

Compiler Construction

Lecture 9: Syntax Analysis V

($LR(k)$ Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/cc12/>

Summer Semester 2012

- 1 Repetition: Nondeterministic Bottom-Up Parsing
- 2 Nondeterministic Bottom-Up Parsing (cont.)
- 3 $LR(k)$ Grammars
- 4 $LR(0)$ Grammars
- 5 Examples of $LR(0)$ Conflicts

Approach:

- ① Given $G \in CFG_{\Sigma}$, construct a **nondeterministic bottom-up parsing automaton** (NBA) which accepts $L(G)$ and which additionally computes corresponding (reversed) rightmost analyses
 - input alphabet: Σ
 - pushdown alphabet: X
 - output alphabet: $[p]$ (where $p := |P|$)
 - state set: omitted
 - transitions:
 - shift: shifting input symbols onto the pushdown
 - reduce: replacing the right-hand side of a production by its left-hand side (= inverse expansion steps)
- ② Remove nondeterminism by allowing **lookahead** on the input:
 $G \in LR(k)$ iff $L(G)$ recognizable by deterministic bottom-up parsing automaton with lookahead of k symbols

Definition (Nondeterministic bottom-up parsing automaton)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$. The **nondeterministic bottom-up parsing automaton** of G , $NBA(G)$, is defined by the following components.

- **Input alphabet:** Σ
- **Pushdown alphabet:** X
- **Output alphabet:** $[p]$
- **Configurations:** $\Sigma^* \times X^* \times [p]^*$ (top of pushdown to the right)
- **Transitions** for $w \in \Sigma^*$, $\alpha \in X^*$, and $z \in [p]^*$:
shifting steps: $(aw, \alpha, z) \vdash (w, \alpha a, z)$ if $a \in \Sigma$
reduction steps: $(w, \alpha\beta, z) \vdash (w, \alpha A, zi)$ if $\pi_i = A \rightarrow \beta$
- **Initial configuration** for $w \in \Sigma^*$: $(w, \varepsilon, \varepsilon)$
- **Final configurations:** $\{\varepsilon\} \times \{S\} \times [p]^*$

- 1 Repetition: Nondeterministic Bottom-Up Parsing
- 2 Nondeterministic Bottom-Up Parsing (cont.)
- 3 $LR(k)$ Grammars
- 4 $LR(0)$ Grammars
- 5 Examples of $LR(0)$ Conflicts

Theorem 9.1 (Correctness of NBA(G))

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ and NBA(G) as before. Then, for every $w \in \Sigma^*$ and $z \in [p]^*$,

$(w, \varepsilon, \varepsilon) \vdash^* (\varepsilon, S, z)$ iff \overleftarrow{z} is a rightmost analysis of w

Proof.

similar to the top-down case (Theorem 6.1)

Nondeterminism in NBA(G)

Observation: NBA(G) is generally nondeterministic

- Shift or reduce? Example:

$$(bw, \alpha a, z) \vdash \begin{cases} (w, \alpha ab, z) \\ (bw, \alpha A, zi) \end{cases} \text{ if } \pi_i = A \rightarrow a$$

- If reduce: which “handle” β ? Example:

$$(w, \alpha ab, z) \vdash \begin{cases} (w, \alpha A, zi) \\ (w, \alpha aB, zj) \end{cases} \text{ if } \pi_i = A \rightarrow ab \text{ and } \pi_j = B \rightarrow b$$

- If reduce β : which left-hand side A ? Example:

$$(w, \alpha a, z) \vdash \begin{cases} (w, \alpha A, zi) \\ (w, \alpha B, zj) \end{cases} \text{ if } \pi_i = A \rightarrow a \text{ and } \pi_j = B \rightarrow a$$

- When to terminate parsing? Example:

$$\underbrace{(\varepsilon, S, z)}_{\text{final}} \vdash (\varepsilon, A, zi) \text{ if } \pi_i = A \rightarrow S$$

General assumption to avoid nondeterminism of last type:
every grammar is start separated

Definition 9.2 (Start separation)

A grammar $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ is called **start separated** if S only occurs in productions of the form $S \rightarrow A$ where $A \neq S$.

Remarks:

- Start separation always possible by adding $S' \rightarrow S$ with **new start symbol S'**
- From now on consider only **reduced** grammars of this form
($\pi_0 := S' \rightarrow S$)

Start separation removes last form of nondeterminism ("When to terminate parsing?"):

Lemma 9.3

If $G \in CFG_{\Sigma}$ is start separated, then no successor of a final configuration (ε, S', z) in $NBA(G)$ is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Proof.

- To (ε, S', z) , only reductions by ε -productions can be applied:
$$(\varepsilon, S', z) \vdash (\varepsilon, S'A, zi) \quad \text{if } \pi_i = A \rightarrow \varepsilon$$
- Thereafter, only reductions by productions of the form $A_0 \rightarrow A_1 \dots A_n$ ($n \geq 0$) can be applied
- Every resulting configuration is of the (non-final) form

$$(\varepsilon, S'B_1 \dots B_k, z) \quad \text{where } k \geq 1$$

□

- 1 Repetition: Nondeterministic Bottom-Up Parsing
- 2 Nondeterministic Bottom-Up Parsing (cont.)
- 3 $LR(k)$ Grammars
- 4 $LR(0)$ Grammars
- 5 Examples of $LR(0)$ Conflicts

Goal: resolve remaining nondeterminism of $\text{NBA}(G)$ by supporting lookahead of $k \in \mathbb{N}$ symbols on the input

$\implies LR(k)$: reading of input from left to right with k -lookahead, computing a rightmost analysis

Definition 9.4 ($LR(k)$ grammar)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated and $k \in \mathbb{N}$. Then G has the $LR(k)$ property (notation: $G \in LR(k)$) if for all rightmost derivations of the form

$$S \left\{ \begin{array}{l} \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta w \\ \Rightarrow_r^* \gamma Bx \Rightarrow_r \alpha \beta y \end{array} \right.$$

such that $\text{first}_k(w) = \text{first}_k(y)$, it follows that $\alpha = \gamma$, $A = B$, and $x = y$.

Remarks:

- If $G \in LR(k)$, then the reduction of $\alpha\beta w$ to αAw is already determined by $\text{first}_k(w)$.
- Therefore $\text{NBA}(G)$ in configuration $(w, \alpha\beta, z)$ can decide to reduce and how to reduce.
- Computation of $\text{NBA}(G)$ for $S \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha\beta w$:
$$(w'w, \varepsilon, \varepsilon) \vdash^* (w, \alpha\beta, z) \xrightarrow{\text{red } i} (w, \alpha A, zi) \vdash \dots$$

where $\pi_i = A \rightarrow \beta$

- Computation of $\text{NBA}(G)$ for $S \Rightarrow_r^* \gamma Bx \Rightarrow_r \alpha\beta y$:
 - with direct reduction ($y = x$, $\alpha\beta = \gamma\delta$, $\pi_j = B \rightarrow \delta$):
$$(y'y, \varepsilon, \varepsilon) \vdash^* (y, \alpha\beta, z') = (x, \gamma\delta, z') \xrightarrow{\text{red } j} (x, \gamma B, z'j) \vdash \dots$$
 - with previous shifts ($y = x'x$, $\alpha\beta x' = \gamma\delta$, $\pi_j = B \rightarrow \delta$):
$$\begin{aligned} (y'y, \varepsilon, \varepsilon) &\vdash^* (y, \alpha\beta, z') = (x'x, \alpha\beta, z') \\ &\xrightarrow{\text{shift}^*} (x, \alpha\beta x', z') = (x, \gamma\delta, z') \\ &\xrightarrow{\text{red } j} (x, \gamma B, z'j) \vdash \dots \end{aligned}$$

- 1 Repetition: Nondeterministic Bottom-Up Parsing
- 2 Nondeterministic Bottom-Up Parsing (cont.)
- 3 $LR(k)$ Grammars
- 4 $LR(0)$ Grammars
- 5 Examples of $LR(0)$ Conflicts

The case $k = 0$ is relevant (in contrast to $LL(0)$): here the decision is just based on the contents of the pushdown, **without any lookahead**.

Corollary 9.5 ($LR(0)$ grammar)

$G \in CFG_{\Sigma}$ has the **$LR(0)$ property** if for all rightmost derivations of the form

$$S \left\{ \begin{array}{l} \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta w \\ \Rightarrow_r^* \gamma Bx \Rightarrow_r \alpha \beta y \end{array} \right.$$

it follows that $\alpha = \gamma$, $A = B$, and $x = y$.

