
Compiler Construction
Lecture 8: Syntax Analysis IV

(Transformation to LL(1) & Bottom-Up Parsing)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Outline

1 Repetition: LL(1) Parsing

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Bottom-Up Parsing

6 Nondeterministic Bottom-Up Parsing

Compiler Construction Summer Semester 2012 8.2

Characterization of LL(1)

Definition (Lookahead set)

Given π = A → β ∈ P ,

la(π) := fi(β · fo(A)) ⊆ Σε

is called the lookahead set of π (where fi(Γ) :=
⋃

γ∈Γ fi(γ)).

Theorem (Characterization of LL(1))

G ∈ LL(1) iff for all pairs of rules A → β | γ ∈ P (where β 6= γ):

la(A → β) ∩ la(A → γ) = ∅.

Compiler Construction Summer Semester 2012 8.3

Deterministic Top-Down Parsing
Approach: given G ∈ CFGΣ,

1 Verify that G ∈ LL(1) by computing the lookahead sets and checking
alternatives for disjointness

2 Start with nondeterministic top-down parsing automaton NTA(G)
3 Use 1-symbol lookahead to control the choice of expanding

productions:
(aw ,Aα, z) ⊢ (aw , βα, zi)
if πi = A → β and a ∈ la(πi)
(ε,Aα, z) ⊢ (ε, βα, zi)
if πi = A → β and ε ∈ la(πi)
[matching steps as before: (aw , aα, z) ⊢ (w , α, z)]

=⇒ deterministic top-down parsing automaton DTA(G)

Remarks:
DTA(G) is actually not a pushdown automaton (a is read but not
consumed). But: can be simulated using the finite control.
Advantage of using lookahead is twofold:

Removal of nondeterminism
Earlier detection of syntax errors
(in configurations (aw ,Aα, z) where a /∈

⋃
A→β∈P la(A → β))

Compiler Construction Summer Semester 2012 8.4

Outline

1 Repetition: LL(1) Parsing

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Bottom-Up Parsing

6 Nondeterministic Bottom-Up Parsing

Compiler Construction Summer Semester 2012 8.5

Transformation to LL(1)

Assume that G = 〈N,Σ,P ,S〉 ∈ CFGΣ \ LL(1)
(i.e., there exist A → β | γ ∈ P such that la(A → β) ∩ la(A → γ) 6= ∅)

Two heuristics for transforming G into G ′ ∈ LL(1):

1 Removal of left recursion

2 Left factorization

(used in parser-generating systems such as ANTLR)

Remarks:

Transformations generally preserve the semantics (= generated
language) of CFGs but not the syntactic structure of words (different
syntax trees).

Transformations cannot always yield an LL(1) grammar (since not
every context-free language is generated by an LL grammar; details
later).

Compiler Construction Summer Semester 2012 8.6

Left Recursion I

Definition 8.1 (Left recursion)

A grammar G = 〈N,Σ,P ,S〉 ∈ CFGΣ is called left recursive if there exist
A ∈ N and α ∈ X ∗ such that A ⇒+ Aα.

Corollary 8.2

If G ∈ CFGΣ is left recursive with A ⇒+ Aα, then there exists β ∈ X ∗

such that A ⇒+
l Aβ.

Example 8.3

The grammar (cf. Example 5.10)

GAE : E → E+T | T
T → T*F | F
F → (E) | a | b

is left recursive, and in Example 7.4 it was shown that GAE /∈ LL(1)

Compiler Construction Summer Semester 2012 8.7

Left Recursion II

Lemma 8.4

If G ∈ CFGΣ is left recursive, then G /∈
⋃

k∈N LL(k).

Proof.

(for k = 1) Assume that G ∈ LL(1) is left recursive with A ⇒+
l
Aβ.

Together with the reducedness of G this implies that
S ⇒∗

l vAα ⇒+
l vAβα ⇒+

l vw for some v ,w ∈ Σ∗ and α ∈ X ∗.
The corresponding computation of DTA(G) (Def. 7.6) starts with
(vw ,S , ε) ⊢∗ (w ,Aα, . . .) ⊢+ (w ,Aβα, . . .).
But in the last state the behaviour of DTA(G) is determined by the same
input (fi(w)) and stack symbol (A). Thus it enters a loop of the form
(w ,Aα, . . .) ⊢+ (w ,Aβα, . . .) ⊢+ (w ,Aββα, . . .) ⊢+ . . . and will never
recognize w . Contradiction

Compiler Construction Summer Semester 2012 8.8

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form

A → Aα1 | . . . | Aαm | β1 | . . . | βn where αi 6= ε and βj 6= A . . .

