
Concurrency Theory
Lecture 10: The π-Calculus

Joost-Pieter Katoen Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/


Outline

1 Recap: Modelling Mobile Concurrent Systems

2 Syntax of the Monadic π-Calculus

3 Semantics of the Monadic π-Calculus

Concurrency Theory Winter Semester 2013/14 10.2



Mobile Clients I

Example (Hand-over protocol)

Scenario:

client devices moving around (phones, PCs, sensors, ...)

each radio-connected to some base station

stations wired to central control

some event (e.g., signal fading) may cause a client to be switched to
another station

essential: specification of switching process (“hand-over protocol”)

Simplest case: two stations, one client

Client

Station Idle

Control

talk1

switch1

gain1

lose1

gain2

lose2

Concurrency Theory Winter Semester 2013/14 10.3



Mobile Clients II

Example (Hand-over protocol; continued)

Every station is in one of two modes: Station (active; four links) or Idle
(inactive; two links)

Client can talk via Station, and at any time Control can request
Station/Idle to lose/gain Client:

Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch〈t, s〉.Idle(gain, lose)

Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)

If Control decides Station to lose Client, it issues a new pair of channels to
be shared by Client and Idle:

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

Client can either talk or, if requested, switch to a new pair of channels:

Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)

Concurrency Theory Winter Semester 2013/14 10.4



Mobile Clients III

Example (Hand-over protocol; continued)

As usual, the whole system is a restricted composition of processes:

System1 = new L (Client1 ‖ Station1 ‖ Idle2 ‖ Control1)

where
Client i := Client(talk i , switchi )

Stationi := Station(talk i , switchi , gaini , lose i )
Idle i := Idle(gaini , lose i )

L := (talk i , switchi , gaini , lose i | i ∈ {1, 2})

After having formally defined the π-Calculus we will see that this protocol is
correct, i.e., that the hand-over does indeed occur:

System1 −→∗ System2

where

System2 = new L (Client2 ‖ Idle1 ‖ Station2 ‖ Control2)

Concurrency Theory Winter Semester 2013/14 10.5



Outline

1 Recap: Modelling Mobile Concurrent Systems

2 Syntax of the Monadic π-Calculus

3 Semantics of the Monadic π-Calculus

Concurrency Theory Winter Semester 2013/14 10.6



Introduction

Literature on π-Calculus:

Initial research paper:
R. Milner, J. Parrow, D. Walker: A calculus of mobile processes,
Part I/II. Journal of Inf. & Comp., 100:1–77, 1992

Overview article:
J. Parrow: An introduction to the π-Calculus. Chapter 8 of
Handbook of Process Algebra, 479–543, Elsevier, 2001

Textbook:
R. Milner: Communicating and mobile systems: the π-Calculus.
Cambridge University Press, 1999

To simplify the presentation (as in Milner’s book):

1 Monadic π-Calculus with replication
(message = one name, no process identifiers)

2 Extension to polyadic calculus

3 Extension by process equations

Concurrency Theory Winter Semester 2013/14 10.7



Introduction

Literature on π-Calculus:

Initial research paper:
R. Milner, J. Parrow, D. Walker: A calculus of mobile processes,
Part I/II. Journal of Inf. & Comp., 100:1–77, 1992

Overview article:
J. Parrow: An introduction to the π-Calculus. Chapter 8 of
Handbook of Process Algebra, 479–543, Elsevier, 2001

Textbook:
R. Milner: Communicating and mobile systems: the π-Calculus.
Cambridge University Press, 1999

To simplify the presentation (as in Milner’s book):

1 Monadic π-Calculus with replication
(message = one name, no process identifiers)

2 Extension to polyadic calculus

3 Extension by process equations

Concurrency Theory Winter Semester 2013/14 10.7



Syntax of the Monadic π-Calculus

Definition 10.1 (Syntax of monadic π-Calculus)

Let A = {a, b, c . . . , x , y , z , . . .} be a set of names.

