

Concurrency Theory WS 2013/2014

— Series 7 —

Hand in until December 10th before the exercise class.

Exercise 1 (Completed–Trace Equivalence) (1+1 Points)

Let $\text{CT}(P)$ be the set of completed traces of a process P . We say that two processes P and Q are completed–trace equivalent, denoted $P \equiv_{\text{CT}} Q$, if $\text{CT}(P) = \text{CT}(Q)$.

- (a) Provide a (preferably small) example for two processes P and Q which are trace equivalent but not completed–trace equivalent!
- (b) Prove or disprove: \equiv_{CT} is a CCS congruence.

Exercise 2 (Ready– and Failure–Trace Equivalence) (1+1+1 Points)

Let $\text{RT}(P)$ be the set of ready traces of a process P and let $\text{FT}(P)$ be the set of its failure traces. We say that two processes P and Q are ready–trace equivalent, denoted $P \equiv_{\text{RT}} Q$, if $\text{RT}(P) = \text{RT}(Q)$ and analogously we say that two processes P and Q are failure–trace equivalent, denoted $P \equiv_{\text{FT}} Q$, if $\text{FT}(P) = \text{FT}(Q)$.

- (a) Consider the following process definition:

$$\begin{aligned} P &= b.P + b.Q \\ Q &= a.P \end{aligned}$$

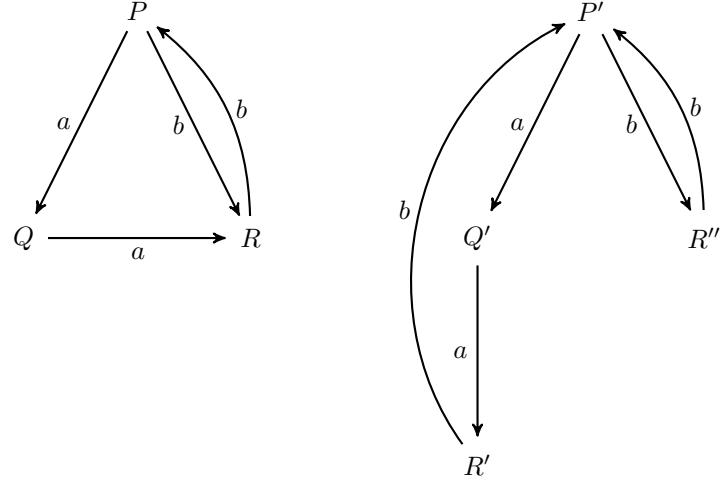
Describe $\text{RT}(P)$ and $\text{FT}(P)$ as a regular expression over the alphabet $\{a, b, A_\emptyset, A_{\{a\}}, A_{\{b\}}, A_{\{a, b\}}\}$, where A_M represents the set $M \subseteq \{a, b\}$!

- (b) Provide a (preferably small) example for two processes P and Q which are trace equivalent but not ready–trace equivalent!
- (c) Provide a (preferably small) example for two processes P and Q which are trace equivalent but not failure–trace equivalent!

Exercise 3 (Strong Bisimulation)

(1+1+1 Points)

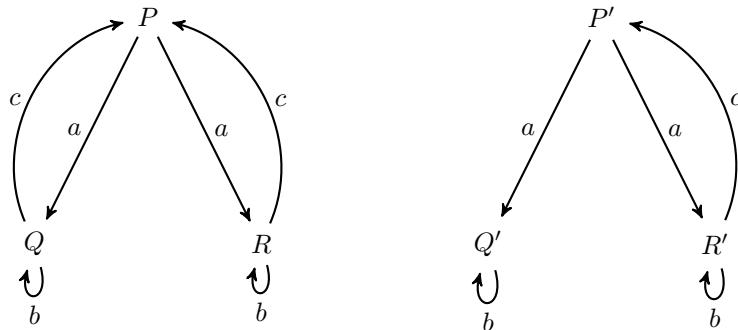
Consider the following LTS:



- (a) Give the smallest strong bisimulation of the above LTS!
- (b) Give the smallest strong bisimulation \mathcal{R} , such that at least $P \mathcal{R} P'$!
- (c) Prove or disprove: \mathcal{R} is an equivalence relation.

Exercise 4 (Trace Equivalence and Strong Bisimulation) (1+1 Points)

Consider the following LTS:



- (a) Show that $P' \equiv_{\text{TR}} P$, where \equiv_{TR} denotes trace equivalence!
- (b) Give $\sim!$ Does $P \sim P'$ hold?