Compiler Construction

Lecture 8: Syntax Analysis IV
(Transformation to LL(1) & Bottom-Up Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

© Repetition: LL(1) Parsing

m Compiler Construction Summer Semester 2012 8.2

Characterization of LL(1)

Definition (Lookahead set)
GivenTt=A— B € P,
la(7) := fi(5 - fo(A)) C X,
is called the lookahead set of 7 (where fi(T') := (U, <r fi(7))-

Theorem (Characterization of LL(1))

G € LL(1) iff for all pairs of rules A — (3 |y € P (where B # 7):
la(A — B) N1a(A — v) = 0.

mH Compiler Construction Summer Semester 2012 8.3

Deterministic Top-Down Parsing

Approach: given G € CFGy,

@ Verify that G € LL(1) by computing the lookahead sets and checking
alternatives for disjointness

© Start with nondeterministic top-down parsing automaton NTA(G)
© Use 1-symbol lookahead to control the choice of expanding
productions:
o (aw, Aa,z) F (aw, Sa, zi)
if i =A— [and a € la(m;)
o (g,Axq, z) - (g, B, zi)
if i =A— [and ¢ € la(n;)
o [matching steps as before: (aw, aa, z) b (w, o, z)]
= deterministic top-down parsing automaton DTA(G)
Remarks:
@ DTA(G) is actually not a pushdown automaton (a is read but not
consumed). But: can be simulated using the finite control.
@ Advantage of using lookahead is twofold:
@ Removal of nondeterminism
o Earlier detection of syntax errors
(in configurations (aw, Aa, z) where a & (U, 5cp la(A — 3))

mH Compiler Construction Summer Semester 2012 8.4

© Transformation to LL(1)

m Compiler Construction Summer Semester 2012 8.5

Transformation to LL(1)

Assume that G = (N, X, P,S) € CFGx \ LL(1)
(i.e., there exist A — (| v € P such that la(A —) Nla(A —) # 0)

m Compiler Construction Summer Semester 2012 8.6

Transformation to LL(1)

Assume that G = (N, X, P,S) € CFGx \ LL(1)
(i.e., there exist A — (| v € P such that la(A —) Nla(A —) # 0)

Two heuristics for transforming G into G’ € LL(1):
© Removal of left recursion
© Left factorization

(used in parser-generating systems such as ANTLR)

mH Compiler Construction Summer Semester 2012 8.6

Transformation to LL(1)

Assume that G = (N, X, P,S) € CFGx \ LL(1)
(i.e., there exist A — (| v € P such that la(A —) Nla(A —) # 0)

Two heuristics for transforming G into G’ € LL(1):
© Removal of left recursion
© Left factorization

(used in parser-generating systems such as ANTLR)

Remarks:

@ Transformations generally preserve the semantics (= generated
language) of CFGs but not the syntactic structure of words (different
syntax trees).

@ Transformations cannot always yield an LL(1) grammar (since not
every context-free language is generated by an LL grammar; details
later).

mH Compiler Construction Summer Semester 2012 8.6

Left Recursion |

Definition 8.1 (Left recursion)

A grammar G = (N, X, P,S) € CFGy is called left recursive if there exist
A€ N and o € X* such that A =1 Aa.

mH Compiler Construction Summer Semester 2012 8.7

Left Recursion |

Definition 8.1 (Left recursion)

A grammar G = (N, X, P,S) € CFGy is called left recursive if there exist
A€ N and o € X* such that A =1 Aa.

Corollary 8.2

If G € CFGy is left recursive with A =1 Ac, then there exists 3 € X*
such that A :>,+ AB.

mH Compiler Construction Summer Semester 2012 8.7

Left Recursion |

Definition 8.1 (Left recursion)

A grammar G = (N, X, P,S) € CFGy is called left recursive if there exist
A€ N and o € X* such that A =1 Aa.

Corollary 8.2

If G € CFGy is left recursive with A =1 Ac, then there exists 3 € X*
such that A :>,+ AB.

