Compiler Construction

Lecture 7: Syntax Analysis I1l (LL(1) Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/
P

Summer Semester 2012


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

© Repetition: LL(k) Grammars

m Compiler Construction Summer Semester 2012 7.2



LL(k) Grammars

LL(k): reading of input from Left to right with k-lookahead, computing a
Leftmost analysis

Definition (LL(k) grammar)

Let G = (N,X,P,S) € CFGy and k € N. Then G has the LL(k) property
(notation: G € LL(k)) if for all leftmost derivations of the form

« = wha =7 wx
D = WA {:>/ wya =7 wy
such that § # v, it follows that firsty(x) # first,(y)
(i.e., different productions must not yield the same lookahead).

mH Compiler Construction Summer Semester 2012 7.3



The Case k=1

Motivation:
@ k =1 sufficient to resolve nondeterminism in “most” practical
applications
@ Implementation of LL(k) parsers for k > 1 rather involved
(cf. ANTLR [ANother Tool for Language Recognition; formerly
PCCTS] at http://www.antlr.org/)

Abbreviations: fi := first;, fo := follow;, X, : =X U {e}

Corollary
@ For every a € X*,
fila)={acl|exweX* :a="aw}U{e|a="¢c} C X,

Q Forevery A€ N,
fo(A) ={x efi(a) |ex. w e X", a € X* : § =] wAa} C ..

y
mH Compiler Construction Summer Semester 2012 7.4


http://www.antlr.org/

Lookahead Sets

Definition (Lookahead set)

Givenmt=A— € P,
la(m) := fi(5 - fo(A)) C X,
is called the lookahead set of 7 (where fi(T') := (U, < fi(7))-

@ Forallacy,
aela(A— B)iffacfi(B) or (B="¢ and a € fo(A))

Q ccla(A— B) iff =%¢ and ¢ € fo(A)

mH Compiler Construction Summer Semester 2012 7.5



© Characterization of LL(1)

m Compiler Construction Summer Semester 2012 7.6



Characterization of LL(1)

Theorem 7.1 (Characterization of LL(1))

G € LL(1) iff for all pairs of rules A — (| v € P (where B # 7):
la(A — B) N1a(A — v) = 0.

on the board O

Remark: the above theorem generally does not hold if kK > 1
(cf. exercises)

mH Compiler Construction Summer Semester 2012 7.7



© Computing Lookahead Sets

m Compiler Construction Summer Semester 2012 7.8



Computing Lookahead Sets |

(see Waite/Goos: Compiler Construction, p. 164f)

Lemma 7.2 (Computation of fi/fo)

The sets fi(a) C X, (for « € X*) and fo(A) C X, (for A€ N) are the
least sets such that:
Q fi(Y) for Y € X:

e Yer = fi(Y)={Y}

o Y 5 A.. . AZae P keN,Z e X,e € fi(A)N...Nfi(A),

acfi(Z) = acfi(Y)

o Y5 A...Ace P keNeefi(A)N...Nnfi(A) = e € fi(Y)
Q fi(Y1...Y,) forneN,Y; € X:

o cefi(Yr...Yko1),a€i(Yi), ke [n = acfi(Vi...Yn)

) aeﬁ(Yl)ﬁ...ﬁﬁ(Yn) — EEﬁ(Yl...Yn)
Q fo(A) for Ae N:

e ¢ € fo(S)

o A— aBf e P,acfi(f) = ac fo(B)

o A— aBp e P,e € fi(8),x € fo(A) = x € fo(B)

4

Rw.rH Compiler Construction Summer Semester 2012 7.9



Computing Lookahead Sets II

QO A ane P = acfi(A)

Q@ A— BaePacfiB) = acfi(A)
QO AoceP = cefi(A)

Q fi(e) = {e}

Q acfi(A) = acfi(Aa)

QO A— aBe P,x € fo(A) = x € fo(B)

Example 7.4

Grammar for e F—vaeP = acfi(F)
arithmetic expressions T v FcPacfi(F) = acfi(T)
(cf. Example 5.10): e acfi(T)
Gae: E - E+T|T — la(T — T*F) =fi(T*F -fo(T)) > a
T T*F|F e acfi(F)
F— (E)|a|b — la(T — F) =fi(F - fo(T)) > a
0 — acla(T — TxF)Nla(T — F)#0

©

— Gar Q LL(].)
RWNTH




Fixing the Problem

(general methods later)

Example 7.5 (continuing Example 7.4)
Restructuring (such that L(G,z) = L(Gag)):

Ghe: E — TE
E' - +TE' | e
T — FT'
T — *FT' |
F — (E)|al|b
Ae N| fi(A) fo(A)
E |[{Gabi[ {e)}
E | {+e} | {eD}
T {Gab}| {+)}
T, {*76} {+7€7)}
F {(7a7b} {*7+7€7)}

| A= B e Plla(A— B) =1fi(B - fo(A))]

