

Concurrency Theory WS 2013/2014

— Series 2 —

Hand in until November 7th before the exercise class.

Exercise 1 (CCS and LTS) (2+3 Points)

1) Consider following CCS process definitions induce infinite LTS or not? Justify your answers.

a) $B(a) = (B(a) \parallel B(a)) + a.\text{nil}$ b) $D(a, b) = a.(D(a, b) \parallel b.\text{nil})$

2) Show that it is undecidable whether a given CCS process definition induces a finite or an infinite LTS.
(*Hint*: a tape of a Turing machine can be modelled as two stack processes)

Exercise 2 (Modelling and verification) (3+2 Points)

One of the mutual exclusion algorithms is called Hyman's algorithm which was proposed in 1966. In Hyman's algorithm each P_i ($i \in \{1, 2\}$) executes the following algorithm (j denotes the index of other process, and the initial value of k is immaterial)

```
while true do
begin
  <noncritical section>;
   $b_i := \text{true}$ ;
  while  $k \neq i$  do begin
    while  $b_j$  do skip;
     $k := i$ ;
  end;
  <critical section>;
   $b_i := \text{false}$ ;
end;
```

- 1) Give a CCS definition to describe the behavior of Hyman's “mutual exclusion” algorithm.
- 2) Give HML formula to express the property of mutual exclusion that the algorithm should satisfy. Argue that whether the Hyman's algorithm satisfies this property.