

Compiler Construction

Lecture 4: Lexical Analysis III

(Practical Aspects)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/cc12/>

Summer Semester 2012

- 1 Repetition: The Extended Matching Problem
- 2 First-Longest-Match Analysis with NFA
- 3 Longest Match in Practice
- 4 Regular Definitions
- 5 Generating Scanners Using [f]lex
- 6 Preprocessing

The Extended Matching Problem I

Definition

Let $n \geq 1$ and $\alpha_1, \dots, \alpha_n \in RE_\Omega$ with $\varepsilon \notin \llbracket \alpha_i \rrbracket \neq \emptyset$ for every $i \in [n]$ ($= \{1, \dots, n\}$). Let $\Sigma := \{T_1, \dots, T_n\}$ be an alphabet of corresponding tokens and $w \in \Omega^+$. If $w_1, \dots, w_k \in \Omega^+$ such that

- $w = w_1 \dots w_k$ and
- for every $j \in [k]$ there exists $i_j \in [n]$ such that $w_j \in \llbracket \alpha_{i_j} \rrbracket$,

then

- (w_1, \dots, w_k) is called a **decomposition** and
- $(T_{i_1}, \dots, T_{i_k})$ is called an **analysis**

of w w.r.t. $\alpha_1, \dots, \alpha_n$.

Problem (Extended matching problem)

Given $\alpha_1, \dots, \alpha_n \in RE_\Omega$ and $w \in \Omega^+$, decide whether there exists a decomposition of w w.r.t. $\alpha_1, \dots, \alpha_n$ and determine a corresponding analysis.

Two principles:

① Principle of the longest match (“maximal munch tokenization”)

- for uniqueness of decomposition
- make lexemes as long as possible
- motivated by applications: e.g., every (non-empty) prefix of an identifier is also an identifier

② Principle of the first match

- for uniqueness of analysis
- choose first matching regular expression (in the given order)
- therefore: arrange keywords before identifiers (if keywords protected)

Algorithm (FLM analysis—overview)

Input: expressions $\alpha_1, \dots, \alpha_n \in RE_\Omega$, tokens $\{T_1, \dots, T_n\}$,
input word $w \in \Omega^+$

Procedure:

- ➊ for every $i \in [n]$, construct $\mathfrak{A}_i \in DFA_\Omega$ such that $L(\mathfrak{A}_i) = \llbracket \alpha_i \rrbracket$ (see *DFA method*; Alg. 2.9)
- ➋ construct the *product automaton* $\mathfrak{A} \in DFA_\Omega$ such that $L(\mathfrak{A}) = \bigcup_{i=1}^n \llbracket \alpha_i \rrbracket$
- ➌ partition the set of final states of \mathfrak{A} to follow the *first-match principle*
- ➍ extend the resulting DFA to a *backtracking DFA* which implements the *longest-match principle*, and let it run on w

Output: FLM analysis of w (if existing)

(4) The Backtracking DFA

Definition (Backtracking DFA)

- The set of **configurations** of \mathfrak{B} is given by

$$(\{N\} \uplus \Sigma) \times \Omega^* \cdot Q \cdot \Omega^* \times \Sigma^* \cdot \{\varepsilon, \text{lexerr}\}$$

- The **initial configuration** for an input word $w \in \Omega^+$ is $(N, q_0 w, \varepsilon)$.
- The **transitions** of \mathfrak{B} are defined as follows (where $q' := \delta(q, a)$):
 - normal mode: look for a match

$$(N, qaw, W) \vdash \begin{cases} (T_i, q'w, W) & \text{if } q' \in F^{(i)} \\ (N, q'w, W) & \text{if } q' \in P \setminus F \\ \text{output: } W \cdot \text{lexerr} & \text{if } q' \notin P \end{cases}$$

- backtrack mode: look for longest match

$$(T, vqaw, W) \vdash \begin{cases} (T_i, q'w, W) & \text{if } q' \in F^{(i)} \\ (T, vaq'w, W) & \text{if } q' \in P \setminus F \\ (N, q_0vaw, WT) & \text{if } q' \notin P \end{cases}$$

- end of input

$$\begin{array}{lll} (T, q, W) \vdash \text{output: } WT & \text{if } q \in F \\ (N, q, W) \vdash \text{output: } W \cdot \text{lexerr} & \text{if } q \in P \setminus F \\ (T, vaq, W) \vdash (N, q_0va, WT) & \text{if } q \in P \setminus F \end{array}$$

1 Repetition: The Extended Matching Problem

2 First-Longest-Match Analysis with NFA

3 Longest Match in Practice

4 Regular Definitions

5 Generating Scanners Using [f]lex

6 Preprocessing

A Backtracking NFA

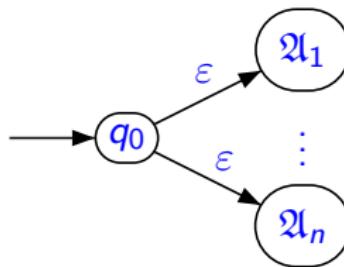
A similar construction is possible for the **NFA method**:

- ① $\mathfrak{A}_i = \langle Q_i, \Omega, \delta_i, q_0^{(i)}, F_i \rangle \in NFA_{\Omega}$ ($i \in [n]$) by NFA method

A Backtracking NFA

A similar construction is possible for the **NFA method**:

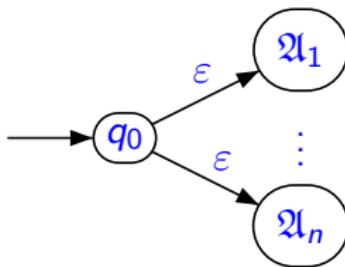
- ① $\mathfrak{A}_i = \langle Q_i, \Omega, \delta_i, q_0^{(i)}, F_i \rangle \in NFA_{\Omega}$ ($i \in [n]$) by NFA method
- ② “Product” automaton: $Q := \{q_0\} \uplus \biguplus_{i=1}^n Q_i$



A Backtracking NFA

A similar construction is possible for the **NFA method**:

- ① $\mathfrak{A}_i = \langle Q_i, \Omega, \delta_i, q_0^{(i)}, F_i \rangle \in NFA_{\Omega}$ ($i \in [n]$) by NFA method
- ② “Product” automaton: $Q := \{q_0\} \uplus \biguplus_{i=1}^n Q_i$



- ③ Partitioning of final states:

- $M \subseteq Q$ is called a **T_i -matching** if

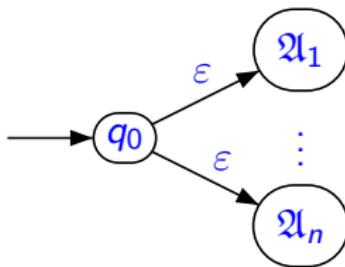
$$M \cap F_i \neq \emptyset \text{ and for all } j \in [i-1] : M \cap F_j = \emptyset$$

- yields set of T_i -matchings $F^{(i)} \subseteq 2^Q$
- $M \subseteq Q$ is called **productive** if there exists a productive $q \in M$
- yields productive state sets $P \subseteq 2^Q$

A Backtracking NFA

A similar construction is possible for the **NFA method**:

- ① $\mathfrak{A}_i = \langle Q_i, \Omega, \delta_i, q_0^{(i)}, F_i \rangle \in NFA_{\Omega}$ ($i \in [n]$) by NFA method
- ② “Product” automaton: $Q := \{q_0\} \uplus \biguplus_{i=1}^n Q_i$



- ③ Partitioning of final states:

- $M \subseteq Q$ is called a **T_i -matching** if

$$M \cap F_i \neq \emptyset \text{ and for all } j \in [i-1] : M \cap F_j = \emptyset$$

- yields set of T_i -matchings $F^{(i)} \subseteq 2^Q$
- $M \subseteq Q$ is called **productive** if there exists a productive $q \in M$
- yields productive state sets $P \subseteq 2^Q$

- ④ Backtracking automaton: similar to DFA case

- 1 Repetition: The Extended Matching Problem
- 2 First-Longest-Match Analysis with NFA
- 3 Longest Match in Practice
- 4 Regular Definitions
- 5 Generating Scanners Using [f]lex
- 6 Preprocessing

- In general: lookahead of arbitrary length required
 - that is, $|v|$ unbounded in configurations (T, vqw, W)
 - see Example 3.19: $\alpha_1 = a$, $\alpha_2 = a^*b$, $w = a \dots a$

- In general: lookahead of arbitrary length required
 - that is, $|v|$ unbounded in configurations (T, vqw, W)
 - see Example 3.19: $\alpha_1 = a$, $\alpha_2 = a^*b$, $w = a \dots a$
- “Modern” programming languages (Pascal, Java, ...): lookahead of one or two characters sufficient
 - separation of keywords, identifiers, etc. by spaces
 - Pascal: two-character lookahead required to distinguish `1.5` (real number) from `1..5` (integer range)

- In general: lookahead of arbitrary length required
 - that is, $|v|$ unbounded in configurations (T, vqw, W)
 - see Example 3.19: $\alpha_1 = a$, $\alpha_2 = a^*b$, $w = a \dots a$
- “Modern” programming languages (Pascal, Java, ...): lookahead of one or two characters sufficient
 - separation of keywords, identifiers, etc. by spaces
 - Pascal: two-character lookahead required to distinguish 1.5 (real number) from $1..5$ (integer range)

However: principle of longest match not always applicable!

Example 4.1 (Longest match in FORTRAN)

1 Relational expressions

- valid lexemes: `.EQ.` (relational operator), `EQ` (identifier),
`12` (integer), `12.`, `.12` (reals)
- input string: `12 .EQ. 12` \rightsquigarrow `12.EQ.12` (ignoring blanks!)

Example 4.1 (Longest match in FORTRAN)

1 Relational expressions

- valid lexemes: `.EQ.` (relational operator), `EQ` (identifier),
`12` (integer), `12.`, `.12` (reals)
- input string: `12.EQ.12` \rightsquigarrow `12.EQ.12` (ignoring blanks!)
- intended analysis: `(int, 12)(relop, eq)(int, 12)`

Example 4.1 (Longest match in FORTRAN)

1 Relational expressions

- valid lexemes: `.EQ.` (relational operator), `EQ` (identifier), `12` (integer), `12.`, `.12` (reals)
- input string: `12 .EQ. 12` \rightsquigarrow `12.EQ.12` (ignoring blanks!)
- intended analysis: `(int, 12)(relop, eq), (int, 12)`
- LM yields: `(real, 12.0)(id, EQ)(real, 0.12)`

\Rightarrow wrong interpretation

Example 4.1 (Longest match in FORTRAN)

1 Relational expressions

- valid lexemes: `.EQ.` (relational operator), `EQ` (identifier), `12` (integer), `12.`, `.12` (reals)
- input string: `12 .EQ. 12` \rightsquigarrow `12.EQ.12` (ignoring blanks!)
- intended analysis: `(int, 12)(relop, eq), (int, 12)`
- LM yields: `(real, 12.0)(id, EQ)(real, 0.12)`
⇒ wrong interpretation

2 DO loops

- (correct) input string: `D0 5 I = 1, 20` \rightsquigarrow `D05I=1,20`

Example 4.1 (Longest match in FORTRAN)

1 Relational expressions

- valid lexemes: `.EQ.` (relational operator), `EQ` (identifier), `12` (integer), `12.`, `.12` (reals)
- input string: `12 .EQ. 12` \rightsquigarrow `12.EQ.12` (ignoring blanks!)
- intended analysis: `(int, 12)(relop, eq), (int, 12)`
- LM yields: `(real, 12.0)(id, EQ)(real, 0.12)`
⇒ wrong interpretation

2 DO loops

- (correct) input string: `D0 5 I = 1 , 20` \rightsquigarrow `D05I=1,20`
 - intended analysis:
`(do,)(label, 5)(id, I)(gets,)(int, 1)(comma,)(int, 20)`

Example 4.1 (Longest match in FORTRAN)

1 Relational expressions

- valid lexemes: `.EQ.` (relational operator), `EQ` (identifier), `12` (integer), `12.`, `.12` (reals)
- input string: `12 .EQ. 12` \rightsquigarrow `12.EQ.12` (ignoring blanks!)
- intended analysis: `(int, 12)(relop, eq), (int, 12)`
- LM yields: `(real, 12.0)(id, EQ)(real, 0.12)`
 \Rightarrow wrong interpretation

2 DO loops

- (correct) input string: `D0 5 I = 1, 20` \rightsquigarrow `D05I=1,20`
 - intended analysis:
`(do,)(label, 5)(id, I)(gets,)(int, 1)(comma,)(int, 20)`
 - LM analysis (wrong): `(id, D05I)(gets,)(int, 1)(comma,)(int, 20)`

Example 4.1 (Longest match in FORTRAN)

1 Relational expressions

- valid lexemes: `.EQ.` (relational operator), `EQ` (identifier), `12` (integer), `12.`, `.12` (reals)
- input string: `12 .EQ. 12` \rightsquigarrow `12.EQ.12` (ignoring blanks!)
- intended analysis: `(int, 12)(relop, eq), (int, 12)`
- LM yields: `(real, 12.0)(id, EQ)(real, 0.12)`
⇒ wrong interpretation

2 DO loops

- (correct) input string: `D0_5_I_=1,20` \rightsquigarrow `D05I=1,20`
 - intended analysis:
`(do,)(label, 5)(id, I)(gets,)(int, 1)(comma,)(int, 20)`
 - LM analysis (wrong): `(id, D05I)(gets,)(int, 1)(comma,)(int, 20)`
- (erroneous) input string: `D0_5_I_=1..20` \rightsquigarrow `D05I=1.20`
 - LM analysis (correct): `(id, D05I)(gets,)(real, 1.2)`

Example 4.2 (Longest match in C)

- valid lexemes:
 - `x` (identifier)
 - `--` (decrement operator; ANSI-C: `-=`)
 - `1, -1` (integers)
- input string: `x=-1`

Example 4.2 (Longest match in C)

- valid lexemes:
 - `x` (identifier)
 - `--` (decrement operator; ANSI-C: `-=`)
 - `1, -1` (integers)
- input string: `x=-1`
- intended analysis: `(id, x)(gets,)(int, -1)`

Example 4.2 (Longest match in C)

- valid lexemes:
 - `x` (identifier)
 - `--` (decrement operator; ANSI-C: `-=`)
 - `1, -1` (integers)
- input string: `x=-1`
- intended analysis: `(id, x)(gets,), (int, -1)`
- LM yields: `(id, x)(dec,)(int, 1)`

⇒ wrong interpretation

Example 4.2 (Longest match in C)

- valid lexemes:
 - `x` (identifier)
 - `--` (decrement operator; ANSI-C: `-=`)
 - `1, -1` (integers)
- input string: `x=-1`
- intended analysis: `(id, x)(gets,), (int, -1)`
- LM yields: `(id, x)(dec,)(int, 1)`

⇒ wrong interpretation

Possible solutions:

- Hand-written (non-FLM) scanners
- FLM with lookahead (later)

- 1 Repetition: The Extended Matching Problem
- 2 First-Longest-Match Analysis with NFA
- 3 Longest Match in Practice
- 4 Regular Definitions
- 5 Generating Scanners Using [f]lex
- 6 Preprocessing

Goal: **modularizing** the representation of regular sets by introducing additional identifiers

Goal: **modularizing** the representation of regular sets by introducing additional identifiers

Definition 4.3 (Regular definition)

Let $\{R_1, \dots, R_n\}$ be a set of symbols disjoint from Ω . A **regular definition** (over Ω) is a sequence of equations

$$R_1 = \alpha_1$$

$$\vdots$$

$$R_n = \alpha_n$$

such that, for every $i \in [n]$, $\alpha_i \in RE_{\Omega \cup \{R_1, \dots, R_{i-1}\}}$.

Goal: **modularizing** the representation of regular sets by introducing additional identifiers

Definition 4.3 (Regular definition)

Let $\{R_1, \dots, R_n\}$ be a set of symbols disjoint from Ω . A **regular definition** (over Ω) is a sequence of equations

$$\begin{aligned} R_1 &= \alpha_1 \\ &\vdots \\ R_n &= \alpha_n \end{aligned}$$

such that, for every $i \in [n]$, $\alpha_i \in RE_{\Omega \cup \{R_1, \dots, R_{i-1}\}}$.