Transformation: replacement by right recursion

A → β1A
′ | . . . | βnA

′

A′ → α1A
′ | . . . | αmA

′ | ε

(with a new A′ ∈ N) which preserves L(G).

Example 8.5

GAE : E → E+T | T
T → T*F | F
F → (E) | a | b

is transformed into

G ′

AE : E → TE ′

E ′ → +TE ′ | ε
T → FT ′

T ′ → *FT ′ | ε
F → (E) | a | b

with G ′

AE ∈ LL(1) (see Example 7.5).

Compiler Construction Summer Semester 2012 8.9

Removing Indirect Left Recursion

Indirect left recursion occurs in productions of the form (n ≥ 1)

A → A1α1 | . . .
A1 → A2α2 | . . .

...
An−1 → Anαn | . . .
An → Aβ | . . .

Transformation: into Greibach Normal Form with productions of the form

A → aB1 . . .Bn (where n ∈ N and each Bi 6= S) or
S → ε

(cf. Formale Systeme, Automaten, Prozesse)

Compiler Construction Summer Semester 2012 8.10

Left Factorization

Applies to productions of the form

A → αβ | αγ

which are problematic if α “at least as long as lookahead”.

Transformation: delaying the decision by left factorization

A → αA′

A′ → β | γ

(with a new A′ ∈ N) which preserves L(G).

Example 8.6

Statement → if Condition then Statement else Statement fi
| if Condition then Statement fi

is transformed into

Statement → if Condition then Statement S ′

S ′ → else Statement fi | fi

Compiler Construction Summer Semester 2012 8.11

Outline

1 Repetition: LL(1) Parsing

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Bottom-Up Parsing

6 Nondeterministic Bottom-Up Parsing

Compiler Construction Summer Semester 2012 8.12

The Complexity of LL(1) Parsing I

LL(1) parsing has time (and hence space) complexity O(|w |)
(where w ∈ Σ∗ is the input word)

Here: proof for ε-free grammars (i.e., A → α ∈ P =⇒ α 6= ε)

General case: see O. Mayer: Syntaxanalyse, p. 211ff

Lemma 8.7

Let G = 〈N,Σ,P ,S〉 ∈ LL(1) be ε-free. If

(w ,S , ε) ⊢n (ε, ε, z)

in DTA(G), then

n ≤ (|w |+ 1) · (|N| + 1).

Compiler Construction Summer Semester 2012 8.13

The Complexity of LL(1) Parsing II

Proof.

Let (w ,S , ε) ⊢n (ε, ε, z) in DTA(G). To show: n ≤ (|w |+ 1) · (|N|+ 1)

1 Clear: the computation involves |w | matching steps.

2 Since G is ε-free, every matching step is preceded (and followed) by k
expansion steps of the form

(av ,A1α1, . . .) ⊢ (av ,A2α2α1, . . .)
...
⊢ (av ,Akαk . . . α1, . . .)
⊢ (av , aαk+1 . . . α1, . . .)

where Ai → Ai+1αi+1 for each i ∈ [k − 1] and Ak → aαk+1.

3 This implies that Ai 6= Aj for i 6= j (by Lemma 8.4, G is not left
recursive), and hence k ≤ |N|.

4 Altogether: n ≤ (|w |+ 1) · (|N| + 1).

Compiler Construction Summer Semester 2012 8.14

Outline

1 Repetition: LL(1) Parsing

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Bottom-Up Parsing

6 Nondeterministic Bottom-Up Parsing

Compiler Construction Summer Semester 2012 8.15

Recursive-Descent Parsing I

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime stack)

Advantage: simple implementation

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost analysis
(or errors)

Method: to every A ∈ N we assign a procedure A() which

tests token with regard to the lookahead sets of the
A-productions,
prints the corresponding rule number and
evaluates the corresponding right-hand side as follows:

for a ∈ Σ: match token; call next()
for A ∈ N : call A()