The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

The set Prcπ of π-Calculus process expressions is defined by the
following syntax:

P ::=
∑

i∈I πi .Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new x P (restriction)
| !P (replication)

(where I finite index set, x ∈ A)

Conventions: nil :=
∑

i∈∅ πi .Pi , new x1, . . . , xn P := new x1 (. . . new xn P)

Concurrency Theory Winter Semester 2013/14 10.8



Syntax of the Monadic π-Calculus

Definition 10.1 (Syntax of monadic π-Calculus)

Let A = {a, b, c . . . , x , y , z , . . .} be a set of names.

The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

The set Prcπ of π-Calculus process expressions is defined by the
following syntax:

P ::=
∑

i∈I πi .Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new x P (restriction)
| !P (replication)

(where I finite index set, x ∈ A)

Conventions: nil :=
∑

i∈∅ πi .Pi , new x1, . . . , xn P := new x1 (. . . new xn P)

Concurrency Theory Winter Semester 2013/14 10.8



Syntax of the Monadic π-Calculus

Definition 10.1 (Syntax of monadic π-Calculus)

Let A = {a, b, c . . . , x , y , z , . . .} be a set of names.

The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

The set Prcπ of π-Calculus process expressions is defined by the
following syntax:

P ::=
∑

i∈I πi .Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new x P (restriction)
| !P (replication)

(where I finite index set, x ∈ A)

Conventions: nil :=
∑

i∈∅ πi .Pi , new x1, . . . , xn P := new x1 (. . . new xn P)

Concurrency Theory Winter Semester 2013/14 10.8



Syntax of the Monadic π-Calculus

Definition 10.1 (Syntax of monadic π-Calculus)

Let A = {a, b, c . . . , x , y , z , . . .} be a set of names.

The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

The set Prcπ of π-Calculus process expressions is defined by the
following syntax:

P ::=
∑

i∈I πi .Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new x P (restriction)
| !P (replication)

(where I finite index set, x ∈ A)

Conventions: nil :=
∑

i∈∅ πi .Pi , new x1, . . . , xn P := new x1 (. . . new xn P)

Concurrency Theory Winter Semester 2013/14 10.8



Free and Bound Names

Definition 10.2 (Free and bound names)

The input prefix x(y) and the restriction new y P both bind y .

Every other occurrence of a name (i.e., x in x(y) and x , y in x〈y〉) is
free.

The set of bound/free names of a process expressions P ∈ Prcπ is
denoted by bn(P)/fn(P), resp.

Remark: bn(P) ∩ fn(P) 6= ∅ is possible

Example 10.3

P = new x (x(y).nil ‖ z〈y〉.nil)
=⇒ bn(P) = {x , y}, fn(P) = {y , z}

Concurrency Theory Winter Semester 2013/14 10.9



Free and Bound Names

Definition 10.2 (Free and bound names)

The input prefix x(y) and the restriction new y P both bind y .

Every other occurrence of a name (i.e., x in x(y) and x , y in x〈y〉) is
free.

The set of bound/free names of a process expressions P ∈ Prcπ is
denoted by bn(P)/fn(P), resp.

Remark: bn(P) ∩ fn(P) 6= ∅ is possible

Example 10.3

P = new x (x(y).nil ‖ z〈y〉.nil)
=⇒ bn(P) = {x , y}, fn(P) = {y , z}

Concurrency Theory Winter Semester 2013/14 10.9



Free and Bound Names

Definition 10.2 (Free and bound names)

The input prefix x(y) and the restriction new y P both bind y .

Every other occurrence of a name (i.e., x in x(y) and x , y in x〈y〉) is
free.

The set of bound/free names of a process expressions P ∈ Prcπ is
denoted by bn(P)/fn(P), resp.

Remark: bn(P) ∩ fn(P) 6= ∅ is possible

Example 10.3

P = new x (x(y).nil ‖ z〈y〉.nil)
=⇒ bn(P) = {x , y}, fn(P) = {y , z}

Concurrency Theory Winter Semester 2013/14 10.9



Free and Bound Names

Definition 10.2 (Free and bound names)

The input prefix x(y) and the restriction new y P both bind y .

Every other occurrence of a name (i.e., x in x(y) and x , y in x〈y〉) is
free.

