [n]) by NFA method
@ “Product” automaton: Q := {qo} WY/, Qi

m Compiler Construction Summer Semester 2012 4.8

A Backtracking NFA

A similar construction i_s possible for the NFA method:
Q 2 = (Q,9Q,6, 4\, F) € NFAq (i € [n]) by NFA method
@ “Product” automaton: Q := {qo} WY/, Qi

© Partitioning of final states:
o M C Q is called a T;-matching if

MNF #0andforall je[i—11:MNF =0

o yields set of Tj-matchings F() C 29
e M C Q is called productive if there exists a productive g € M
o yields productive state sets P C 29

mH Compiler Construction Summer Semester 2012 4.8

A Backtracking NFA

A similar construction i_s possible for the NFA method:
Q 2 = (Q,9Q,6, 4\, F) € NFAq (i € [n]) by NFA method
@ “Product” automaton: Q := {qo} WY/, Qi

© Partitioning of final states:
o M C Q is called a T;-matching if

MNF #0andforall je[i—11:MNF =0

o yields set of Tj-matchings F() C 29
e M C Q is called productive if there exists a productive g € M
o yields productive state sets P C 29

© Backtracking automaton: similar to DFA case

mH Compiler Construction Summer Semester 2012 4.8

© Longest Match in Practice

m Compiler Construction Summer Semester 2012 4.9

Longest Match in Practice

@ In general: lookahead of arbitrary length required

@ thatis, |v| unbounded in configurations (T, vqw, W)
@ see Example 3.19: a3 = a, ap = a*b, w=a...a

m Compiler Construction Summer Semester 2012 4.10

Longest Match in Practice

@ In general: lookahead of arbitrary length required
@ thatis, |v| unbounded in configurations (T, vqw, W)
@ see Example 3.19: a3 = a, ap = a*b, w=a...a
@ “Modern” programming languages (Pascal, Java, ...):
lookahead of one or two characters sufficient

o separation of keywords, identifiers, etc. by spaces
o Pascal: two-character lookahead required to distinguish 1.5 (real
number) from 1. .5 (integer range)

mH Compiler Construction Summer Semester 2012 4.10

Longest Match in Practice

@ In general: lookahead of arbitrary length required
@ thatis, |v| unbounded in configurations (T, vqw, W)
@ see Example 3.19: a3 = a, ap = a*b, w=a...a
@ “Modern” programming languages (Pascal, Java, ...):
lookahead of one or two characters sufficient

o separation of keywords, identifiers, etc. by spaces
o Pascal: two-character lookahead required to distinguish 1.5 (real
number) from 1. .5 (integer range)

However: principle of longest match not always applicable!

mH Compiler Construction Summer Semester 2012 4.10

Inadequacy of Longest Match |

Example 4.1 (Longest match in FORTRAN)

© Relational expressions
o valid lexemes: .EQ. (relational operator), EQ (identifier),
12 (integer), 12., .12 (reals)
@ input string: 12,.EQ. 12 ~» 12.EQ. 12 (ignoring blanks!)

mH Compiler Construction Summer Semester 2012 4.11

Inadequacy of Longest Match |

Example 4.1 (Longest match in FORTRAN)

© Relational expressions
o valid lexemes: .EQ. (relational operator), EQ (identifier),
12 (integer), 12., .12 (reals)
@ input string: 12,,.EQ.,12 ~ 12 12 (ignoring blanks!)
o intended analysis: (int, 12) (int,12)

RWNTH Compiler Construction Summer Semester 2012 4.11

Inadequacy of Longest Match |

Example 4.1 (Longest match in FORTRAN)
© Relational expressions
o valid lexemes: .EQ. (relational operator), EQ (identifier),
12 (integer), 12., .12 (reals)
@ input string: 12,.EQ. 12 ~» 12.EQ.12 (ignoring blanks!)
@ intended analysis: (int,12)(relop, eq), (int, 12)
o LM yields: (real,12.0) (real,0.12)
= wrong interpretation

RWNTH Compiler Construction Summer Semester 2012 4.11

Inadequacy of Longest Match |

Example 4.1 (Longest match in FORTRAN)
© Relational expressions
o valid lexemes: .EQ. (relational operator), EQ (identifier),
12 (integer), 12., .12 (reals)