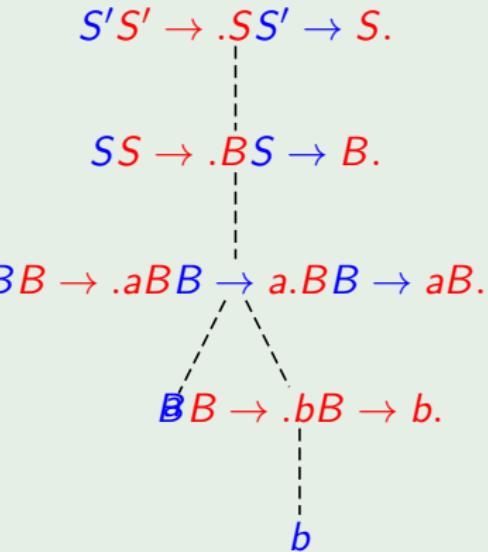
Goal: derive a **finite information** from the pushdown which suffices to resolve the nondeterminism (similar to abstraction of right context in LL parsing by **fo-sets**)

Example 9.6

$$\begin{array}{ll}
 G : & S' \rightarrow S \quad (1) \\
 & S \rightarrow B \mid C \quad (2, 3) \\
 & B \rightarrow aB \mid b \quad (4, 5) \\
 & C \rightarrow aC \mid c \quad (6, 7)
 \end{array}$$

NBA(G):

- $(ab, \varepsilon, \varepsilon)$
- $\vdash (b, a, \varepsilon)$
- $\vdash (\varepsilon, ab, \varepsilon)$
- $\vdash (\varepsilon, aB, 5)$
- $\vdash (\varepsilon, B, 54)$
- $\vdash (\varepsilon, S, 542)$
- $\vdash (\varepsilon, S', 5421)$



Definition 9.7 (LR(0) items and sets)

Let $G = \langle N, \Sigma, P, S \rangle \in \text{CFG}_\Sigma$ be start separated by $S' \rightarrow S$ and $S' \Rightarrow_r^* \alpha A w \Rightarrow_r \alpha \beta_1 \beta_2 w$ (i.e., $A \rightarrow \beta_1 \beta_2 \in P$).

- $[A \rightarrow \beta_1 \cdot \beta_2]$ is called an **LR(0) item** for $\alpha \beta_1$.
- Given $\gamma \in X^*$, $LR(0)(\gamma)$ denotes the set of all **LR(0) items** for γ , called the **LR(0) set** (or: **LR(0) information**) of γ .
- $LR(0)(G) := \{LR(0)(\gamma) \mid \gamma \in X^*\}$.

Corollary 9.8

- 1 For every $\gamma \in X^*$, $LR(0)(\gamma)$ is finite.
- 2 $LR(0)(G)$ is finite.
- 3 The item $[A \rightarrow \beta \cdot] \in LR(0)(\gamma)$ indicates the possible **reduction** $(w, \alpha \beta, z) \vdash (w, \alpha A, z i)$ where $\pi_i = A \rightarrow \beta$ and $\gamma = \alpha \beta$.
- 4 The item $[A \rightarrow \beta_1 \cdot Y \beta_2] \in LR(0)(\gamma)$ indicates an incomplete handle β_1 (to be completed by **shift** operations or ε -reductions).

LR(0) Conflicts

Definition 9.9 (LR(0) conflicts)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ and $I \in LR(0)(G)$.

- I has a **shift/reduce conflict** if there exist $A \rightarrow \alpha_1 a \alpha_2, B \rightarrow \beta \in P$ such that

$$[A \rightarrow \alpha_1 \cdot a \alpha_2], [B \rightarrow \beta \cdot] \in I.$$

- I has a **reduce/reduce conflict** if there exist $A \rightarrow \alpha, B \rightarrow \beta \in P$ with $A \neq B$ or $\alpha \neq \beta$ such that

$$[A \rightarrow \alpha \cdot], [B \rightarrow \beta \cdot] \in I.$$

Lemma 9.10

$G \in LR(0)$ iff no $I \in LR(0)(G)$ contains conflicting items.

Proof.

omitted

Theorem 9.11 (Computing $LR(0)$ sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_\Sigma$ be start separated by $S' \rightarrow S$ and reduced.

① $LR(0)(\varepsilon)$ is the least set such that

- $[S' \rightarrow \cdot S] \in LR(0)(\varepsilon)$ and
- if $[A \rightarrow \cdot B\gamma] \in LR(0)(\varepsilon)$ and $B \rightarrow \beta \in P$,
then $[B \rightarrow \cdot \beta] \in LR(0)(\varepsilon)$.

② $LR(0)(\alpha Y)$ ($\alpha \in X^*$, $Y \in X$) is the least set such that

- if $[A \rightarrow \gamma_1 \cdot Y\gamma_2] \in LR(0)(\alpha)$,
then $[A \rightarrow \gamma_1 Y \cdot \gamma_2] \in LR(0)(\alpha Y)$ and
- if $[A \rightarrow \gamma_1 \cdot B\gamma_2] \in LR(0)(\alpha Y)$ and $B \rightarrow \beta \in P$,
then $[B \rightarrow \cdot \beta] \in LR(0)(\alpha Y)$.