Remark: since recursion is not involved, every R_i can (iteratively) be substituted by a regular expression $\alpha \in RE_{\Omega}$
(otherwise \implies context-free languages)

Example 4.4 (Symbol classes in Pascal)

Identifiers:

$$\begin{aligned} \text{Letter} &= \text{A} \mid \dots \mid \text{Z} \mid \text{a} \mid \dots \mid \text{z} \\ \text{Digit} &= 0 \mid \dots \mid 9 \\ \text{Id} &= \text{Letter} (\text{Letter} \mid \text{Digit})^* \end{aligned}$$

Numerals:

(unsigned)

$$\begin{aligned} \text{Digits} &= \text{Digit}^+ \\ \text{Empty} &= \emptyset^* \\ \text{OptFrac} &= . \text{Digits} \mid \text{Empty} \\ \text{OptExp} &= \text{E} (+ \mid - \mid \text{Empty}) \text{Digits} \mid \text{Empty} \\ \text{Num} &= \text{Digits} \text{OptFrac} \text{OptExp} \end{aligned}$$

Rel. operators:

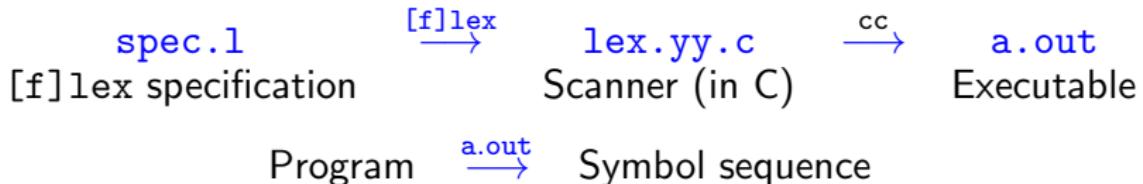
$$\text{RelOp} = < \mid \leq \mid = \mid \neq \mid > \mid \geq$$

Keywords:

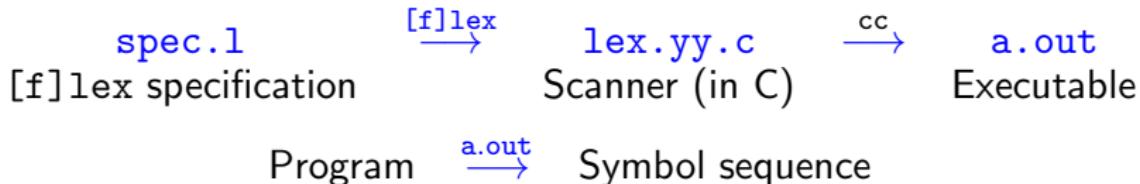
$$\begin{aligned} \text{If} &= \text{if} \\ \text{Then} &= \text{then} \\ \text{Else} &= \text{else} \end{aligned}$$

- 1 Repetition: The Extended Matching Problem
- 2 First-Longest-Match Analysis with NFA
- 3 Longest Match in Practice
- 4 Regular Definitions
- 5 Generating Scanners Using `[f]lex`
- 6 Preprocessing

Usage of [f]lex ("[fast] lexical analyzer generator"):



Usage of [f]lex ("[fast] lexical analyzer generator"):



A [f]lex **specification** is of the form

Definitions (optional)

`%%`

Rules

`%%`

Auxiliary procedures (optional)

Definitions:

- C code for declarations etc.: `%{ Code %}`
- **Regular definitions:** `Name RegExp ...`
(non-recursive!)

Definitions:

- C code for declarations etc.: `%{ Code %}`
- **Regular definitions:** `Name RegExp ...`
(non-recursive!)

Rules: of the form `Pattern { Action }`

- **Pattern:** regular expression, possibly using `Names`
- **Action:** C code for computing
`symbol` = (token, attribute)
 - `token`: integer `return` value, `0` = `EOF`
 - `attribute`: passed in global variable `yyval`
 - `lexeme`: accessible by `yytext`
- matching rule found by **FLM strategy**
- **lexical errors** caught by `.` (any character)

Example [f]lex Specification

```
%{  
    #include <stdio.h>  
    typedef enum {EOF, IF, ID, RELOP, LT, ...} token_t;  
    unsigned int yylval; /* attribute values */  
}  
LETTER [A-Za-z]  
DIGIT [0-9]  
ALPHANUM {LETTER}|{DIGIT}  
SPACE [ \t\n]  
%%  
"if"           { return IF; }  
"<"            { yylval = LT; return RELOP; }  
{LETTER}{ALPHANUM}* { yylval = install_id(); return ID; }  
{SPACE}+        /* eat up whitespace */  
.              { fprintf (stderr, "Invalid character '%c'\n", yytext[0]); }  
%%  
int main(void) {  
    token_t token;  
    while ((token = yylex()) != EOF)  
        printf("(Token %d, Attribute %d)\n", token, yylval);  
    exit (0);  
}  
unsigned int install_id () {...} /* identifier name in yytext */
```