@ input string: 12,.EQ. 12 ~» 12.EQ.12 (ignoring blanks!)
@ intended analysis: (int,12)(relop, eq), (int, 12)

o LM yields: (real,12.0) (real,0.12)

= wrong interpretation

© DO loops
@ (correct) input string: DO 5,I =.,1,,20 ~» DO5I=1,20

RWNTH Compiler Construction Summer Semester 2012 4.11

Inadequacy of Longest Match |

Example 4.1 (Longest match in FORTRAN)
© Relational expressions
o valid lexemes: .EQ. (relational operator), EQ (identifier),
12 (integer), 12., .12 (reals)
@ input string: 12,.EQ. 12 ~» 12.EQ.12 (ignoring blanks!)
@ intended analysis: (int,12)(relop, eq), (int, 12)
o LM yields: (real,12.0) (real,0.12)
= wrong interpretation
© DO loops
@ (correct) input string: DO 5,I =.,1,,20 ~» DO5I=1,20
@ intended analysis:
(do,) (id, I)(gets,) (comma,)(int, 20)

RWNTH Compiler Construction Summer Semester 2012 4.11

Inadequacy of Longest Match |

Example 4.1 (Longest match in FORTRAN)
© Relational expressions
o valid lexemes: .EQ. (relational operator), EQ (identifier),
12 (integer), 12., .12 (reals)
@ input string: 12,.EQ. 12 ~» 12.EQ.12 (ignoring blanks!)
@ intended analysis: (int,12)(relop, eq), (int, 12)
o LM yields: (real,12.0) (real,0.12)
= wrong interpretation
© DO loops
@ (correct) input string: DO 5., =.1,,20 ~» DO5I=1,
@ intended analysis:

(do,)(label, 5)(id, I)(gets,)(int, 1)(comma,)(int, 20)
@ LM analysis (wrong): (id,DO5I) (int,1)(comma,)

RWNTH Compiler Construction Summer Semester 2012 4.11

Inadequacy of Longest Match |

Example 4.1 (Longest match in FORTRAN)
© Relational expressions
o valid lexemes: .EQ. (relational operator), EQ (identifier),
12 (integer), 12., .12 (reals)
@ input string: 12,.EQ. 12 ~» 12.EQ.12 (ignoring blanks!)
@ intended analysis: (int,12)(relop, eq), (int, 12)
o LM yields: (real,12.0) (real,0.12)
= wrong interpretation
© DO loops
@ (correct) input string: DO 5., =.1,,20 ~» DO5I=1,
@ intended analysis:
(do,)(label, 5)(id, I)(gets,)(int, 1)(comma,)(int, 20)

@ LM analysis (wrong): (id,DO5I) (int,1)(comma,)
9 (erroneous) input string: DO 5,I,,=,1.,20 ~» DO5I=1.20
@ LM analysis (correct): (id,DO5I) (real,1.2)

RWNTH Compiler Construction Summer Semester 2012 4.11

Inadequacy of Longest Match Il

Example 4.2 (Longest match in C)

@ valid lexemes:
o x (identifier)
o =- (decrement operator; ANSI-C: -=)
e 1, -1 (integers)

@ input string: x=-1

mH Compiler Construction Summer Semester 2012 4.12

Inadequacy of Longest Match Il

Example 4.2 (Longest match in C)

@ valid lexemes:
o x (identifier)
o =- (decrement operator; ANSI-C: -=)
e 1, -1 (integers)

@ input string: x=-1

@ intended analysis: (id,x)(gets.)(int,—1)

mH Compiler Construction Summer Semester 2012 4.12

Inadequacy of Longest Match Il

Example 4.2 (Longest match in C)

@ valid lexemes:
o x (identifier)
o =- (decrement operator; ANSI-C: -=)
e 1, -1 (integers)

@ input string: x=-1
@ intended analysis: (id,x)(gets,), (int, —1)
o LM yields: (id,x)(dec.)(int, 1)

= wrong interpretation

mH Compiler Construction Summer Semester 2012 4.12

Inadequacy of Longest Match Il

Example 4.2 (Longest match in C)

@ valid lexemes:
o x (identifier)
o =- (decrement operator; ANSI-C: -=)
e 1, -1 (integers)

