
Compiler Construction
Lecture 7: Syntax Analysis III (LL(1) Parsing)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Outline

1 Repetition: LL(k) Grammars

2 Characterization of LL(1)

3 Computing Lookahead Sets

4 Deterministic Top-Down Parsing

Compiler Construction Summer Semester 2012 7.2

LL(k) Grammars

LL(k): reading of input from Left to right with k-lookahead, computing a
Leftmost analysis

Definition (LL(k) grammar)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ and k ∈ N. Then G has the LL(k) property
(notation: G ∈ LL(k)) if for all leftmost derivations of the form

S ⇒∗

l wAα

{

⇒l wβα ⇒∗

l
wx

⇒l wγα ⇒∗

l
wy

such that β 6= γ, it follows that firstk(x) 6= firstk(y)
(i.e., different productions must not yield the same lookahead).

Compiler Construction Summer Semester 2012 7.3

The Case k = 1

Motivation:

k = 1 sufficient to resolve nondeterminism in “most” practical
applications
Implementation of LL(k) parsers for k > 1 rather involved
(cf. ANTLR [ANother Tool for Language Recognition; formerly
PCCTS] at http://www.antlr.org/)

Abbreviations: fi := first1, fo := follow1, Σε := Σ ∪ {ε}

Corollary

1 For every α ∈ X ∗,

fi(α) = {a ∈ Σ | ex. w ∈ Σ∗ : α ⇒∗ aw} ∪ {ε | α ⇒∗ ε} ⊆ Σε

2 For every A ∈ N,

fo(A) = {x ∈ fi(α) | ex. w ∈ Σ∗, α ∈ X ∗ : S ⇒∗

l wAα} ⊆ Σε.

Compiler Construction Summer Semester 2012 7.4

http://www.antlr.org/

Lookahead Sets

Definition (Lookahead set)

Given π = A → β ∈ P ,

la(π) := fi(β · fo(A)) ⊆ Σε

is called the lookahead set of π (where fi(Γ) :=
⋃

γ∈Γ fi(γ)).

Corollary

1 For all a ∈ Σ,

a ∈ la(A → β) iff a ∈ fi(β) or (β ⇒∗ ε and a ∈ fo(A))

2 ε ∈ la(A → β) iff β ⇒∗ ε and ε ∈ fo(A)

Compiler Construction Summer Semester 2012 7.5

Outline

1 Repetition: LL(k) Grammars

2 Characterization of LL(1)

3 Computing Lookahead Sets

4 Deterministic Top-Down Parsing

Compiler Construction Summer Semester 2012 7.6

Characterization of LL(1)

Theorem 7.1 (Characterization of LL(1))

G ∈ LL(1) iff for all pairs of rules A → β | γ ∈ P (where β 6= γ):

la(A → β) ∩ la(A → γ) = ∅.

Proof.

on the board

Remark: the above theorem generally does not hold if k > 1
(cf. exercises)

Compiler Construction Summer Semester 2012 7.7

Outline

1 Repetition: LL(k) Grammars

2 Characterization of LL(1)

3 Computing Lookahead Sets

4 Deterministic Top-Down Parsing

Compiler Construction Summer Semester 2012 7.8

Computing Lookahead Sets I

(see Waite/Goos: Compiler Construction, p. 164f)

Lemma 7.2 (Computation of fi/fo)

The sets fi(α) ⊆ Σε (for α ∈ X ∗) and fo(A) ⊆ Σε (for A ∈ N) are the
least sets such that:

1 fi(Y) for Y ∈ X:

Y ∈ Σ =⇒ fi(Y) = {Y }
Y → A1 . . .AkZα ∈ P , k ∈ N,Z ∈ X , ε ∈ fi(A1) ∩ . . . ∩ fi(Ak),
a ∈ fi(Z) =⇒ a ∈ fi(Y)
Y → A1 . . .Ak ∈ P , k ∈ N, ε ∈ fi(A1) ∩ . . . ∩ fi(Ak) =⇒ ε ∈ fi(Y)

2 fi(Y1 . . .Yn) for n ∈ N,Yi ∈ X:

ε ∈ fi(Y1 . . .Yk−1), a ∈ fi(Yk), k ∈ [n] =⇒ a ∈ fi(Y1 . . .Yn)
ε ∈ fi(Y1) ∩ . . . ∩ fi(Yn) =⇒ ε ∈ fi(Y1 . . .Yn)

3 fo(A) for A ∈ N:

ε ∈ fo(S)
A → αBβ ∈ P , a ∈ fi(β) =⇒ a ∈ fo(B)
A → αBβ ∈ P , ε ∈ fi(β), x ∈ fo(A) =⇒ x ∈ fo(B)

Compiler Construction Summer Semester 2012 7.9

Computing Lookahead Sets II

Corollary 7.3

1 A → aα ∈ P =⇒ a ∈ fi(A)
2 A → Bα ∈ P , a ∈ fi(B) =⇒ a ∈ fi(A)
3 A → ε ∈ P =⇒ ε ∈ fi(A)
4 fi(ε) = {ε}
5 a ∈ fi(A) =⇒ a ∈ fi(Aα)
6 A → αB ∈ P , x ∈ fo(A) =⇒ x ∈ fo(B)

Example 7.4

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T
T → T*F | F
F → (E) | a | b

F → a ∈ P =⇒ a ∈ fi(F)
T → F ∈ P , a ∈ fi(F) =⇒ a ∈ fi(T)
a ∈ fi(T)
=⇒ la(T → T*F) = fi(T*F · fo(T)) ∋ a

a ∈ fi(F)
=⇒ la(T → F) = fi(F · fo(T)) ∋ a

=⇒ a ∈ la(T → T*F) ∩ la(T → F) 6= ∅
=⇒ GAE 6∈ LL(1)

Compiler Construction Summer Semester 2012 7.10

Fixing the Problem

(general methods later)

Example 7.5 (continuing Example 7.4)

Restructuring (such that L(G ′

AE
) = L(GAE)):

G ′

AE
: E → TE ′

E ′ → +TE ′ | ε
T → FT ′

T ′ → *FT ′ | ε
F → (E) | a | b

A ∈ N fi(A)
E {(, a, b}
E ′ {+, ε}
T {(, a, b}
T ′ {*, ε}
F {(, a, b}

fo(A)
{ε,)}
{ε,)}
{+, ε,)}
{+, ε,)}
{*, +, ε,)}

A → β ∈ P la(A → β) = fi(β · fo(A))

E → TE ′ {(, a, b}
E ′ → +TE ′ {+}
E ′ → ε {ε,)}
T → FT ′ {(, a, b}
T ′ → *FT ′ {*}
T ′ → ε {+, ε,)}
F → (E) {(}
F → a {a}
F → b {b}

=⇒ G ′

AE
∈ LL(1)

Compiler Construction Summer Semester 2012 7.11

Outline

1 Repetition: LL(k) Grammars

2 Characterization of LL(1)

3 Computing Lookahead Sets

4 Deterministic Top-Down Parsing

Compiler Construction Summer Semester 2012 7.12

Deterministic Top-Down Parsing
Approach: given G ∈ CFGΣ,

1 Verify that G ∈ LL(1) by computing the lookahead sets and checking
alternatives for disjointness

2 Start with nondeterministic top-down parsing automaton NTA(G)
3 Use 1-symbol lookahead to control the choice of expanding

productions:
(aw ,Aα, z) ⊢ (aw , βα, zi)
if πi = A → β and a ∈ la(πi)
(ε,Aα, z) ⊢ (ε, βα, zi)
if πi = A → β and ε ∈ la(πi)
[matching steps as before: (aw , aα, z) ⊢ (w , α, z)]

=⇒ deterministic top-down parsing automaton DTA(G)

Remarks:
DTA(G) is actually not a pushdown automaton (a is read but not
consumed). But: can be simulated using the finite control.
Advantage of using lookahead is twofold:

Removal of nondeterminism
Earlier detection of syntax errors
(in configurations (aw ,Aα, z) where a /∈

⋃

A→β∈P
la(A → β))

Compiler Construction Summer Semester 2012 7.13

The Deterministic Top-Down Automaton I

Definition 7.6 (Deterministic top-down parsing automaton)

Let G = 〈N,Σ,P ,S〉 ∈ LL(1). The deterministic top-down parsing
automaton of G , DTA(G), is defined by the following components.