E> TE {Cab)
E' — +TF' {+}
E' —»¢ {e.)}
T — FT’ {(a,b}
T — *FT’ 7{*}
T — ¢ {+,¢,)}
F — (E) {(}
F—a {a}
F—b {b}

= Gue € LL(1)

v

Compiler Construction

Summer Semester 2012

7.11



@ Deterministic Top-Down Parsing

m Compiler Construction Summer Semester 2012 7.12



Deterministic Top-Down Parsing

Approach: given G € CFGy,

@ Verify that G € LL(1) by computing the lookahead sets and checking
alternatives for disjointness

© Start with nondeterministic top-down parsing automaton NTA(G)
© Use 1-symbol lookahead to control the choice of expanding
productions:
o (aw, Aa,z) F (aw, Sa, zi)
if i =A— [ and a € la(m;)
o (g,Axq, z) - (g, B, zi)
if i =A— [ and ¢ € la(n;)
o [matching steps as before: (aw, aa, z) b (w, o, z)]
= deterministic top-down parsing automaton DTA(G)
Remarks:
@ DTA(G) is actually not a pushdown automaton (a is read but not
consumed). But: can be simulated using the finite control.
@ Advantage of using lookahead is twofold:
@ Removal of nondeterminism
o Earlier detection of syntax errors
(in configurations (aw, Aa, z) where a & (U, 5cp la(A — 3))

mH Compiler Construction Summer Semester 2012 7.13



The Deterministic Top-Down Automaton |

Definition 7.6 (Deterministic top-down parsing automaton)

Let G = (N,X,P,S) € LL(1). The deterministic top-down parsing
automaton of G, DTA(G), is defined by the following components.

@ Input alphabet ¥, pushdown alphabet X, output alphabet [p]

@ Configurations X* x X* x [p]*, initial configuration (w, S, ¢),
final configurations {e} x {e} x [p]* (as NTA(G))

@ Action function
act : o X Xo = {(a, 1) | mi = A — a} U {pop, accept, error }
with act(x, A) := («a, i) if 7 = A — «a and x € la(7;)
act(a, a) := pop
act(e,e) := accept
act(x,y) := error otherwise
@ Transitions for x € ., w € ¥*, Y € X, f € X*, and z € [p|*:

(xw,af, zi) if act(x,Y) = (a, 1)
bow, Y5,2) {(w,/fz) if act(x, Y} = pop

v

Rw.rH Compiler Construction Summer Semester 2012

7.14



The Deterministic Top-Down Automaton Il

Example 7.7 (cf. Example 7.5)

act : Xo X X = {(a, i) | m = A — a} U {pop, accept, error }

I

E —> TE'
E' — +TE' | ¢
T — FT'
T' — *FT' | €

F — (E)|a|b

[A > BePJla(A—=p5) |

E > TF {Ca, b}
E" — +TE’ {+}
E' —¢ {e,)}
T — FT’ {(a,b}
T — *FT’ {*}
T — ¢ {+,€,)}
F — (BE) {¢}
F —a {a}
F —b {b}

(empty = error)

act E E’ T T’ F a b () *  + 5
a [(TE',1) (FT',4) (2,8) pop

b |(TE',1) (FT',4) (b,9) pop

C|(TE',1) (FT',4) (CBEY,7) pop

) (&,3) (¢,6) pop

& (xFT',5) pop

+ (+TE',2) (¢,6) pop

€ (£,3) (£,6) accept

v

Compiler Construction

Summer Semester 2012

7.15



The Deterministic Top-Down Automaton |1l

Example 7.7 (continued)

act] E E T T F a b () * + ¢
a |(TE',1) (FT',4) (a,8) pop

b [(TE', 1) (FT',4) (b,9) pop

C|(TE', 1) (FT',4) (CBEY,7) pop

) (¢,3) (¢,6) pop

* (xFT',5) pop

+ (+TE',2) (¢,6) pop

€ (g,3) (g,6) accept

Leftmost analysis of (a)*b:

((@)*b, E , € ) F (O*b, E') T'E’, 1471486 )
F ((a)*b, TE' 01 ) F (O*b, )T'E’ , 14714863 )
F ((a)*b, FT'E’ , 14 ) F( *b, T'"E'" , 14714863 )
F ()b, (E)T'E' 147 ) F ( *b, *FT'E’ , 147148635 )
F( a)xb, E)T'E’ , 147 ) F( b, FT'E' |, 147148635 )
F( a)*b, TET'E' , 1471 ) F( b, bT’E’ 1471486359 )
F( a)*b, FT'E') T'E’, 14714 ) F( e T'E' 1471486359 )
F ( a)*b, aT'E’) T'E’, 147148) F( e E , 14714863596 )
F( )*b, T'E')T'E’ , 147148) E( & e , 147148635963)

4

mH Compiler Construction Summer Semester 2012 7.16



	Repetition: LL(k) Grammars
	Characterization of LL(1)
	Computing Lookahead Sets
	Deterministic Top-Down Parsing