@ input string: x=-1
@ intended analysis: (id,x)(gets,), (int, —1)
o LM yields: (id,x) (int, 1)

= wrong interpretation

Possible solutions:
@ Hand-written (non-FLM) scanners
@ FLM with lookahead (later)

mH Compiler Construction Summer Semester 2012 4.12

@ Regular Definitions

m Compiler Construction Summer Semester 2012 4.13

Regular Definitions |

Goal: modularizing the representation of regular sets by introducing
additional identifiers

m Compiler Construction Summer Semester 2012 4.14

Regular Definitions |

Goal: modularizing the representation of regular sets by introducing
additional identifiers

Definition 4.3 (Regular definition)

Let {R1,..., Ry} be a set of symbols disjoint from Q. A regular definition
(over Q) is a sequence of equations

Ri=o

Rn = a,

such that, for every i € [n], a; € REqu(r,,..R .}-

mH Compiler Construction Summer Semester 2012 4.14

Regular Definitions |

Goal: modularizing the representation of regular sets by introducing
additional identifiers

Definition 4.3 (Regular definition)

Let {R1,..., Ry} be a set of symbols disjoint from Q. A regular definition
(over Q) is a sequence of equations

Ri=o

Rn = a,

such that, for every i € [n], a; € REqu(r,,..R .}-

Remark: since recursion is not involved, every R; can (iteratively) be
substituted by a regular expression a € REq
(otherwise = context-free languages)

mH Compiler Construction Summer Semester 2012 4.14

Regular Definitions Il

Example 4.4 (Symbol classes in Pascal)

Identifiers: Letter =A|...|Z|a]|...|z
Digit =0|...]9
Id = Letter (Letter | Digit)*
Numerals: Digits = Digit™
(unsigned) Empty = (*

OptFrac = . Digits | Empty
OptExp = E(+ | - | Empty) Digits | Empty
Num = Digits OptFrac OptExp

Rel. operators: RelOp =< |<=|=|<>|>]|>=
Keywords: If =if
Then = then

Else = else

RWNTH Compiler Construction Summer Semester 2012 4.15

© Generating Scanners Using [£]1lex

m Compiler Construction Summer Semester 2012 4.16

The [f]lex Tool

Usage of [f]llex ("“[fast] lexical analyzer generator”):

£11
spec.1l []—e>x lex.yy.c =5 a.out

[£]lex specification Scanner (in C) Executable

.out
Program =% Symbol sequence

mH Compiler Construction Summer Semester 2012 4.17

The [f]lex Tool

Usage of [f]llex ("“[fast] lexical analyzer generator”):

£11
spec.1l []—e>x lex.yy.c =5 a.out

[£]lex specification Scanner (in C) Executable

.out
Program =% Symbol sequence

A [f]1lex specification is of the form
Definitions (optional)
It
Rules
Tt

Auxiliary procedures (optional)

mH Compiler Construction Summer Semester 2012 4.17

[f]1lex Specifications

Definitions: @ C code for declarations etc.: %{ Code %}
@ Regular definitions: Name RegExp ...
(non-recursive!)

m Compiler Construction Summer Semester 2012 4.18

[f]1lex Specifications

Definitions: @ C code for declarations etc.: %{ Code %}
@ Regular definitions: Name RegExp ...
(non-recursive!)

Rules: of the form Pattern { Action }

@ Pattern: regular expression, possibly using Names

@ Action: C code for computing
symbol = (token, attribute)

¢ token: integer return value, 0 = EOF
@ attribute: passed in global variable yylval
@ lexeme: accessible by yytext

@ matching rule found by FLM strategy

@ lexical errors catched by . (any character)

mH Compiler Construction Summer Semester 2012 4.18

Example [f]1lex Specification

W
#include <stdio.h>
typedef enum {EOF, IF, ID, RELOP, LT, ...} token_t;
unsigned int yylval; /* attribute values */
)
LETTER [A-Za-z]
DIGIT [0-9]
ALPHANUM {LETTER}|{DIGIT}
SPACE [\t\n]
hh
"ifn { return IF; }
ngn { yylval = LT; return RELOP; }
{LETTER}{ALPHANUM}* { yylval = install_id(); return ID; }
{SPACE}+ /* eat up whitespace */

