

Concurrency Theory WS 2013/2014

— Series 4 —

Hand in until November 19th before the exercise class.

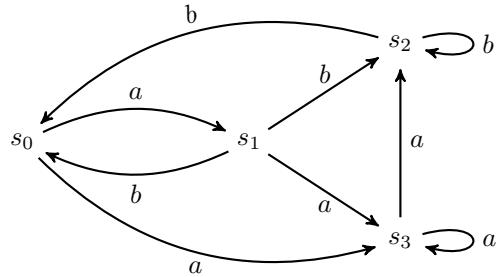
Exercise 1 (Semantics of HML with recursion) (5 Points)

Let (S, Act, \rightarrow) be an LTS, the the semantics of a HML formula $F \in HMF_X$ is defined in lecture 5 as a function

$$\llbracket F \rrbracket : 2^S \rightarrow 2^S.$$

1) Show that $\llbracket F \rrbracket$ is monotonic over the complete lattice $(2^S, \subseteq)$. How about if we allow negations in F ?

2) An LTS (S, Act, \rightarrow) is given as follows:



Consider following questions:

- compute $\llbracket \langle b \rangle [a]tt \wedge \langle b \rangle [b]X \rrbracket(\{s_0, s_2\})$ iteratively.
- compute the set of processes satisfying following property

$$X \stackrel{\text{min}}{=} \langle b \rangle \langle a \rangle tt \vee \langle b \rangle [b]X$$

- compute the sets of processes satisfying following equational systems

$$\begin{aligned} A &\stackrel{\text{max}}{=} [a]B \\ B &\stackrel{\text{max}}{=} \langle a \rangle C \wedge [b]B \\ C &\stackrel{\text{max}}{=} [b]B \end{aligned}$$

Exercise 2 (Strong bisimulation as fixed point) (5 Points)

Let (S, Act, \rightarrow) be an LTS. A binary relation \mathcal{R} over S is an element of set $2^{(S \times S)}$. Now we define the set $\mathcal{F}(\mathcal{R})$ as follows. A pair $(p, q) \in \mathcal{F}(\mathcal{R})$ for all $p, q \in S$ and for every $\alpha \in Act$ iff

1. $p \xrightarrow{\alpha} p'$ implies $q \xrightarrow{\alpha} q'$ for some q' such that $(p', q') \in \mathcal{R}$;
2. $q \xrightarrow{\alpha} q'$ implies $p \xrightarrow{\alpha} p'$ for some p' such that $(p', q') \in \mathcal{R}$.

1) Show that the function \mathcal{F} is monotonic over the complete lattice $(2^{(S \times S)}, \subseteq)$, and

$$\sim = \bigcup \{\mathcal{R} \in 2^{(S \times S)} \mid \mathcal{R} \subseteq \mathcal{F}(\mathcal{R})\}$$

is the largest fixed point of \mathcal{F} .

2) Compute \sim for following LTS (S, Act, \rightarrow) iteratively:

