Concurrency Theory

Lecture 10: The w-Calculus

Joost-Pieter Katoen Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY
{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/

@ Recap: Modelling Mobile Concurrent Systems

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 10.2

Mobile Clients |

Example (Hand-over protocol)

Scenario:
@ client devices moving around (phones, PCs, sensors, ...)
@ each radio-connected to some base station
@ stations wired to central control
°

some event (e.g., signal fading) may cause a client to be switched to
another station

@ essential: specification of switching process (“hand-over protocol”)

Simplest case: two stations, one client

Client
switchy
talkq
Station Idle
gain,
losey lose,
gain;
Control

RWNTH Concurrency Theory Winter Semester 2013/14 10.3

Mobile Clients I

Example (Hand-over protocol; continued)

@ Every station is in one of two modes: Station (active; four links) or Idle
(inactive; two links)

@ Client can talk via Station, and at any time Control can request
Station/Idle to lose/gain Client:

Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).ldle(gain, lose)
Idle(gain, lose) = gain(t,s).Station(t, s, gain, lose)

@ If Control decides Station to lose Client, it issues a new pair of channels to
be shared by Client and Idle:

Control; = lose; (talky, switchy).gain,(talk,, switchy).Control,
Controly = losey(talky, switchy).gain, (talky, switchy).Control,

@ Client can either talk or, if requested, switch to a new pair of channels:

Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)

RWNTH Concurrency Theory Winter Semester 2013/14 10.4

Mobile Clients lll

Example (Hand-over protocol; continued)

@ As usual, the whole system is a restricted composition of processes:
System; = new L (Clienty || Station; || Idle, || Controly)
where)))
Client; := Client(talk;, switch;)
Station; := Station(talk;, switch;, gain;, lose;)

Idle; := Idle(gain;, lose;)
L := (talk;, switch;, gain;, lose; | i € {1,2})

@ After having formally defined the 7-Calculus we will see that this protocol is
correct, i.e., that the hand-over does indeed occur:

System; —* System,
where

System, = new L (Client, || Idle; || Station; || Control,)

RWNTH Concurrency Theory Winter Semester 2013/14 10.5

© Syntax of the Monadic 7-Calculus

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 10.6

Introduction

Literature on 7-Calculus:

@ Initial research paper:
R. Milner, J. Parrow, D. Walker: A calculus of mobile processes,
Part 1/11. Journal of Inf. & Comp., 100:1-77, 1992

@ Overview article:
J. Parrow: An introduction to the m-Calculus. Chapter 8 of
Handbook of Process Algebra, 479-543, Elsevier, 2001

@ Textbook:
R. Milner: Communicating and mobile systems: the m-Calculus.
Cambridge University Press, 1999

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 10.7

Introduction

Literature on 7-Calculus:

@ Initial research paper:
R. Milner, J. Parrow, D. Walker: A calculus of mobile processes,
Part 1/11. Journal of Inf. & Comp., 100:1-77, 1992

@ Overview article:
J. Parrow: An introduction to the m-Calculus. Chapter 8 of
Handbook of Process Algebra, 479-543, Elsevier, 2001

@ Textbook:
R. Milner: Communicating and mobile systems: the m-Calculus.
Cambridge University Press, 1999

To simplify the presentation (as in Milner's book):

@ Monadic 7-Calculus with replication
(message = one name, no process identifiers)

@ Extension to polyadic calculus
© Extension by process equations
nerAACHEN Concurrency Theory Winter Semester 2013/14 10.7

Syntax of the Monadic 7-Calculus

Definition 10.1 (Syntax of monadic w-Calculus)

o Let A={a,b,c...,x,y,z,...} be a set of names.

RWNTH HE Concurrency Theory Winter Semester 2013/14 10.8

Syntax of the Monadic 7-Calculus

Definition 10.1 (Syntax of monadic w-Calculus)

o Let A={a,b,c...,x,y,z,...} be a set of names.

@ The set of action prefixes is given by

= x(y) (receive y along x)
| X(y) (send y along x)
| 7 (unobservable action)

RWNTH HE Concurrency Theory Winter Semester 2013/14 10.8

Syntax of the Monadic 7-Calculus

Definition 10.1 (Syntax of monadic w-Calculus)

o Let A={a,b,c...,x,y,z,...} be a set of names.

@ The set of action prefixes is given by

= x(y) (receive y along x)
| X(y) (send y along x)
| 7 (unobservable action)

@ The set Prc”™ of m-Calculus process expressions is defined by the
following syntax:

P =3 mi-Pi (guarded sum)
| Pi P2 (parallel composition)
| newxP (restriction)
| 1P (replication)

(where [finite index set, x € A)

RWNTH HE Concurrency Theory Winter Semester 2013/14 10.8

Syntax of the Monadic 7-Calculus

Definition 10.1 (Syntax of monadic w-Calculus)

o Let A={a,b,c...,x,y,z,...} be a set of names.

@ The set of action prefixes is given by

= x(y) (receive y along x)
| x(y) (send y along x)
| 7 (unobservable action)

@ The set Prc”™ of m-Calculus process expressions is defined by the
following syntax:

P =3 mi-Pi (guarded sum)
| Pi P2 (parallel composition)
| newxP (restriction)
| 1P (replication)
(where [finite index set, x € A)
Conventions: nil := . 7m;.P;, newxy, ..., x, P = newxi (...newx, P)

RWNTH Concurrency Theory Winter Semester 2013/14 10.8

Free and Bound Names

Definition 10.2 (Free and bound names)

@ The input prefix x(y) and the restriction new y P both bind y.

nerAACHEN Concurrency Theory Winter Semester 2013/14 10.9

Free and Bound Names

Definition 10.2 (Free and bound names)

@ The input prefix x(y) and the restriction new y P both bind y.

@ Every other occurrence of a name (i.e., x in x(y) and x,y in X(y)) is
free.

Concurrency Theory Winter Semester 2013/14 10.9

Free and Bound Names

Definition 10.2 (Free and bound names)

@ The input prefix x(y) and the restriction new y P both bind y.

@ Every other occurrence of a name (i.e., x in x(y) and x,y in X(y)) is
free.

@ The set of bound/free names of a process expressions P € Prc” is
denoted by bn(P)/fn(P), resp.

Concurrency Theory Winter Semester 2013/14 10.9

Free and Bound Names

Definition 10.2 (Free and bound names)

@ The input prefix x(y) and the restriction new y P both bind y.

@ Every other occurrence of a name (i.e., x in x(y) and x,y in X(y)) is
free.

@ The set of bound/free names of a process expressions P € Prc” is
denoted by bn(P)/fn(P), resp.

Remark: bn(P) N fn(P) # () is possible

Concurrency Theory Winter Semester 2013/14 10.9

Free and Bound Names

Definition 10.2 (Free and bound names)

@ The input prefix x(y) and the restriction new y P both bind y.

@ Every other occurrence of a name (i.e., x in x(y) and x,y in X(y)) is
free.

@ The set of bound/free names of a process expressions P € Prc” is
denoted by bn(P)/fn(P), resp.

Remark: bn(P) N fn(P) # () is possible

Example 10.3

P = new x (x(y).nil || Z(y).nil)
—> bn(P) = {x,y},n(P) ={y,z}

RWTHAACHE Concurrency Theory Winter Semester 2013/14 10.9

© Semantics of the Monadic 7-Calculus

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 10.10

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 10.11

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 10.4 (Structural congruence)

P, Q € Prc™ are structurally congruent, written P = @, if one can be
transformed into the other by applying the following operations and
equations:

@ renaming of bound names (a-conversion)

v

RWNTH Concurrency Theory Winter Semester 2013/14 10.11

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 10.4 (Structural congruence)

P, Q € Prc™ are structurally congruent, written P = @, if one can be
transformed into the other by applying the following operations and
equations:

@ renaming of bound names (a-conversion)
@ reordering of terms in a summation (commutativity of +)

v

RWNTH Concurrency Theory Winter Semester 2013/14 10.11

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 10.4 (Structural congruence)

P, Q € Prc™ are structurally congruent, written P = @, if one can be
transformed into the other by applying the following operations and
equations:

@ renaming of bound names (a-conversion)
@ reordering of terms in a summation (commutativity of +)

Q@ PIR=Q[P.PIQIR)=(PIQIR Pnil=P

(Abelian monoid laws for ||)

v

RWNTH Concurrency Theory Winter Semester 2013/14 10.11

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 10.4 (Structural congruence)

P, Q € Prc™ are structurally congruent, written P = @, if one can be
transformed into the other by applying the following operations and
equations:

@ renaming of bound names (a-conversion)
@ reordering of terms in a summation (commutativity of +)

Q@ PIR=Q[P.PIQIR)=(PIQIR Pnil=P

(Abelian monoid laws for ||)

© new xnil = nil, newx,y P =newy, x P,
P | newx Q = newx (P || Q) if x ¢ fn(P) (scope extension)

v

RWNTH Concurrency Theory Winter Semester 2013/14 10.11

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 10.4 (Structural congruence)

P, Q € Prc™ are structurally congruent, written P = @, if one can be
transformed into the other by applying the following operations and
equations:

@ renaming of bound names (a-conversion)

@ reordering of terms in a summation (commutativity of +)

Q@ PIR=Q[P.PIQIR)=(PIQIR Pnil=P
(Abelian monoid laws for ||)

© new xnil = nil, newx,y P =newy, x P,
P | newx Q = newx (P || Q) if x ¢ fn(P) (scope extension)

@ !P = P ||!'P (unfolding)

v

RWNTH Concurrency Theory Winter Semester 2013/14 10.11

A Standard Form

Theorem 10.5 (Standard form)

Every process expression is structurally congruent to a process of the
standard form

newxy, ..., Xk (P1 |- || Pm [|'Q1 | ---]'Qn)

where each P; is a non-empty sum, and each Q; is in standard form.

(If m = n=0: nil; if k = 0: restriction absent)

Concurrency Theory Winter Semester 2013/14 10.12

A Standard Form

Theorem 10.5 (Standard form)

Every process expression is structurally congruent to a process of the
standard form

newxy, ..., Xk (P1 |- || Pm [|'Q1 | ---]'Qn)
where each P; is a non-empty sum, and each Q; is in standard form.

(If m = n=0: nil; if k = 0: restriction absent)

by induction on the structure of R € Prc™ (on the board)

RWTHAACHE Concurrency Theory Winter Semester 2013/14 10.12

The Reaction Relation

Thanks to Theorem 10.5, only processes in standard form need to be
considered for defining the operational semantics:

Definition 10.6
The reaction relation — C Prc™ x Prc™ is generated by the rules:

(TP rQ—r
Reac
Ree))P+ R) | ((2).Q+ 5) — P/ [@
pP— P
(Par) -
PIQ@—PQ
(Res) P— P

new x P — new x P’

/
(Struct)ﬁ fP=Qand PP =Q
(P[z/y] replaces every free occurrence of y in P by z.
In (React), the pair (x(y),x(z)) is called a redex.)

V.

RWNTH Concurrency Theory Winter Semester 2013/14

10.13

Example: Printer Server

Example 10.7

@ Printer server (cf. Example 9.9):
b(a).S" || a(e).P" || b(c).e(d).C" — S’ || a(e).P’ || a(d).C’
—_—— —— —
S P C
S" |l a(e).P || a(d).C" — S || P'[d/e] || C’
(on the board)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 10.14

Example: Printer Server

Example 10.7

@ Printer server (cf. Example 9.9):
b(a).S" || a(e).P" || b(c).e(d).C" — S’ || a(e).P’ || a(d).C’
~—_—— —— Y— —
S P C
S" |l a(e).P || a(d).C" — S || P'[d/e] || C’
(on the board)
@ With scope extension (P || new x Q = newx (P || Q) if x ¢ fn(P)):

new b (new a (b(a).S" || a(e).P’) || b(c).c(d).C")
—s newa, b(S' || a(e).P' || a(d).C")

(on the board)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 10.14

	Recap: Modelling Mobile Concurrent Systems
	Syntax of the Monadic -Calculus
	Semantics of the Monadic -Calculus

