

Concurrency Theory WS 2013/2014

— Series 3 —

Hand in until November 12th before the exercise class.

Exercise 1 (Complementation of HML Formulae) (2+2 Points)

(a) Suppose it holds for some arbitrary but fixed HML formula F that $\llbracket F^c \rrbracket = S \setminus \llbracket F \rrbracket$ for every LTS (S, Act, \rightarrow) .

Prove that $\llbracket ([\alpha]F)^c \rrbracket = S \setminus \llbracket [\alpha]F \rrbracket$!

(b) Prove that $(F^c)^c = F$ holds for every HMF formula F !

Exercise 2 (Modal Depth of HML Formulae) (1 Point)

Give a formal definition for the modal depth $\text{mdepth}(F) : HMF \rightarrow \mathbb{N}$ of an HML formulae F !

Exercise 3 (Semantics of HML Formulae) (1+1 Points)

Let $\text{Clock} = \text{tick.Clock}$.

(a) Show that Clock satisfies the HML formula $[\text{tick}]([\text{tick}]tt \wedge [\text{tock}]ff)$!
(b) Show that Clock satisfies the following HML formula F_n for every $n \in \mathbb{N}$:

$$F_n = \underbrace{\langle \text{tick} \rangle \cdots \langle \text{tick} \rangle}_{n \text{ times}} tt$$

Exercise 4 (Construction of HML Formulae) (1+1+1 Points)

Let $A = a.b.d.\text{nil} + a.c.d.\text{nil}$ and $B = a.(b.d.\text{nil} + c.d.\text{nil})$.

(a) Construct an HML formula which is satisfied by both A and B !
(b) Construct an HML formula which is satisfied by B but not by A !
(c) Construct an HML formula which is satisfied by A but not by B !