
2 Concurrency Theory WS 2013/2014
Chair for Software Modeling and Verification
Rheinisch-Westfälische Technische Hochschule Aachen

Prof. Dr. Ir. Joost-Pieter Katoen
apl. Prof. Dr. Thomas Noll

B. Kaminski, H. Wu, S. Chakraborty

Concurrency Theory WS 2013/2014

— Series 6 —
Hand in until December 3rd before the exercise class.

Exercise 1 (Value passing CCS) (3 Points)

1) Define a buffer which can store two integers in value passing CCS.

2) Assume you can define components based on this buffer with your own functionalities (e.g., value
comparison, communication with other components). Using your own components to construct such a
system using value passing CCS, which can take 3 integers each time through its input port and returns
the sorted results through its output port.

Exercise 2 (Redesign the print system in π-calculus) (2 Points)

In the Example 9.9, we have introduced a print system modelled in π-calculus . In this exercise, we want
to redesign the system in which client C will ask S to “tunnel” a specific channel for him to the printer
P and then send the data via this channel rather than S just pass its channel a to C. Please model the
system in π-calculus and convince yourself it is correct.

Exercise 3 (Structural congruence in π-calculus) (2 Points)

Show that

1) if x /∈ fn(Q) then new x Q ≡ Q;

2) if Q1 ≡ Q2 then Q1 and Q2 have the same free names.

Exercise 4 (Polyadic π-calculus) (3 Points)

We wish to send messages consisting of more than one name. So we want to allow the forms

x(y1 . . . yn).P and x〈z1 . . . zn〉.Q

(where all the yi are distinct) for any n ≥ 0. For a correct encoding, we have to ensure that there cannot
be an inference on the channel along which a composite message is sent. To send a message 〈z1 . . . zn〉,
we first send a fresh name w along x, then send the components zi one by one along w. So we translate
the multiple action prefixes as follows:

x(y1 . . . yn).P 7−→ x(w).w(y1). · · · .w(yn).P

x〈z1 . . . zn〉.Q 7−→ new w (x〈w〉.w〈z1〉. · · · .w〈zn〉.Q). where w /∈ fn(Q)

Apply this encoding to
x(y1y2).P ‖ x〈z1z2〉.Q ‖ x〈z′1z′2〉.Q′ .

Do at least two reduction sequences to convince yourself that only the right replacements occur!