The set of bound/free names of a process expressions P ∈ Prcπ is
denoted by bn(P)/fn(P), resp.

Remark: bn(P) ∩ fn(P) 6= ∅ is possible

Example 10.3

P = new x (x(y).nil ‖ z〈y〉.nil)
=⇒ bn(P) = {x , y}, fn(P) = {y , z}

Concurrency Theory Winter Semester 2013/14 10.9



Free and Bound Names

Definition 10.2 (Free and bound names)

The input prefix x(y) and the restriction new y P both bind y .

Every other occurrence of a name (i.e., x in x(y) and x , y in x〈y〉) is
free.

The set of bound/free names of a process expressions P ∈ Prcπ is
denoted by bn(P)/fn(P), resp.

Remark: bn(P) ∩ fn(P) 6= ∅ is possible

Example 10.3

P = new x (x(y).nil ‖ z〈y〉.nil)
=⇒ bn(P) = {x , y}, fn(P) = {y , z}

Concurrency Theory Winter Semester 2013/14 10.9



Outline

1 Recap: Modelling Mobile Concurrent Systems

2 Syntax of the Monadic π-Calculus

3 Semantics of the Monadic π-Calculus

Concurrency Theory Winter Semester 2013/14 10.10



Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 10.4 (Structural congruence)

P,Q ∈ Prcπ are structurally congruent, written P ≡ Q, if one can be
transformed into the other by applying the following operations and
equations:

1 renaming of bound names (α-conversion)

2 reordering of terms in a summation (commutativity of +)

3 P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P
(Abelian monoid laws for ‖)

4 new x nil ≡ nil, new x , y P ≡ new y , x P,
P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P) (scope extension)

5 !P ≡ P ‖!P (unfolding)

Concurrency Theory Winter Semester 2013/14 10.11



Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 10.4 (Structural congruence)

P,Q ∈ Prcπ are structurally congruent, written P ≡ Q, if one can be
transformed into the other by applying the following operations and
equations:

1 renaming of bound names (α-conversion)

2 reordering of terms in a summation (commutativity of +)

3 P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P
(Abelian monoid laws for ‖)

4 new x nil ≡ nil, new x , y P ≡ new y , x P,
P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P) (scope extension)

5 !P ≡ P ‖!P (unfolding)

Concurrency Theory Winter Semester 2013/14 10.11



Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 10.4 (Structural congruence)

P,Q ∈ Prcπ are structurally congruent, written P ≡ Q, if one can be
transformed into the other by applying the following operations and
equations:

1 renaming of bound names (α-conversion)

2 reordering of terms in a summation (commutativity of +)

3 P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P
(Abelian monoid laws for ‖)

4 new x nil ≡ nil, new x , y P ≡ new y , x P,
P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P) (scope extension)

5 !P ≡ P ‖!P (unfolding)

Concurrency Theory Winter Semester 2013/14 10.11



Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 10.4 (Structural congruence)

P,Q ∈ Prcπ are structurally congruent, written P ≡ Q, if one can be
transformed into the other by applying the following operations and
equations:

1 renaming of bound names (α-conversion)

2 reordering of terms in a summation (commutativity of +)

3 P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P
(Abelian monoid laws for ‖)

4 new x nil ≡ nil, new x , y P ≡ new y , x P,
P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P) (scope extension)

5 !P ≡ P ‖!P (unfolding)

Concurrency Theory Winter Semester 2013/14 10.11



Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 10.4 (Structural congruence)

P,Q ∈ Prcπ are structurally congruent, written P ≡ Q, if one can be
transformed into the other by applying the following operations and
equations:

1 renaming of bound names (α-conversion)

2 reordering of terms in a summation (commutativity of +)

3 P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P
(Abelian monoid laws for ‖)

4 new x nil ≡ nil, new x , y P ≡ new y , x P,
P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P) (scope extension)

5 !P ≡ P ‖!P (unfolding)

Concurrency Theory Winter Semester 2013/14 10.11



Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 10.4 (Structural congruence)

P,Q ∈ Prcπ are structurally congruent, written P ≡ Q, if one can be
transformed into the other by applying the following operations and
equations:

1 renaming of bound names (α-conversion)

2 reordering of terms in a summation (commutativity of +)

3 P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P
(Abelian monoid laws for ‖)

4 new x nil ≡ nil, new x , y P ≡ new y , x P,
P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P) (scope extension)

5 !P ≡ P ‖!P (unfolding)

Concurrency Theory Winter Semester 2013/14 10.11



A Standard Form

Theorem 10.5 (Standard form)

Every process expression is structurally congruent to a process of the
standard form

new x1, . . . , xk (P1 ‖ . . . ‖ Pm ‖ !Q1 ‖ . . . ‖ !Qn)

where each Pi is a non-empty sum, and each Qj is in standard form.

(If m = n = 0: nil; if k = 0: restriction absent)

Proof.

by induction on the structure of R ∈ Prcπ (on the board)

Concurrency Theory Winter Semester 2013/14 10.12



A Standard Form

Theorem 10.5 (Standard form)

Every process expression is structurally congruent to a process of the
standard form

new x1, . . . , xk (P1 ‖ . . . ‖ Pm ‖ !Q1 ‖ . . . ‖ !Qn)

where each Pi is a non-empty sum, and each Qj is in standard form.

(If m = n = 0: nil; if k = 0: restriction absent)

Proof.

by induction on the structure of R ∈ Prcπ (on the board)

Concurrency Theory Winter Semester 2013/14 10.12



The Reaction Relation

Thanks to Theorem 10.5, only processes in standard form need to be
considered for defining the operational semantics:

Definition 10.6

The reaction relation −→⊆ Prcπ × Prcπ is generated by the rules:

(Tau)
τ.P + Q −→ P

(React)
(x(y).P + R) ‖ (x〈z〉.Q + S) −→ P[z/y ] ‖ Q

(Par)
P −→ P ′

P ‖ Q −→ P ′ ‖ Q

(Res)
P → P ′

new x P −→ new x P ′

(Struct)
P −→ P ′

Q −→ Q ′ if P ≡ Q and P ′ ≡ Q ′

(P[z/y ] replaces every free occurrence of y in P by z .
In (React), the pair (x(y), x〈z〉) is called a redex.)

Concurrency Theory Winter Semester 2013/14 10.13



Example: Printer Server

Example 10.7

1 Printer server (cf. Example 9.9):

b〈a〉.S ′︸ ︷︷ ︸
S

‖ a(e).P ′︸ ︷︷ ︸
P

‖ b(c).c〈d〉.C ′︸ ︷︷ ︸
C

−→ S ′ ‖ a(e).P ′ ‖ a〈d〉.C ′

S ′ ‖ a(e).P ′ ‖ a〈d〉.C ′ −→ S ′ ‖ P ′[d/e] ‖ C ′

(on the board)

2 With scope extension (P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P)):

new b (new a (b〈a〉.S ′ ‖ a(e).P ′) ‖ b(c).c〈d〉.C ′)
−→ new a, b (S ′ ‖ a(e).P ′ ‖ a〈d〉.C ′)

(on the board)

Concurrency Theory Winter Semester 2013/14 10.14



Example: Printer Server

Example 10.7

1 Printer server (cf. Example 9.9):

b〈a〉.S ′︸ ︷︷ ︸
S

‖ a(e).P ′︸ ︷︷ ︸
P

‖ b(c).c〈d〉.C ′︸ ︷︷ ︸
C

−→ S ′ ‖ a(e).P ′ ‖ a〈d〉.C ′

S ′ ‖ a(e).P ′ ‖ a〈d〉.C ′ −→ S ′ ‖ P ′[d/e] ‖ C ′

(on the board)

2 With scope extension (P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P)):

new b (new a (b〈a〉.S ′ ‖ a(e).P ′) ‖ b(c).c〈d〉.C ′)
−→ new a, b (S ′ ‖ a(e).P ′ ‖ a〈d〉.C ′)

(on the board)

Concurrency Theory Winter Semester 2013/14 10.14


	Recap: Modelling Mobile Concurrent Systems
	Syntax of the Monadic -Calculus
	Semantics of the Monadic -Calculus