Computing $LR(0)$ Sets II

Example 9.12 (cf. Example 9.6)

$$\begin{array}{ll} G : & S' \rightarrow S \\ & S \rightarrow B \mid C \\ & B \rightarrow aB \mid b \\ & C \rightarrow aC \mid c \end{array} \quad [S' \rightarrow \cdot S] \in$$

$$\begin{array}{lll} LR(0)(\varepsilon) & [A \rightarrow \cdot B \gamma] \in LR(0)(\varepsilon), B \rightarrow \beta \in P & [A \rightarrow \gamma_1 \cdot Y \gamma_2] \in LR(0)(\alpha) \\ \implies & [B \rightarrow \cdot \beta] \in LR(0)(\varepsilon) & \implies [A \rightarrow \gamma_1 Y \cdot \gamma_2] \in LR(0)(\alpha Y) \end{array}$$

$$I_0 := LR(0)(\varepsilon) : \quad [S' \rightarrow \cdot S] \quad [S \rightarrow \cdot B] \quad [S \rightarrow \cdot C] \quad [B \rightarrow \cdot aB]$$
$$\quad [B \rightarrow \cdot b] \quad [C \rightarrow \cdot aC] \quad [C \rightarrow \cdot c]$$

$$I_1 := LR(0)(S) : \quad [S' \rightarrow S \cdot]$$

$$I_2 := LR(0)(B) : \quad [S \rightarrow B \cdot]$$

$$I_3 := LR(0)(C) : \quad [S \rightarrow C \cdot]$$

$$I_4 := LR(0)(a) : \quad [B \rightarrow a \cdot B] \quad [C \rightarrow a \cdot C] \quad [B \rightarrow \cdot aB] \quad [B \rightarrow \cdot b]$$
$$\quad [C \rightarrow \cdot aC] \quad [C \rightarrow \cdot c]$$

$$I_5 := LR(0)(b) : \quad [B \rightarrow b \cdot]$$

$$I_6 := LR(0)(c) : \quad [C \rightarrow c \cdot]$$

$$I_7 := LR(0)(aB) : \quad [B \rightarrow aB \cdot]$$

$$I_8 := LR(0)(aC) : \quad [C \rightarrow aC \cdot]$$

$$(LR(0)(aa) = LR(0)(a) = I_4, LR(0)(ab) = LR(0)(b) = I_5,$$

$$LR(0)(ac) = LR(0)(c) = I_6, I_0 \vdash LR(0)(\gamma) = \emptyset \text{ in all remaining cases})$$

- 1 Repetition: Nondeterministic Bottom-Up Parsing
- 2 Nondeterministic Bottom-Up Parsing (cont.)
- 3 $LR(k)$ Grammars
- 4 $LR(0)$ Grammars
- 5 Examples of $LR(0)$ Conflicts

Reduce/Reduce Conflicts

Example 9.13

$$\begin{aligned}G : \quad & S' \rightarrow S \\& S \rightarrow Aa \mid Bb \\& A \rightarrow a \\& B \rightarrow a\end{aligned}$$

$$\begin{aligned}LR(0)(\varepsilon) : \quad & [S' \rightarrow \cdot S] \quad [S \rightarrow \cdot Aa] \quad [S \rightarrow \cdot Bb] \quad [A \rightarrow \cdot a] \quad [B \rightarrow \cdot a] \\LR(0)(S) : \quad & [S' \rightarrow S \cdot] \\LR(0)(A) : \quad & [S \rightarrow A \cdot a] \\LR(0)(B) : \quad & [S \rightarrow B \cdot a] \\LR(0)(a) : \quad & [A \rightarrow a \cdot] \quad [B \rightarrow a \cdot] \\LR(0)(Aa) : \quad & [S \rightarrow Aa \cdot] \\LR(0)(Ba) : \quad & [S \rightarrow Ba \cdot]\end{aligned}$$

Note: G is unambiguous

Example 9.14

$$G : \begin{array}{l} S' \rightarrow S \\ S \rightarrow aS \mid a \end{array}$$

$$LR(0)(\varepsilon) : [S' \rightarrow \cdot S] \quad [S \rightarrow \cdot aS] \quad [S \rightarrow \cdot a]$$

$$LR(0)(S) : [S' \rightarrow S \cdot]$$

$$LR(0)(a) : [S \rightarrow a \cdot S] \quad [S \rightarrow \cdot aS] \quad [S \rightarrow \cdot a] \quad [S \rightarrow a \cdot]$$

$$LR(0)(aS) : [S \rightarrow aS \cdot]$$

Note: G is unambiguous