

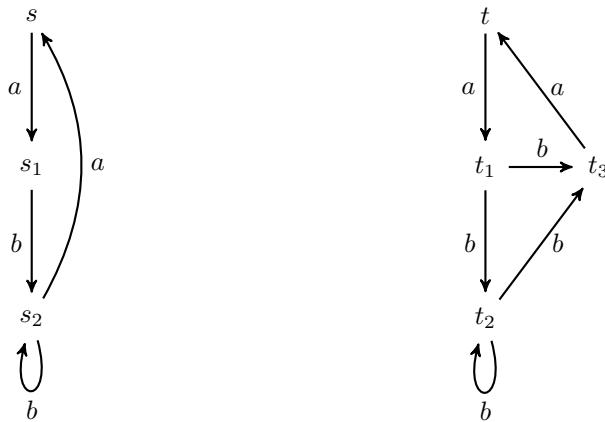
Concurrency Theory WS 2013/2014

— Series 8 —

Hand in until December 17rd before the exercise class.

Exercise 1 (Strong bisimilarity as a game) (2 Points)

Decide whether $s \sim t$ in the following LTS. Either you give a universal winning strategy for the attacker (i.e., $s \not\sim t$) or for the defender (i.e., $s \sim t$). If $s \sim t$, you should also define a strong bisimulation relating the pair of processes.



Exercise 2 (Simulation) (2 Points)

A binary relation $\mathcal{R} \subseteq \text{Prc} \times \text{Prc}$ is a *simulation* iff whenever for each $(P, Q) \in \mathcal{R}$, and $\alpha \in \text{Act}$:

if $P \xrightarrow{\alpha} P'$ then there is a transition $Q \xrightarrow{\alpha} Q'$ such that $(P', Q') \in \mathcal{R}$.

Two processes Q and P are in *simulation preorder* iff there is a simulation that relates them.

Modify the rules of the strong bisimulation game introduced in the lecture in such a way that it characterizes the simulation preorder.

Exercise 3 (Approximation algorithm for strong bisimilarity) (2 Points)

Using the iterative algorithm to compute the largest strong bisimulation over the LTS described by following equations in CCS:

$$\begin{aligned}
 P_1 &= a.P_2, \\
 P_2 &= a.P_1, \\
 P_3 &= a.P_2 + a.P_4, \\
 P_4 &= a.P_3 + a.P_5, \\
 P_5 &= \text{nil}.
 \end{aligned}$$

Exercise 4

(3 Points)

For each $i \geq 0$, the binary relation \sim_i over Prc is defined as follows.

- for any $P, Q \in \text{Prc}$, $P \sim_0 Q$ hold always;
- $P \sim_{i+1} Q$ holds iff, for each $\alpha \in \text{Act}$:
 - if $P \xrightarrow{\alpha} P'$ then there is a transition $Q \xrightarrow{\alpha} Q'$ such that $P' \sim_i Q'$, and
 - if $Q \xrightarrow{\alpha} Q'$ then there is a transition $P \xrightarrow{\alpha} P'$ such that $P' \sim_i Q'$.

Show that, for each $i \geq 0$,

- 1) the relation \sim_i is an equivalence relation.
- 2) $\sim_i = \mathcal{F}^i(\text{Prc} \times \text{Prc})$ (you may find the definition of \mathcal{F} in the lecture).