

Concurrency Theory WS 2013/2014

— Series 6 —

Hand in until December 3rd before the exercise class.

Exercise 1 (Value passing CCS) (3 Points)

- 1) Define a buffer which can store two integers in value passing CCS.
- 2) Assume you can define components based on this buffer with your own functionalities (e.g., value comparison, communication with other components). Using your own components to construct such a system using value passing CCS, which can take 3 integers each time through its input port and returns the sorted results through its output port.

Exercise 2 (Redesign the print system in π -calculus) (2 Points)

In the Example 9.9, we have introduced a print system modelled in π -calculus. In this exercise, we want to redesign the system in which client C will ask S to “tunnel” a specific channel for him to the printer P and then send the data via this channel rather than S just pass its channel a to C . Please model the system in π -calculus and convince yourself it is correct.

Exercise 3 (Structural congruence in π -calculus) (2 Points)

Show that

- 1) if $x \notin \text{fn}(Q)$ then $\text{new } x \ Q \equiv Q$;
- 2) if $Q_1 \equiv Q_2$ then Q_1 and Q_2 have the same free names.

Exercise 4 (Polyadic π -calculus) (3 Points)

We wish to send messages consisting of more than one name. So we want to allow the forms

$$x(y_1 \dots y_n).P \text{ and } \bar{x}\langle z_1 \dots z_n \rangle.Q$$

(where all the y_i are distinct) for any $n \geq 0$. For a correct encoding, we have to ensure that there cannot be an inference on the channel along which a composite message is sent. To send a message $\langle z_1 \dots z_n \rangle$, we first send a *fresh* name w along x , then send the components z_i one by one along w . So we translate the multiple action prefixes as follows:

$$\begin{aligned} x(y_1 \dots y_n).P &\mapsto x(w).w(y_1) \dots w(y_n).P \\ \bar{x}\langle z_1 \dots z_n \rangle.Q &\mapsto \text{new } w \ (\bar{x}\langle w \rangle \bar{w}\langle z_1 \rangle \dots \bar{w}\langle z_n \rangle.Q). \end{aligned} \quad \text{where } w \notin \text{fn}(Q)$$

Apply this encoding to

$$x(y_1 y_2).P \parallel \bar{x}\langle z_1 z_2 \rangle.Q \parallel \bar{x}\langle z'_1 z'_2 \rangle.Q' .$$

Do at least two reduction sequences to convince yourself that only the right replacements occur!