Regular Expressions in [f]lex

Syntax	Meaning
printable character	this character
<code>\n, \t, \123</code> , etc.	newline, tab, octal representation, etc.
.	any character except <code>\n</code>
<code>[Chars]</code>	one of <i>Chars</i> ; ranges possible ("0-9")
<code>[^Chars]</code>	none of <i>Chars</i>
<code>\\", \., \[, etc.</code>	<code>\, ., [, etc.</code>
<code>"Text"</code>	<i>Text</i> without interpretation of <code>.</code> , <code>[</code> , <code>\</code> , etc.
α^0	α at beginning of line
α^1	α at end of line
<code>{Name}</code>	<i>RegExp</i> for <i>Name</i>
α^0	zero or one α
α^*	zero or more α
α^+	one or more α
$\alpha^{\{n,m\}}$	between n and m times α (" $,m$ " optional)
(α)	α
$\alpha_1\alpha_2$	concatenation
$\alpha_1 \alpha_2$	alternative
α_1/α_2	α_1 but only if followed by α_2 (lookahead)

Example 4.5 (Lookahead in FORTRAN)

① DO loops (cf. Example 4.1)

- input string: `DO 5 I = 1, 20`
- LM yields: `(id,)(gets,)(int, 1)(comma,)(int, 20)`
- observation: decision for `do` only possible after reading `,`
- specification of `DO` keyword in [f]lex, using lookahead:
`DO / ({LETTER}|{DIGIT})* = ({LETTER}|{DIGIT})* ,`

Example 4.5 (Lookahead in FORTRAN)

① DO loops (cf. Example 4.1)

- input string: `DO 5 I = 1, 20`
- LM yields: `(id,)(gets,)(int, 1)(comma,)(int, 20)`
- observation: decision for `do` only possible after reading “,”
- specification of `DO` keyword in [f]lex, using lookahead:
`DO / ({LETTER}|{DIGIT})* = ({LETTER}|{DIGIT})* ,`

② IF statement

- problem: FORTRAN keywords not reserved
- example: `IF(I,J) = 3` (assignment to an element of matrix `IF`)
- conditional: `IF (condition) THEN ...` (with `IF` keyword)
- specification of `IF` keyword in [f]lex, using lookahead:
`IF / \(.*\) THEN`

Longest Match and Lookahead in [f]lex

```
%{  
    #include <stdio.h>  
    typedef enum {EoF, AB, A} token_t;  
}  
%%  
ab      { return AB; }  
a/bc   { return A; }  
.      { fprintf (stderr, "Invalid character '%c'\n", yytext[0]); }  
%%  
int main(void) {  
    token_t token;  
    while ((token = yylex()) != EoF) printf ("Token %d\n", token);  
    exit (0);  
}
```

Longest Match and Lookahead in [f]lex

```
%{  
    #include <stdio.h>  
    typedef enum {EoF, AB, A} token_t;  
}  
%%  
ab      { return AB; }  
a/bc   { return A; }  
.      { fprintf (stderr, "Invalid character '%c'\n", yytext[0]); }  
%%  
int main(void) {  
    token_t token;  
    while ((token = yylex()) != EoF) printf ("Token %d\n", token);  
    exit (0);  
}
```

returns on input

- a: Invalid character 'a'
- ab: Token 1
- abc: Token 2 Invalid character 'b' Invalid character 'c'

⇒ lookahead counts for length of match

- 1 Repetition: The Extended Matching Problem
- 2 First-Longest-Match Analysis with NFA
- 3 Longest Match in Practice
- 4 Regular Definitions
- 5 Generating Scanners Using [f]lex
- 6 Preprocessing

Preprocessing = preparation of source code before (lexical) analysis

Preprocessing steps

- macro substitution (`#define`)
- file inclusion (`#include`)
- conditional compilation (`#if`)
- elimination of comments