Compiler Construction

Lecture 8: Syntax Analysis IV
(Transformation to LL(1) & Bottom-Up Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

© Repetition: LL(1) Parsing

m Compiler Construction Summer Semester 2012 8.2

Characterization of LL(1)

Definition (Lookahead set)
GivenTt=A— B € P,
la(7) := fi(5 - fo(A)) C X,
is called the lookahead set of 7 (where fi(T') := (U, <r fi(7))-

Theorem (Characterization of LL(1))

G € LL(1) iff for all pairs of rules A — (3 |y € P (where B # 7):
la(A — B) N1a(A — v) = 0.

mH Compiler Construction Summer Semester 2012 8.3

Deterministic Top-Down Parsing

Approach: given G € CFGy,

@ Verify that G € LL(1) by computing the lookahead sets and checking
alternatives for disjointness

© Start with nondeterministic top-down parsing automaton NTA(G)
© Use 1-symbol lookahead to control the choice of expanding
productions:
o (aw, Aa,z) F (aw, Sa, zi)
if i =A— [and a € la(m;)
o (g,Axq, z) - (g, B, zi)
if i =A— [and ¢ € la(n;)
o [matching steps as before: (aw, aa, z) b (w, o, z)]
= deterministic top-down parsing automaton DTA(G)
Remarks:
@ DTA(G) is actually not a pushdown automaton (a is read but not
consumed). But: can be simulated using the finite control.
@ Advantage of using lookahead is twofold:
@ Removal of nondeterminism
o Earlier detection of syntax errors
(in configurations (aw, Aa, z) where a & (U, 5cp la(A — 3))

mH Compiler Construction Summer Semester 2012 8.4

© Transformation to LL(1)

m Compiler Construction Summer Semester 2012 8.5

Transformation to LL(1)

Assume that G = (N, X, P,S) € CFGx \ LL(1)
(i.e., there exist A — (| v € P such that la(A —) Nla(A —) # 0)

Two heuristics for transforming G into G’ € LL(1):
© Removal of left recursion
© Left factorization

(used in parser-generating systems such as ANTLR)

Remarks:

@ Transformations generally preserve the semantics (= generated
language) of CFGs but not the syntactic structure of words (different
syntax trees).

@ Transformations cannot always yield an LL(1) grammar (since not
every context-free language is generated by an LL grammar; details
later).

mH Compiler Construction Summer Semester 2012 8.6

Left Recursion |

Definition 8.1 (Left recursion)

A grammar G = (N, X, P,S) € CFGy is called left recursive if there exist
A€ N and o € X* such that A =1 Aa.

Corollary 8.2

If G € CFGy is left recursive with A =1 Ac, then there exists 3 € X*
such that A :>,+ AB.

Example 8.3

The grammar (cf. Example 5.10)

GAE3 E—>E+T|T
T — TxF | F
F — (E)|al|b

is left recursive, and in Example 7.4 it was shown that Gag ¢ LL(1)

RWNTH Compiler Construction Summer Semester 2012 8.7

Left Recursion |l

Lemma 8.4
If G € CFGx is left recursive, then G & | J, oy LL(k).

(for k = 1) Assume that G € LL(1) is left recursive with A = AB.
Together with the reducedness of G this implies that

S =7 vAa =] vABa = vw for some v,w € £* and o € X*.

The corresponding computation of DTA(G) (Def. 7.6) starts with

(vw, S e) F* (w, Aa,...) FT (w,ABa, . . .).

But in the last state the behaviour of DTA(G) is determined by the same
input (fi(w)) and stack symbol (A). Thus it enters a loop of the form
(w,Aa,...) T (w,ABa,...) T (w,ABBa,...) T ... and will never
recognize w. Contradiction]

4

Rw.rH Compiler Construction Summer Semester 2012 8.8

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form
A= Acr|...|Aam | B1] ... | Bn where aj # e and B #A. ..

Transformation: replacement by right recursion

A = BA || BA
A = oA anAl e

(with a new A" € N) which preserves L(G).