Example 8.3

The grammar (cf. Example 5.10)

GAE3 E—>E+T|T
T — TxF | F
F — (E)|al|b

is left recursive, and in Example 7.4 it was shown that Gag ¢ LL(1)

RWNTH Compiler Construction Summer Semester 2012 8.7

Left Recursion |l

Lemma 8.4
If G € CFGx is left recursive, then G & | J, oy LL(k).

m Compiler Construction Summer Semester 2012 8.8

Left Recursion |l

Lemma 8.4
If G € CFGx is left recursive, then G & | J, oy LL(k).

(for k = 1) Assume that G € LL(1) is left recursive with A = AB.
Together with the reducedness of G this implies that
S =7 vAa =] vABa = vw for some v,w € £* and o € X*.

RWNTH Compiler Construction Summer Semester 2012 8.8

Left Recursion |l

Lemma 8.4
If G € CFGx is left recursive, then G & | J, oy LL(k).

(for k = 1) Assume that G € LL(1) is left recursive with A = AB.
Together with the reducedness of G this implies that

S =7 vAa =] vABa = vw for some v,w € £* and o € X*.
The corresponding computation of DTA(G) (Def. 7.6) starts with
(vw, S e) F* (w, Aa,...) FT (w,ABa, . . .).

RWNTH Compiler Construction Summer Semester 2012 8.8

Left Recursion |l

Lemma 8.4
If G € CFGx is left recursive, then G & | J, oy LL(k).

(for k = 1) Assume that G € LL(1) is left recursive with A = AB.
Together with the reducedness of G this implies that

S =7 vAa =] vABa = vw for some v,w € £* and o € X*.

The corresponding computation of DTA(G) (Def. 7.6) starts with

(vw, S e) F* (w, Aa,...) FT (w,ABa, . . .).

But in the last state the behaviour of DTA(G) is determined by the same
input (fi(w)) and stack symbol (A). Thus it enters a loop of the form
(w,Aa,...) T (w,ABa,...) T (w,ABBa,...) T ... and will never
recognize w. Contradiction]

4

Rw.rH Compiler Construction Summer Semester 2012 8.8

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form
A= Acr|...|Aam | B1] ... | Bn where aj # e and B #A. ..

m Compiler Construction Summer Semester 2012 8.9

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form
A= Acr|...|Aam | B1] ... | Bn where aj # e and B #A. ..

Transformation: replacement by right recursion

A = BA || BA
A = oA anAl e

(with a new A" € N) which preserves L(G).

m Compiler Construction Summer Semester 2012 8.9

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form
A= Acr|...|Aam | B1] ... | Bn where aj # e and B #A. ..

Transformation: replacement by right recursion

A = BA || BA
A = oA anAl e

(with a new A" € N) which preserves L(G).

Example 8.5

Gag: E — E+T| T
T — T*F | F s transformed into
F— (E)|al|b
Gie: E — TE
E' - +TE' | e
T — FT' with G, € LL(1) (see Example 7.5).
T — *FT' | e
F — (E)|al|b

mH Compiler Construction Summer Semester 2012 8.9

Removing Indirect Left Recursion

Indirect left recursion occurs in productions of the form (n > 1)

A —>A10L1|...
A1 —>A20é2|...

An—l —>A,,a,,|...
A — AB ...

m Compiler Construction Summer Semester 2012 8.10

Removing Indirect Left Recursion

Indirect left recursion occurs in productions of the form (n > 1)

A —>A10L1|...
A1 —>A20é2|...

An—l —>A,,oz,,|...
A — AB ...

Transformation: into Greibach Normal Form with productions of the form

A— aBy...B, (where n € N and each B; # S) or
S—>e¢

(cf. Formale Systeme, Automaten, Prozesse)

m Compiler Construction Summer Semester 2012 8.10

Left Factorization

Applies to productions of the form
A—af|ay

which are problematic if « “at least as long as lookahead".

mH Compiler Construction Summer Semester 2012 8.11

Left Factorization

Applies to productions of the form
A—af|ay
which are problematic if « “at least as long as lookahead".

