Compiler Construction

Lecture 5: Syntax Analysis | (Introduction)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/
P

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
(Syntax analysis (Parser)

Y

(Semantic analysis)

A
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code

Target code
mH Compiler Construction Summer Semester 2012 5.2

@© Problem Statement

m Compiler Construction Summer Semester 2012 53

Syntactic Structures

From Merriam-Webster's Online Dictionary

Syntax: the way in which linguistic elements (as words) are put together
to form constituents (as phrases or clauses)

@ Starting point: sequence of symbols as produced by the scanner
Here: ignore attribute information
o ¥ (finite) set of tokens (= syntactic atoms; terminals)

(e.g., {id,if,int,...})
@ w € X* token sequence
(of course, not every w € X* forms a valid program)

@ Syntactic units:
atomic: keywords, variable/type/procedure/... identifiers,
numerals, arithmetic/Boolean operators, ...
complex: declarations, arithmetic/Boolean expressions,
statements, ...
@ Observation: the hierarchical structure of syntactic units can be
described by context-free grammars

mH Compiler Construction Summer Semester 2012 5.4

Syntax Analysis

Definition 5.1
The goal of syntax analysis is to determine the syntactic structure of a
program, given by a token sequence, according to a context-free grammar.

The corresponding program is called a parser:

(token[,attribute])

> syntax tree ;
Scanner) (Par@—»@emantlc analyzeD

Y

Symbol table
Assgn
Example: ... x1,:=y2+,1;,... Va’r/ \E>.<p
1 Scanner Sl;m
. . . P
... (id, p1)(gets,)(id, p2)(plus,)(int, 1)(sem,) ... —=%' Var Const

mH Compiler Construction Summer Semester 2012 55

© Context-Free Grammars and Languages

m Compiler Construction Summer Semester 2012 5.6

Context-Free Grammars |

Definition 5.2 (Syntax of context-free grammars)

A context-free grammar (CFG) (over X) is a quadruple
G=(N,X,P,S)
where

@ N is a finite set of nonterminal symbols,

@ X is a (finite) alphabet of terminal symbols (disjoint from N),

@ P is a finite set of production rules of the form A — « where A€ N
and v € X* for X := NU X, and

@ S € N is a start symbol.

The set of all context-free grammars over X is denoted by CFGy.

Remarks: as denotations we generally use
@ A B,C,... € N for nonterminal symbols
@ a,b,c,... € X for terminal symbols
@ u,v,w,x,y,... € L* for terminal words

o «,f,7,... € X* for sentences
mH Compiler Construction Summer Semester 2012 5.7

Context-Free Grammars |1l

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let G = (N,X,P,S) be a context-free grammar.
@ The derivation relation = C X x X* of G is defined by
o = [iff there exist a1,ap € X*; A — vy € P
such that @ = a1 Aap and 8 = azyas.
o If in addition cr; € X* or ap € L ¥, then we write o =, B or a =, (3,
respectively (leftmost/rightmost derivation).
@ The language generated by G is given by

L(G)={weX|S="w}
o If a language L C ¥* is generated by some G € CFGy, then L is

called context free. The set of all context-free languages over ¥ is
denoted by CFLy.

Remark: obviously, L(G) ={w e X" |S=fw}={weX*|S=;w}

mH Compiler Construction Summer Semester 2012 5.8

Context-Free Languages

The grammar G = (N, X, P, S) € CFGyx over X := {a, b}, given by the
productions

S — aSh | ¢,
generates the context-free (and non-regular) language
L={a"b" | ne N}.
The example derivation
S = aSb = aaSbb = aabb

can be represented by the following syntax tree for aabb:

i
€
mH Compiler Construction Summer Semester 2012 5.9

Syntax Trees, Derivations, and Words

Observations:

© Every syntax tree yields exactly one word
(= concatenation of leaves).

© Every syntax tree corresponds to exactly one leftmost derivation,
and vice versa.
© Every syntax tree corresponds to exactly one rightmost derivation,
and vice versa.
Thus: syntax trees are uniquely representable by leftmost/rightmost
derivations

But: a word can have several syntax trees (see next slide)

mH Compiler Construction Summer Semester 2012

5.10

Ambiguity of CFGs and CFLs

Definition 5.5 (Ambiguity)

@ A context-free grammar G € CFGy is called unambiguous if every
word w € L(G) has exactly one syntax tree. Otherwise it is called
ambiguous.

@ A context-free language L € CFLy is called inherently ambiguous if
every grammar G € CFGy with L(G) = L is ambiguous.

Example 5.6

on the board

A grammar G € CFGyx is unambiguous
iff every word w € L(G) has exactly one leftmost derivation
iff every word w € L(G) has exactly one rightmost derivation.

RWNTH Compiler Construction Summer Semester 2012 5.11

© Parsing Context-Free Languages

m Compiler Construction Summer Semester 2012 5.12

The Word Problem for Context-Free Languages

Problem 5.8 (Word problem for context-free languages)

Given G € CFGy and w € ¥, decide whether w € L(G)
(and determine a corresponding syntax tree).