Example 8.5

Gag: E — E+T| T
T — T*F | F s transformed into
F— (E)|al|b
Gie: E — TE
E' - +TE' | e
T — FT' with G, € LL(1) (see Example 7.5).
T — *FT' | e
F — (E)|al|b

mH Compiler Construction Summer Semester 2012 8.9

Removing Indirect Left Recursion

Indirect left recursion occurs in productions of the form (n > 1)

A —>A10L1|...
A1 —>A20é2|...

An—l —>A,,oz,,|...
A — AB ...

Transformation: into Greibach Normal Form with productions of the form

A— aBy...B, (where n € N and each B; # S) or
S—>e¢

(cf. Formale Systeme, Automaten, Prozesse)

m Compiler Construction Summer Semester 2012 8.10

Left Factorization

Applies to productions of the form
A—af|ay
which are problematic if « “at least as long as lookahead".

Transformation: delaying the decision by left factorization
A — oA
A= By

(with a new A" € N) which preserves L(G).

Example 8.6

Statement — if Condition then Statement else Statement fi
| if Condition then Statement fi

is transformed into

Statement — if Condition then Statement S’
S" — else Statement fi | fi

mH Compiler Construction Summer Semester 2012 8.11

© The Complexity of LL(1) Parsing

m Compiler Construction Summer Semester 2012 8.12

The Complexity of LL(1) Parsing |

@ LL(1) parsing has time (and hence space) complexity O(|w|)
(where w € X* is the input word)

@ Here: proof for e-free grammars (i.e., A—>a € P = a#¢)
@ General case: see O. Mayer: Syntaxanalyse, p. 211ff

Lemma 8.7
Let G=(N,X,P,S) € LL(1) be e-free. If
(w,S,e) " (g,¢,2)

in DTA(G), then
n < (Jw|+1)-(JN|+1).

mH Compiler Construction Summer Semester 2012 8.13

The Complexity of LL(1) Parsing Il

Let (w,S,e) " (e,¢,z) in DTA(G). To show: n < (Jw|+ 1) - (|N|+ 1)
© Clear: the computation involves |w| matching steps.

@ Since G is e-free, every matching step is preceded (and followed) by k
expansion steps of the form

(av,Araq,...) F (av, Acasag, . . .)

= (av,Akak oo00@ilgoo)
F (av, ackt+q ...01,. .)

where A; — Aji1ajyq for each i € [k — 1] and Ax — ack1.

© This implies that A; # A; for i # j (by Lemma 8.4, G is not left
recursive), and hence k < |N|.

Q Altogether: n < (|w|+ 1) - (|N| +1).

O

v

Rw.rH Compiler Construction Summer Semester 2012 8.14

@ Recursive-Descent Parsing

m Compiler Construction Summer Semester 2012 8.15

Recursive-Descent Parsing |

Idea: avoid explicit use of pushdown store (as in DTA(G)) by
employing recursive procedures (with implicit runtime stack)

Advantage: simple implementation

Ingredients: @ variable token for current token
@ function next () for invoking the scanner
@ procedure print (i) for displaying the leftmost analysis
(or errors)
Method: to every A € N we assign a procedure A() which
@ tests token with regard to the lookahead sets of the
A-productions,

@ prints the corresponding rule number and
@ evaluates the corresponding right-hand side as follows:

o for a € X: match token; call next ()
o for Ae N: call AQ)

mH Compiler Construction Summer Semester 2012 8.16

Recursive-Descent Parsing Il

Example 8.8 (Arithmetic expressions; cf. Example 8.5)

proc main();
token := next(); E(Q)
proc EQ; (x E — T E' %)
if token in {’(’,’a’,’b’} then print(1); T(O; E’(Q
else print(error); stop fi
proc E°Q); (x E' — + T E' | & %)
if token = ’+’ then print(2); token := next(); T(; E’(Q)
elsif token in {EOF, ’)’} then print(3)
else print(error); stop fi
proc T(); (x T — F T %)
if token in {’(’,’a’,’b’} then print(4); FO; T’Q
else print(error); stop fi
proc T°QO; (x T — *x F T’ | € %)
if token = ’*’ then print(5); token := mext(); FO; T’()
elsif token in {’+’,EOF,’)’} then print(6)
else print(error); stop fi
proc FO; (x F — (E) | a | b %
if token = ’(’ then print(7); token := next(); EQ;
if token = ’)’ then token := next() else print(error); stop fi
elsif token = ’a’ then print(8); token := next()
elsif token = ’b’ then print(9); token := next()
else print(error); stop fi

Rw.rH Compiler Construction Summer Semester 2012 8.17

© Bottom-Up Parsing

m Compiler Construction Summer Semester 2012 8.18

Mlmmmm e
T
PRSP vy v
OO
S H e
w
S
[
o =
))7
< NSt o
3 =i
Q o %
o O C
(@] a %
- S ku s
+
= g Lk B
] B SETTT Fe
5= € S o Wwkw oY
B c B i 6
Q o e L .. %5
w S £EE uw € <«
a4 2 T 5o
Ll O © -1

8.19

Summer Semester 2012

Compiler Construction

e
T —
P T S g
—~
N~
—_—~ -
_ NS o
— 1o
ma N N e’ .nb
= a £
- U o U g
[w @ 5
c —
o I T o N
o g w2 g
o o s 5 ©
! — s TTT § o
A B o Whkew =~
(@) 9 o B - o v
s} o m (0] .. L * 7o)
- £ £ @ o=
o0 2 eE & T
L O © X 6 o

8.20

Summer Semester 2012

Compiler Construction

Bottom-Up Parsing |l

Approach:

O Given G € CFGy, construct a nondeterministic bottom-up parsing
automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: >
pushdown alphabet: X
output alphabet: [p] (where p := |P|)
state set: omitted
transitions:

shift: shifting input symbols onto the pushdown

reduce: replacing the right-hand side of a production by its
left-hand side (= inverse expansion steps)

©

¢ € ¢ ¢

© Remove nondeterminism by allowing lookahead on the input:
G € LR(k) iff L(G) recognizable by deterministic bottom-up parsing
automaton with lookahead of k symbols

mH Compiler Construction Summer Semester 2012 8.21

© Nondeterministic Bottom-Up Parsing

m Compiler Construction Summer Semester 2012 8.22

Nondeterministic Bottom-Up Automaton |

Definition 8.11 (Nondeterministic bottom-up parsing automaton)

Let G = (N,X,P,S) € CFGyx. The nondeterministic bottom-up parsing
automaton of G, NBA(G), is defined by the following components.

@ Input alphabet: ¥
@ Pushdown alphabet: X
@ Output alphabet: [p]
o Configurations: * x X* x [p]* (top of pushdown to the right)
@ Transitions for w € *, o € X*, and z € [p]*:
shifting steps: (aw,a,z) F (w,aa,z) ifa€ X
reduction steps: (w,af,z) - (w,aA,zi)if i =A—
@ Initial configuration for w € X*: (w,¢,¢)

@ Final configurations: {e} x {S} x [p]*

mH Compiler Construction Summer Semester 2012 8.23

Nondeterministic Bottom-Up Automaton Il

Example 8.12

Grammar for
arithmetic expressions
(cf. Example 8.10):
Gag: E — E+T | T
T — T*xF | F
F— (E)|a|b (5,

Bottom-up parsing of (a) *b:

((@)*b, e €)
F(a)b, (e)
F(J)*b, (a ,¢)
F()*b, (F ,6)
F()*b, (T , 64)
F()*b, (E , 642)
F(*b, (E), 642)
F(*b, F ,6425)
F(*b, T ,64254)
(b, Tx , 64254)
F(e T*b, 64254)
F(e, T*F, 642547)
F(e, T 6425473)
F(& E ,64254732)

Compiler Construction Summer Semester 2012

	Repetition: LL(1) Parsing
	Transformation to LL(1)
	The Complexity of LL(1) Parsing
	Recursive-Descent Parsing
	Bottom-Up Parsing
	Nondeterministic Bottom-Up Parsing