Transformation: delaying the decision by left factorization

A — oA
A — By

(with a new A" € N) which preserves L(G).

mH Compiler Construction Summer Semester 2012 8.11

Left Factorization

Applies to productions of the form
A—af|ay
which are problematic if « “at least as long as lookahead".

Transformation: delaying the decision by left factorization
A — oA
A= By

(with a new A" € N) which preserves L(G).

Example 8.6

Statement — if Condition then Statement else Statement fi
| if Condition then Statement fi

is transformed into

Statement — if Condition then Statement S’
S" — else Statement fi | fi

mH Compiler Construction Summer Semester 2012 8.11

© The Complexity of LL(1) Parsing

m Compiler Construction Summer Semester 2012 8.12

The Complexity of LL(1) Parsing |

@ LL(1) parsing has time (and hence space) complexity O(|w|)
(where w € X* is the input word)

m Compiler Construction Summer Semester 2012 8.13

The Complexity of LL(1) Parsing |

@ LL(1) parsing has time (and hence space) complexity O(|w|)
(where w € X* is the input word)

@ Here: proof for e-free grammars (i.e., A—>a € P = a#¢)

m Compiler Construction Summer Semester 2012 8.13

The Complexity of LL(1) Parsing |

@ LL(1) parsing has time (and hence space) complexity O(|w|)
(where w € X* is the input word)

@ Here: proof for e-free grammars (i.e., A—>a € P = a#¢)
@ General case: see O. Mayer: Syntaxanalyse, p. 211ff

m Compiler Construction Summer Semester 2012 8.13

The Complexity of LL(1) Parsing |

@ LL(1) parsing has time (and hence space) complexity O(|w|)
(where w € X* is the input word)

@ Here: proof for e-free grammars (i.e., A—>a € P = a#¢)
@ General case: see O. Mayer: Syntaxanalyse, p. 211ff

Lemma 8.7
Let G=(N,X,P,S) € LL(1) be e-free. If
(w,S,e) " (g,¢,2)

in DTA(G), then
n < (Jw|+1)-(JN|+1).

mH Compiler Construction Summer Semester 2012 8.13

The Complexity of LL(1) Parsing Il

Let (w,S,e) " (e,¢,z) in DTA(G). To show: n < (Jw|+ 1) - (|N|+ 1)
© Clear: the computation involves |w| matching steps.

O

v

RWNTH Compiler Construction Summer Semester 2012 8.14

The Complexity of LL(1) Parsing Il

Let (w,S,e) " (e,¢,z) in DTA(G). To show: n < (Jw|+ 1) - (|N|+ 1)
© Clear: the computation involves |w| matching steps.

@ Since G is e-free, every matching step is preceded (and followed) by k
expansion steps of the form

(av,Araq,...) F (av, Acasag, . . .)

= (av,Akak oo00@ilgoo)
F (av, ackt+q ...01,. .)

where A; — Aji1ajyq for each i € [k — 1] and Ax — ack1.

O

v

Rw.rH Compiler Construction Summer Semester 2012 8.14

The Complexity of LL(1) Parsing Il

Let (w,S,e) " (e,¢,z) in DTA(G). To show: n < (Jw|+ 1) - (|N|+ 1)
© Clear: the computation involves |w| matching steps.

@ Since G is e-free, every matching step is preceded (and followed) by k
expansion steps of the form

(av,Araq,...) F (av, Acasag, . . .)

= (av,Akak oo00@ilgoo)
F (av, ackt+q ...01,. .)
where A; — Aji1ajyq for each i € [k — 1] and Ax — ack1.

© This implies that A; # A; for i # j (by Lemma 8.4, G is not left
recursive), and hence k < |N|.

O

v

Compiler Construction Summer Semester 2012 8.14

The Complexity of LL(1) Parsing Il

Let (w,S,e) " (e,¢,z) in DTA(G). To show: n < (Jw|+ 1) - (|N|+ 1)
© Clear: the computation involves |w| matching steps.