This problem is decidable for arbitrary CFGs:
@ (for CFGs in Chomsky Normal Form)
Using the tabular method by Cocke, Younger, and Kasami
(“CYK Algorithm”; time complexity O(|w|3) (O(|w]|?)))
@ Using the predecessor method:
w e L(G) <= S e pre*({w})
where pre*(M) := {a € X* | a =* 8 for some § € M}
(polynomial [non-linear] time complexity)

mH Compiler Construction Summer Semester 2012 5.13

Parsing Context-Free Languages

Goal: exploit the special syntactic structures as present in programming
languages (usually: no ambiguities) to devise parsing methods which are
based on deterministic pushdown automata with linear space and time
complexity

Two approaches:

Top-down parsing: construction of syntax tree from the root towards the
leaves, representation as leftmost derivation

Bottom-up parsing: construction of syntax tree from the leaves towards
the root, representation as (reversed) rightmost derivation

m Compiler Construction Summer Semester 2012 5.14

Leftmost/Rightmost Analysis |

Goal: compact representation of left-/rightmost derivations by index
sequences
Definition 5.9 (Leftmost/rightmost analysis)
Let G = (N,%,P,S) € CFGx where P = {my,...,mp}.
olficpl, mi=A—~v weX and a € X*, then we write

wAa = wya and aAw =, ayw.

o If z=1iy...i, € [p]*, we write a =, j if there exist g, ...,a, € X*
i.
such that ag = o, ap = 3, and «j_1 = a;j for every j € [n]
(analogously for =,).

@ An index sequence z € [p]* is called a leftmost analysis (rightmost
analysis) of o if S = o (S =,), respectively.

mH Compiler Construction Summer Semester 2012 5.15

Leftmost/Rightmost Analysis

Example 5.10
Grammar for arithmetic expressions:

GAEZ E—>E+T| T (1,2)
T — T*xF | F (3,4)
F—(E)|a|b (5,6,7)
Leftmost derivation of (a) *b:

E 2 T 2 T«F &, FxF 2, (E)«F
2, (D*F 2, (F*F 2, @*F &, (@
—> leftmost analysis: 23452467
Rightmost derivation of (a)x*b:
E 2 1T 2 T+ L T 2, Fw
2. (E)xb 2, (T =, (F*b =2, (a)*b

—> rightmost analysis: 23745246

mH Compiler Construction Summer Semester 2012 5.16

Reducedness of Context-Free Grammars

General assumption in the following: every grammar is reduced

Definition 5.11 (Reduced CFG)

A grammar G = (N, %, P,S) € CFGy is called reduced if for every A€ N
there exist o, 5 € X* and w € X* such that
S =*aAB (A reachable) and

A=*w (A productive).

mH Compiler Construction Summer Semester 2012 5.17

@ Nondeterministic Top-Down Parsing

m Compiler Construction Summer Semester 2012 5.18

Top-Down Parsing

Approach:

@ Given G € CFGy, construct a nondeterministic pushdown automaton
(PDA) which accepts L(G) and which additionally computes
corresponding leftmost derivations (similar to the proof of
“L(CFGx) C L(PDAx)")

input alphabet: >

pushdown alphabet: X

output alphabet: [p]

state set: not required

¢ € ¢ ¢

© Remove nondeterminism by allowing lookahead on the input:
G € LL(k) iff L(G) recognizable by deterministic PDA with lookahead
of k symbols

mH Compiler Construction Summer Semester 2012 5.19

The Nondeterministic Top-Down Automaton |

Definition 5.12 (Nondeterministic top-down parsing automaton)

Let G = (N,X,P,S) € CFGx. The nondeterministic top-down parsing
automaton of G, NTA(G), is defined by the following components.

@ Input alphabet: ¥
@ Pushdown alphabet: X
@ Output alphabet: [p]
o Configurations: * x X* x [p]* (top of pushdown to the left)
@ Transitions for w € *, o € X*, and z € [p]*:
expansion steps: if m1; = A — f3, then (w, Aa, z) F (w, Ba, zi)
matching steps: for every a € X, (aw, ac, z) F (w, «, 2)

@ Initial configuration for w € X*: (w, S,¢)

@ Final configurations: {e} x {e} x [p]*

Remark: NTA(G) is nondeterministic iff G contains A — 8 | v

mH Compiler Construction Summer Semester 2012 5.20

The Nondeterministic Top-Down Automaton |i

Example 5.13

Grammar for

Leftmost analysis of (a)*b:

arithmetic expressions
(cf. Example 5.10):

GAE cE — E+T| T

T — T*xF | F

F— (E)|alb (5,

(a)*b, T*xF
(a)*b, FxF
(a)*b, (E)*F, 2345
a)*b, E)*F , 2345
a)*b, T)*F , 23452
a)*b, F)*F , 234524
a)*b, a)xF , 2345246

, 23452467
, 23452467

T T T T T T T T T T T T T

Compiler Construction Summer Semester 2012

	Problem Statement
	Context-Free Grammars and Languages
	Parsing Context-Free Languages
	Nondeterministic Top-Down Parsing