. { fprintf (stderr, "Invalid character ’%c’\n", yytext[0]); }

Wt

int main(void) {
token_t token;
while ((token = yylex()) != EOF)

printf ("(Token %d, Attribute %d)\n", token, yylval);

exit (0);

}

unsigned int install_id () {...} /* identifier name in yytext */

m Compiler Construction Summer Semester 2012 4.19

Regular Expressions in [f]lex

| Syntax | Meaning |
printable character | this character
\n, \t, \123, etc. | newline, tab, octal representation, etc.
. any character except \n
[Chars] one of Chars; ranges possible ("0-9")
[~ Chars] none of Chars
WA AL ete \, ., [etc.
" Text" Text without interpretation of ., [, \, etc.
e « at beginning of line
o$ « at end of line
{Name} RegExp for Name
a? Zero or one «
ak Zero or more
a+ one or more «
a{n, m} between n and m times o (", m" optional)
(o) o
a0 concatenation
aqlan alternative
a1/ an aq but only if followed by «; (lookahead)

Rw.rH Compiler Construction Summer Semester 2012 4.20

Using the Lookahead Operator

Example 4.5 (Lookahead in FORTRAN)

© DO loops (cf. Example 4.1)

input string: DO 5 I = 1, 20

LM yields: (id,)(gets,)(int, 1)(comma,)(int,20)
observation: decision for do only possible after reading “,”
specification of DO keyword in [£f]1lex, using lookahead:
DO / ({LETTER}|{DIGIT})* = ({LETTER}|{DIGIT})* ,

¢ ¢ ¢ ¢

mH Compiler Construction Summer Semester 2012 4.21

Using the Lookahead Operator

Example 4.5 (Lookahead in FORTRAN)

© DO loops (cf. Example 4.1)

input string: DO 5 I = 1, 20

LM yields: (id,)(gets,)(int, 1)(comma,)(int,20)
observation: decision for do only possible after reading “,”
specification of DO keyword in [£f]1lex, using lookahead:

DO / ({LETTER}|{DIGIT})* = ({LETTER}|{DIGIT})* ,

@ IF statement

problem: FORTRAN keywords not reserved

example: IF(I,J) = 3 (assignment to an element of matrix IF)
conditional: IF (condition) THEN ... (with IF keyword)
specification of IF keyword in [£f]1lex, using lookahead:

IF / \(.x \) THEN

¢ ¢ ¢ ¢

o
o
o
9

RWNTH Compiler Construction Summer Semester 2012 4.21

Longest Match and Lookahead in [f]lex

w{
#include <stdio.h>
typedef enum {EoF, AB, A} token_t;
3
hhh
ab { return AB; }
a/bc { return A; }
. { fprintf (stderr, "Invalid character ’J%c’\n", yytext[01); }
hh
int main(void) {
token_t token;
while ((token = yylex()) != EoF) printf ("Token 7%d\n", token);
exit (0);

}

m Compiler Construction Summer Semester 2012 4.22

Longest Match and Lookahead in [f]lex

w{
#include <stdio.h>
typedef enum {EoF, AB, A} token_t;
3
hhh
ab { return AB; }
a/bc { return A; }
. { fprintf (stderr, "Invalid character ’J%c’\n", yytext[01); }
hh
int main(void) {
token_t token;
while ((token = yylex()) != EoF) printf ("Token 7%d\n", token);
exit (0);

}
returns on input
@ a: Invalid character ’a’
@ ab: Token 1
@ abc: Token 2 Invalid character ’b’ Invalid character ’c’

—> lookahead counts for length of match

m Compiler Construction Summer Semester 2012 4.22

© Preprocessing

m Compiler Construction Summer Semester 2012 4.23

Preprocessing

Preprocessing = preparation of source code before (lexical) analysis

Preprocessing steps

@ macro substitution (#define)
o file inclusion (#include)
@ conditional compilation (#if)

@ elimination of comments

mH Compiler Construction Summer Semester 2012 4.24

	Repetition: The Extended Matching Problem
	First-Longest-Match Analysis with NFA
	Longest Match in Practice
	Regular Definitions
	Generating Scanners Using [f]lex
	Preprocessing