@ Since G is e-free, every matching step is preceded (and followed) by k
expansion steps of the form

(av,Araq,...) F (av, Acasag, . . .)

= (av,Akak oo00@ilgoo)
F (av, ackt+q ...01,. .)

where A; — Aji1ajyq for each i € [k — 1] and Ax — ack1.

© This implies that A; # A; for i # j (by Lemma 8.4, G is not left
recursive), and hence k < |N|.

Q Altogether: n < (|w|+ 1) - (|N| +1).

O

v

Rw.rH Compiler Construction Summer Semester 2012 8.14

@ Recursive-Descent Parsing

m Compiler Construction Summer Semester 2012 8.15

Recursive-Descent Parsing |

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime stack)

m Compiler Construction Summer Semester 2012 8.16

Recursive-Descent Parsing |

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime stack)

Advantage: simple implementation

m Compiler Construction Summer Semester 2012 8.16

Recursive-Descent Parsing |

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime stack)
Advantage: simple implementation

Ingredients: @ variable token for current token
@ function next () for invoking the scanner
@ procedure print (i) for displaying the leftmost analysis
(or errors)

mH Compiler Construction Summer Semester 2012 8.16

Recursive-Descent Parsing |

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime stack)

Advantage: simple implementation

Ingredients: @ variable token for current token
@ function next () for invoking the scanner
@ procedure print (i) for displaying the leftmost analysis
(or errors)
Method: to every A € N we assign a procedure A() which
@ tests token with regard to the lookahead sets of the
A-productions,

@ prints the corresponding rule number and
@ evaluates the corresponding right-hand side as follows:

o for a € X: match token; call next ()
o for Ae N: call AQ)

mH Compiler Construction Summer Semester 2012 8.16

Recursive-Descent Parsing Il

Example 8.8 (Arithmetic expressions; cf. Example 8.5)

proc main();
token := next(); E(Q)
proc EQ; (x E — T E' %)
if token in {’(’,’a’,’b’} then print(1); T(O; E’(Q
else print(error); stop fi
proc E°Q); (x E' — + T E' | & %)
if token = ’+’ then print(2); token := next(); T(; E’(Q)
elsif token in {EOF, ’)’} then print(3)
else print(error); stop fi
proc T(); (x T — F T %)
if token in {’(’,’a’,’b’} then print(4); FO; T’Q
else print(error); stop fi
proc T°QO; (x T — *x F T’ | € %)
if token = ’*’ then print(5); token := mext(); FO; T’()
elsif token in {’+’,EOF,’)’} then print(6)
else print(error); stop fi
proc FO; (x F — (E) | a | b %
if token = ’(’ then print(7); token := next(); EQ;
if token = ’)’ then token := next() else print(error); stop fi
elsif token = ’a’ then print(8); token := next()
elsif token = ’b’ then print(9); token := next()
else print(error); stop fi

Rw.rH Compiler Construction Summer Semester 2012 8.17

© Bottom-Up Parsing

m Compiler Construction Summer Semester 2012 8.18

Repetition: Top-Down Parsing

Example 8.9

Grammar for
arithmetic expressions:
Gae: E— E+T | T (1,2)
T — T*F | F (3,4)
5,6,

F— (E)|alb (5,6,7)

4

RWNTH Compiler Construction Summer Semester 2012 8.19

Repetition: Top-Down Parsing

Example 8.9

| |

Grammar for
arithmetic expressions:
Gae: E— E+T | T (1,2)
T — T*F | F (3,4)
F—(E)|a|b (5,6,7)

Leftmost analysis of (a) *b:

4

RWNTH Compiler Construction Summer Semester 2012 8.19

Repetition: Top-Down Parsing

Example 8.9

Grammar for

arithmetic expressions:

Gae: E— E+T | T (1,2)
T — T*F | F (3,4)
F—(E)|a|b (5,6,7)