Compiler Construction Summer Semester 2012 8.16

Recursive-Descent Parsing II

Example 8.8 (Arithmetic expressions; cf. Example 8.5)

proc main();
token := next(); E()

proc E(); (* E → T E
′ *)

if token in {’(’,’a’,’b’} then print(1); T(); E’()
else print(error); stop fi

proc E’(); (* E
′ → + T E

′ | ε *)
if token = ’+’ then print(2); token := next(); T(); E’()
elsif token in {EOF, ’)’} then print(3)
else print(error); stop fi

proc T(); (* T → F T
′ *)

if token in {’(’,’a’,’b’} then print(4); F(); T’()
else print(error); stop fi

proc T’(); (* T
′ → * F T

′ | ε *)
if token = ’*’ then print(5); token := next(); F(); T’()
elsif token in {’+’,EOF,’)’} then print(6)
else print(error); stop fi

proc F(); (* F → (E) | a | b *)
if token = ’(’ then print(7); token := next(); E();

if token = ’)’ then token := next() else print(error); stop fi
elsif token = ’a’ then print(8); token := next()
elsif token = ’b’ then print(9); token := next()
else print(error); stop fi

Compiler Construction Summer Semester 2012 8.17

Outline

1 Repetition: LL(1) Parsing

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Bottom-Up Parsing

6 Nondeterministic Bottom-Up Parsing

Compiler Construction Summer Semester 2012 8.18

Repetition: Top-Down Parsing

Example 8.9

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:
2 3 4 5 2 4 6 7

E

(a) * b

T

T F

F

E

T

F

Compiler Construction Summer Semester 2012 8.19

Bottom-Up Parsing I

Example 8.10

Grammar for
arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Reversed rightmost analysis
of (a)*b:
6 4 2 5 4 7 3 2

(a) * b

F

T

E

F

T F

T

E

Compiler Construction Summer Semester 2012 8.20

Bottom-Up Parsing II

Approach:
1 Given G ∈ CFGΣ, construct a nondeterministic bottom-up parsing

automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: Σ
pushdown alphabet: X
output alphabet: [p] (where p := |P |)
state set: omitted
transitions:

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its

left-hand side (= inverse expansion steps)

2 Remove nondeterminism by allowing lookahead on the input:
G ∈ LR(k) iff L(G) recognizable by deterministic bottom-up parsing
automaton with lookahead of k symbols

Compiler Construction Summer Semester 2012 8.21

Outline

1 Repetition: LL(1) Parsing

2 Transformation to LL(1)

3 The Complexity of LL(1) Parsing

4 Recursive-Descent Parsing

5 Bottom-Up Parsing

6 Nondeterministic Bottom-Up Parsing

Compiler Construction Summer Semester 2012 8.22

Nondeterministic Bottom-Up Automaton I

Definition 8.11 (Nondeterministic bottom-up parsing automaton)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ. The nondeterministic bottom-up parsing
automaton of G , NBA(G), is defined by the following components.

Input alphabet: Σ

Pushdown alphabet: X

Output alphabet: [p]

Configurations: Σ∗ × X ∗ × [p]∗ (top of pushdown to the right)

Transitions for w ∈ Σ∗, α ∈ X ∗, and z ∈ [p]∗:

shifting steps: (aw , α, z) ⊢ (w , αa, z) if a ∈ Σ
reduction steps: (w , αβ, z) ⊢ (w , αA, zi) if πi = A → β

Initial configuration for w ∈ Σ∗: (w , ε, ε)

Final configurations: {ε} × {S} × [p]∗

Compiler Construction Summer Semester 2012 8.23

Nondeterministic Bottom-Up Automaton II

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Bottom-up parsing of (a)*b:

((a)*b, ε , ε)
⊢ (a)*b, (, ε)
⊢ ()*b, (a , ε)
⊢ ()*b, (F , 6)
⊢ ()*b, (T , 64)
⊢ ()*b, (E , 642)
⊢ (*b, (E) , 642)
⊢ (*b, F , 6425)
⊢ (*b, T , 64254)
⊢ (b, T* , 64254)
⊢ (ε, T*b , 64254)
⊢ (ε, T*F , 642547)
⊢ (ε, T , 6425473)
⊢ (ε, E , 64254732)

Compiler Construction Summer Semester 2012 8.24

	Repetition: LL(1) Parsing
	Transformation to LL(1)
	The Complexity of LL(1) Parsing
	Recursive-Descent Parsing
	Bottom-Up Parsing
	Nondeterministic Bottom-Up Parsing