Input alphabet Σ, pushdown alphabet X , output alphabet [p]

Configurations Σ∗ × X ∗ × [p]∗, initial configuration (w ,S , ε),
final configurations {ε} × {ε} × [p]∗ (as NTA(G))

Action function
act : Σε × Xε → {(α, i) | πi = A → α} ∪ {pop, accept, error}
with act(x ,A) := (α, i) if πi = A → α and x ∈ la(πi)

act(a, a) := pop
act(ε, ε) := accept
act(x , y) := error otherwise

Transitions for x ∈ Σε, w ∈ Σ∗, Y ∈ X , β ∈ X ∗, and z ∈ [p]∗:

(xw ,Y β, z) ⊢

{

(xw , αβ, zi) if act(x ,Y) = (α, i)
(w , β, z) if act(x ,Y) = pop

Compiler Construction Summer Semester 2012 7.14

The Deterministic Top-Down Automaton II

Example 7.7 (cf. Example 7.5)

G
′

AE : E → TE
′ (1)

E
′ → +TE

′ | ε (2, 3)
T → FT

′ (4)
T

′ → *FT
′ | ε (5, 6)

F → (E) | a | b (7, 8, 9)

A → β ∈ P la(A → β)

E → TE
′ {(, a, b}

E
′ → +TE

′ {+}
E

′ → ε {ε,)}
T → FT

′ {(, a, b}
T

′ → *FT
′ {*}

T
′ → ε {+, ε,)}

F → (E) {(}
F → a {a}
F → b {b}

act : Σε × Xε → {(α, i) | πi = A → α} ∪ {pop, accept, error} (empty = error)

act E E
′

T T
′

F a b () * + ε

a (TE ′, 1) (FT ′, 4) (a, 8) pop
b (TE ′, 1) (FT ′, 4) (b, 9) pop
((TE ′, 1) (FT ′, 4) ((E), 7) pop
) (ε, 3) (ε, 6) pop
* (*FT ′, 5) pop
+ (+TE ′, 2) (ε, 6) pop
ε (ε, 3) (ε, 6) accept

Compiler Construction Summer Semester 2012 7.15

The Deterministic Top-Down Automaton III

Example 7.7 (continued)

act E E
′

T T
′

F a b () * + ε

a (TE ′, 1) (FT ′, 4) (a, 8) pop
b (TE ′, 1) (FT ′, 4) (b, 9) pop
((TE ′, 1) (FT ′, 4) ((E), 7) pop
) (ε, 3) (ε, 6) pop
* (*FT ′, 5) pop
+ (+TE ′, 2) (ε, 6) pop
ε (ε, 3) (ε, 6) accept

Leftmost analysis of (a)*b:

((a)*b, E , ε)
⊢ ((a)*b, TE ′ , 1)
⊢ ((a)*b, FT ′

E
′ , 14)

⊢ ((a)*b, (E)T ′
E

′ , 147)
⊢ (a)*b, E)T ′

E
′ , 147)

⊢ (a)*b, TE ′
)T

′
E

′ , 1471)
⊢ (a)*b, FT ′

E
′
)T

′
E

′, 14714)
⊢ (a)*b, aT ′

E
′
)T

′
E

′ , 147148)
⊢ ()*b, T ′

E
′
)T

′
E

′ , 147148)

⊢ ()*b, E ′
)T

′
E

′, 1471486)
⊢ ()*b,)T ′

E
′ , 14714863)

⊢ (*b, T ′
E

′ , 14714863)
⊢ (*b, *FT ′

E
′ , 147148635)

⊢ (b, FT ′
E

′ , 147148635)
⊢ (b, bT ′

E
′ , 1471486359)

⊢ (ε, T ′
E

′ , 1471486359)
⊢ (ε, E ′ , 14714863596)
⊢ (ε, ε , 147148635963)

Compiler Construction Summer Semester 2012 7.16

	Repetition: LL(k) Grammars
	Characterization of LL(1)
	Computing Lookahead Sets
	Deterministic Top-Down Parsing