Leftmost analysis of (a) *b:
2

Compiler Construction

~----m

4

Summer Semester 2012

8.19

Repetition: Top-Down Parsing

Example 8.9
3
Grammar for P T
arithmetic expressions: 7 i \F
Gag: E— E+T|T (1,2) §
T— TxF|F (3,4 |
F—(E)|a|b (5,6,7)
Leftmost analysis of (a) *b:
23 |
(a) & b

4

RWNTH Compiler Construction Summer Semester 2012 8.19

Repetition: Top-Down Parsing

Example 8.9
E
Grammar for P T
arithmetic expressions: T i \F
Gae: E— E+T|T (1,2) 5 !
T = TxF|F (3,4 F |
F—(E)|a|b (5,6,7)
Leftmost analysis of (a) *b:
234 |
(a) & b

4

RWNTH Compiler Construction Summer Semester 2012 8.19

Repetition: Top-Down Parsing

Example 8.9

E

Grammar for T
arithmetic expressions: 7— | \,_—
Gae: E—E+T|T (1,2) i !

T — T*F | F (3,4) F

F— () |alb (56,7) .
Leftmost analysis of (a)*b:
2345 7 Y i

(a) % b
Summer Semester 2012 8.19

Compiler Construction

Repetition: Top-Down Parsing

Example 8.9

E
Grammar for T
arithmetic expressions: 7— | \,_—
Gae: E—E+T|T (1,2) i !
T — T*F | F (3,4) F
F—(E)|a|b (5,6,7) E ;
Leftmost analysis of (a)*b: T
23452 ’," ‘\‘ |
(a) + b
Summer Semester 2012 8.19

Compiler Construction

Repetition: Top-Down Parsing

Example 8.9

E
Grammar for T
arithmetic expressions: 7— | \,_—
Gae: E— E+T|T (1,2 5 i
T — T*F | F (3,4) F
F—(E)|a|b (5,6,7) E ;
Leftmost analysis of (a)*b: T
234524 A |
l"" IF ““\ i
(a) + b
Summer Semester 2012 8.19

Compiler Construction

Repetition: Top-Down Parsing

Example 8.9

3
Grammar for T
arithmetic expressions: 7— | \,_—
Gae: E— E+T|T (1,2 ; §
T — T*F | F (3,4) F
F— (E)|a|b (5,6,7) E ;
Leftmost analysis of (a)*b: T
2345246 A
l"’l IF \““ i
(4) * b
Summer Semester 2012 8.19

Compiler Construction

Mlmmmm e
T
PRSP vy v
OO
S H e
w
S
[
o =
))7
< NSt o
3 =i
Q o %
o O C
(@] a %
- S ku s
+
= g Lk B
] B SETTT Fe
5= € S o Wwkw oY
B c B i 6
Q o e L .. %5
w S £EE uw € <«
a4 2 T 5o
Ll O © -1

8.19

Summer Semester 2012

Compiler Construction

Bottom-Up Parsing |
Example 8.10

Grammar for
arithmetic expressions:
Gae: E— E+T | T (1,2)
T — T*xF|F (3,4)
5,6,

F— (E)|alb (5,6,7)

4

RWNTH Compiler Construction Summer Semester 2012 8.20

Bottom-Up Parsing |
Example 8.10

Grammar for
arithmetic expressions:

Gae: E— E+T | T (1,2)
T—>TxF|F (3,4)
F—(E)|a|b (5,6,7)

Reversed rightmost analysis
of (a) *b:

4

RWNTH Compiler Construction Summer Semester 2012 8.20

Bottom-Up Parsing |
Example 8.10

Grammar for

arithmetic expressions:

GAEZ E—>E+T|T (,
T—>TxF|F (
F— (E)|a|b (5,

Reversed rightmost analysis
of (a) *b:

6

y
Compiler Construction

Summer Semester 2012 8.20

Bottom-Up Parsing |

Example 8.10

Grammar for

arithmetic expressions:

GAEZ E—>E+T|T (,
T — T*xF| F
F— (E)|a|b (5,

Reversed rightmost analysis
of (a) *b:
64

4

Compiler Construction

Summer Semester 2012 8.20

Bottom-Up Parsing |
Example 8.10

Grammar for
arithmetic expressions:

Gae: E— E+T|T (1,2)
T — T*xF| F (3,4)
5,6,

F— (E)|a|b (5,6,7)
. . E
Reversed rightmost analysis
of (a) *b: T
642 |
F
a

4

RWNTH Compiler Construction Summer Semester 2012 8.20

Bottom-Up Parsing |
Example 8.10

Grammar for
arithmetic expressions:

Gae: E— E+T | T (1,2)
T T+F|F (3,4 F
F—(E)|a|b (5,6,7) m

{E

Reversed rightmost analysis

of (a)x*b: £ T

6425 ;oL

l"’ IF “‘\
(a2) * b

Summer Semester 2012 8.20

Compiler Construction

Bottom-Up Parsing |
Example 8.10

Grammar for

arithmetic expressions:
Gae: E— E+T|T (1,2) T
T—TxF|F (3,4) F
F—(E)|a|b (5,6,7)
'IIE‘\‘
Reversed rightmost analysis
of (a)*b: iT
64254 A
l"’ 'F “‘\
(a) * b

Summer Semester 2012 8.20

Compiler Construction

Bottom-Up Parsing |
Example 8.10

Grammar for
arithmetic expressions:

Gae: E— E+T|T (1,2 T ¢
T T+F|F (3.4) F |
F—(E)|alb (5,6,7) 5

”IE\\‘ i

Reversed rightmost analysis ;

of (a)*b: T

642547 foA

A |
(e e

4

Summer Semester 2012 8.20

Compiler Construction

.
e e e e
P T S g
)
N~
—_~— -
_ NS o
— ™1
ma N e’ .B
= a £
~ e
© w _ ~® g
c —_—
o I T o N
o gL g
| o S +
! — sg TTT 5§ o
I K o Whkew = ™
(@) 9 o B - 2o <
fhr o g 9 .. Q ¥ 10
= £ £ E 4 5@ o
K I s~
Ll O ¥ G o

8.20

Summer Semester 2012

Compiler Construction

e
T —
P T S g
—~
N~
—_—~ -
_ NS o
— 1o
ma N N e’ .nb
= a £
- U o U g
[w @ 5
c —
o I T o N
o g w2 g
o o s 5 ©
! — s TTT § o
A B o Whkew =~
(@) 9 o B - o v
s} o m (0] .. L * 7o)
- £ £ @ o=
o0 2 eE & T
L O © X 6 o

8.20

Summer Semester 2012

Compiler Construction

Bottom-Up Parsing |l

Approach:

O Given G € CFGy, construct a nondeterministic bottom-up parsing
automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: >
pushdown alphabet: X
output alphabet: [p] (where p := |P|)
state set: omitted
transitions:

shift: shifting input symbols onto the pushdown

reduce: replacing the right-hand side of a production by its
left-hand side (= inverse expansion steps)

©

¢ € ¢ ¢

mH Compiler Construction Summer Semester 2012 8.21

Bottom-Up Parsing |l

Approach:

O Given G € CFGy, construct a nondeterministic bottom-up parsing
automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: >
pushdown alphabet: X
output alphabet: [p] (where p := |P|)
state set: omitted
transitions:

shift: shifting input symbols onto the pushdown

reduce: replacing the right-hand side of a production by its
left-hand side (= inverse expansion steps)

©

¢ € ¢ ¢

© Remove nondeterminism by allowing lookahead on the input:
G € LR(k) iff L(G) recognizable by deterministic bottom-up parsing
automaton with lookahead of k symbols

mH Compiler Construction Summer Semester 2012 8.21

© Nondeterministic Bottom-Up Parsing

m Compiler Construction Summer Semester 2012 8.22

Nondeterministic Bottom-Up Automaton |

Definition 8.11 (Nondeterministic bottom-up parsing automaton)

Let G = (N,X,P,S) € CFGyx. The nondeterministic bottom-up parsing
automaton of G, NBA(G), is defined by the following components.

@ Input alphabet: ¥
@ Pushdown alphabet: X
@ Output alphabet: [p]
o Configurations: * x X* x [p]* (top of pushdown to the right)
@ Transitions for w € *, o € X*, and z € [p]*:
shifting steps: (aw,a,z) F (w,aa,z) ifa€ X
reduction steps: (w,af,z) - (w,aA,zi)if i =A—
@ Initial configuration for w € X*: (w,¢,¢)

@ Final configurations: {e} x {S} x [p]*

mH Compiler Construction Summer Semester 2012 8.23

Nondeterministic Bottom-Up Automaton Il

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):

GAEZ E—>E+T|T (1,2)
T — T*xF | F (3,4)
F— (E)|a|b (56,7)

mH Compiler Construction Summer Semester 2012 8.24

Nondeterministic Bottom-Up Automaton Il

Example 8.12
Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e €)

(cf. Example 8.10):

GAEZ E—>E+T|T (1,2)
T — T*xF|F (3,4)
F— (E)|a|b (56,7)

mH Compiler Construction Summer Semester 2012 8.24

Nondeterministic Bottom-Up Automaton Il

Example 8.12
Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 8.10): F(a)b, (¢)
Gar : E—>E+T|T (1,2)
T— TxF|F (3,4
F— (E)|a|b (5,6,7)

mH Compiler Construction Summer Semester 2012 8.24

Nondeterministic Bottom-Up Automaton Il

Example 8.12
Grammar for Bottom-up parsing of (a) *b:
arithmetic expressions ((@)*b, e ¢)
(cf. Example 8.10): F(ax*b, ¢ e)
Gae: E— E+T|T (1,2) LSRR G)
T— TxF|F (3,4
F—(E)|a|b (5,6,7)

mH Compiler Construction Summer Semester 2012 8.24

Nondeterministic Bottom-Up Automaton Il

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):
Gag: E — E+T | T
T — TxF | F

F— (E)|alb (5

Bottom-up parsing of (a) *b:

((@)*b, e ¢)
F(a)b, (¢)
F()b, (a e)
1,2))
5,6,7)

Compiler Construction Summer Semester 2012

8.24

Nondeterministic Bottom-Up Automaton Il

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):
GAEZE—>E+T|T (1
T — T*xF | F 3
F— (E)|a|b (5,

)
)

Bottom-up parsing of (a) *b:

((@)*b, e ¢)

l—(a) *b, (, €)

2) l—()*b, (a &)
4) l_()*b, (F ,6)
6.7) S o, (T .64)

Compiler Construction

Summer Semester 2012

8.24

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):
GAE cE — E+T | T
T — TxF | F
F— (E)|a|b (5,

Nondeterministic Bottom-Up Automaton Il

Bottom-up parsing of (a) *b:

((@)*b, €
- (a)#b, (
()b, (a
F()b, (F
E()b, (T
()b, (E

Compiler Construction

Summer Semester 2012

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):
GAE cE — E+T | T
T — TxF | F
F— (E)|alb (5,

Nondeterministic Bottom-Up Automaton Il

Bottom-up parsing of (a) *b:

((@)*b, €
a) *b, (
)*b, (a
)*b, (F
)*b, (T

= (
= (
- (
- (
- ()*b, (E
= (

Compiler Construction

xb, (E) , 642

Summer Semester 2012

Nondeterministic Bottom-Up Automaton Il

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):
GAEZE—>E+T|T (].
T — T*xF | F 3
F— (E)|a|b (5,

)
)

Bottom-up parsing of (a) *b:

((@)*b, e ¢)

F(a)xb, (e)

2) F()*b, (a ,¢)
4) F()*b, (F ,6)
6,7) F()b, (T , 64)
) - ()b, (E , 642)
F(*b, (E), 642)
(b, F 6425)

Compiler Construction

Summer Semester 2012

8.24

Nondeterministic Bottom-Up Automaton Il

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):
GAEZE—>E+T|T (].
T — T*xF | F (3
F— (E)|a|b (5,

)
)

Bottom-up parsing of (a) *b:

((@)*b, e ¢)

(b, (e)

2) F(J)*b, (a ,¢)
4) F ()*b, (F |6)
6,7) F()b, (T ,64)
) F()¥b, (E ,642)
F(*b, (E), 642)

(*b, F,6425)

~(b, T 64254)

Compiler Construction Summer Semester 2012

8.24

Nondeterministic Bottom-Up Automaton Il

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):
GAEZE—>E+T|T (].
T — T*xF | F (3
F— (E)|a|b (5,

)
)

Bottom-up parsing of (a) *b:

((@)*b, e ¢)

(b, (e)

2) F(J)*b, (a ,¢)
4) F ()*b, (F |6)
6,7) F()b, (T ,64)
) F()¥b, (E ,642)
F(*b, (E), 642)

(*b, F,6425)

~(b, T 64254)

(b, T* ,64254)

Compiler Construction Summer Semester 2012

8.24

Nondeterministic Bottom-Up Automaton Il

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):
GAEZE—>E+T|T (].
T — T*xF | F (3
F— (E)|a|b (5,

)
)

Bottom-up parsing of (a) *b:

((@)*b, e ¢)

(b, (e)

2) F(J)*b, (a ,¢)
4) F ()*b, (F |6)
6,7) F()b, (T ,64)
) F()¥b, (E ,642)
F(*b, (E), 642)

(*b, F,6425)

~(b, T 64254)

(b, T* ,64254)

(e Txb, 64254)

Compiler Construction Summer Semester 2012

8.24

Nondeterministic Bottom-Up Automaton Il

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):
GAEZE—>E+T|T (].
T—TxF|F (3
F— (E)|a|b (5,

)
)

Bottom-up parsing of (a) *b:

((@)*b, e ¢)

(b, (e)

2) F(J)*b, (a ,¢)
4) F ()*b, (F |6)
6,7) F()b, (T ,64)
) F()¥b, (E ,642)
F(*b, (E), 642)

(*b, F,6425)

~(b, T 64254)

(b, T* ,64254)

(e Txb, 64254)

(e, TxF, 642547)

Compiler Construction Summer Semester 2012

8.24

Nondeterministic Bottom-Up Automaton Il

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):
GAEZE—>E+T|T (].
T — T*xF | F 3
F— (E)|a|b (5,

)
)

Bottom-up parsing of (a) *b:

((@)*b, e ¢)

(b, (e)

2) F(J)*b, (a ,¢)
4) F ()*b, (F |6)
6,7) F()b, (T ,64)
) F()¥b, (E ,642)
F(*b, (E), 642)

(*b, F,6425)

~(b, T 64254)

(b, T* ,64254)

(e Txb, 64254)

(e, TxF, 642547)

F(e T 6425473)

Compiler Construction Summer Semester 2012

8.24

Nondeterministic Bottom-Up Automaton Il

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):
GAE cE — E+T | T
T — TxF | F
F— (E)|a|b (5,

Bottom-up parsing of (a) *b:

((@)*b, e ¢)
F(a)+b, (e)
F(J)*b, (a ,¢)
F()*b, (F ,6)
F()*b, (T , 64)
F()*b, (E , 642)
F(*b, (E), 642)
F(*b, F ,6425)
F(*b, T ,64254)
F(b, Tx , 64254)
F(e T*b, 64254)
- (e, T*F, 642547)
- (e, T 6425473)
F(& E ,64254732)

Compiler Construction Summer Semester 2012

	Repetition: LL(1) Parsing
	Transformation to LL(1)
	The Complexity of LL(1) Parsing
	Recursive-Descent Parsing
	Bottom-Up Parsing
	Nondeterministic Bottom-Up Parsing

