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Syntax of the Monadic π-Calculus

Definition (Syntax of monadic π-Calculus)

Let A = {a, b, c . . . , x , y , z , . . .} be a set of names.

The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

The set Prcπ of π-Calculus process expressions is defined by the
following syntax:

P ::=
∑

i∈I πi .Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new x P (restriction)
| !P (replication)

(where I finite index set, x ∈ A)

Conventions: nil :=
∑

i∈∅ πi .Pi , new x1, . . . , xn P := new x1 (. . . new xn P)
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A Standard Form

Theorem (Standard form)

Every process expression is structurally congruent to a process of the
standard form

new x1, . . . , xk (P1 ‖ . . . ‖ Pm ‖ !Q1 ‖ . . . ‖ !Qn)

where each Pi is a non-empty sum, and each Qj is in standard form.

(If m = n = 0: nil; if k = 0: restriction absent)

Proof.

by induction on the structure of R ∈ Prcπ (on the board)
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The Reaction Relation

Thanks to Theorem 10.5, only processes in standard form need to be
considered for defining the operational semantics:

Definition

The reaction relation −→⊆ Prcπ × Prcπ is generated by the rules:

(Tau)
τ.P + Q −→ P

(React)
(x(y).P + R) ‖ (x〈z〉.Q + S) −→ P[z/y ] ‖ Q

(Par)
P −→ P ′

P ‖ Q −→ P ′ ‖ Q

(Res)
P → P ′

new x P −→ new x P ′

(Struct)
P −→ P ′

Q −→ Q ′ if P ≡ Q and P ′ ≡ Q ′

(P[z/y ] replaces every free occurrence of y in P by z .
In (React), the pair (x(y), x〈z〉) is called a redex.)
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Example: Mobile Clients

Example 11.1

System specification (cf. Example 9.10):

System1 = new L (Client1 ‖ Station1 ‖ Idle2 ‖ Control1)
System2 = new L (Client2 ‖ Idle1 ‖ Station2 ‖ Control2)

Station(talk, switch, gain, lose)
= talk .Station(talk, switch, gain, lose) +

lose(t, s).switch〈t, s〉.Idle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

Client(talk, switch) = talk .Client(talk, switch) + switch(t, s).Client(t, s)
L = (talk i , switchi , gaini , lose i | i ∈ {1, 2})

Use additional reaction rule for polyadic communication:

(React’)
(x(~y).P + R) ‖ (x〈~z〉.Q + S) −→ P[~z/~y ] ‖ Q

Use additional congruence rule for process calls:
if A(~x) = PA, then A(~y) ≡ PA[~y/~x ]

Show System1 −→∗ System2 (on the board)
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Polyadic Communication I

So far: messages with exactly one name

Now: arbitrary number

New types of action prefixes:

x(y1, . . . , yn) and x〈z1, . . . , zn〉
where n ∈ N and all yi distinct

Expected behavior:

(React’)
(x(~y).P + R) ‖ (x〈~z〉.Q + S) −→ P[~z/~y ] ‖ R

(replacement of free names)

Obvious attempt for encoding:

x(y1, . . . , yn).P 7→ x(y1) . . . x(yn).P
x〈z1, . . . , zn〉.Q 7→ x〈z1〉 . . . x〈zn〉.Q

Concurrency Theory Winter Semester 2013/14 11.9



Polyadic Communication I

So far: messages with exactly one name

Now: arbitrary number

New types of action prefixes:

x(y1, . . . , yn) and x〈z1, . . . , zn〉
where n ∈ N and all yi distinct

Expected behavior:

(React’)
(x(~y).P + R) ‖ (x〈~z〉.Q + S) −→ P[~z/~y ] ‖ R

(replacement of free names)

Obvious attempt for encoding:

x(y1, . . . , yn).P 7→ x(y1) . . . x(yn).P
x〈z1, . . . , zn〉.Q 7→ x〈z1〉 . . . x〈zn〉.Q

Concurrency Theory Winter Semester 2013/14 11.9



Polyadic Communication I

So far: messages with exactly one name

Now: arbitrary number

New types of action prefixes:

x(y1, . . . , yn) and x〈z1, . . . , zn〉
where n ∈ N and all yi distinct

Expected behavior:

(React’)
(x(~y).P + R) ‖ (x〈~z〉.Q + S) −→ P[~z/~y ] ‖ R

(replacement of free names)

Obvious attempt for encoding:

x(y1, . . . , yn).P 7→ x(y1) . . . x(yn).P
x〈z1, . . . , zn〉.Q 7→ x〈z1〉 . . . x〈zn〉.Q

Concurrency Theory Winter Semester 2013/14 11.9



Polyadic Communication I

So far: messages with exactly one name

Now: arbitrary number

New types of action prefixes:

x(y1, . . . , yn) and x〈z1, . . . , zn〉
where n ∈ N and all yi distinct

Expected behavior:

(React’)
(x(~y).P + R) ‖ (x〈~z〉.Q + S) −→ P[~z/~y ] ‖ R

(replacement of free names)

Obvious attempt for encoding:

x(y1, . . . , yn).P 7→ x(y1) . . . x(yn).P
x〈z1, . . . , zn〉.Q 7→ x〈z1〉 . . . x〈zn〉.Q

Concurrency Theory Winter Semester 2013/14 11.9



Polyadic Communication II

But consider the following counterexample.

Polyadic representation:

x(y1, y2).P ‖ x〈z1, z2〉.Q ‖ x〈z ′1, z ′2〉.Q ′

↙↘
P[z1/y1, z2/y2] ‖ Q ‖ x〈z ′1, z ′2〉.Q ′ P[z ′1/y1, z

′
2/y2] ‖ x〈z1, z2〉.Q ‖ Q ′

Monadic encoding:

P[z1/y1, z2/y2] ‖ . . . X P[z ′1/y1, z
′
2/y2] ‖ . . . X

↑ 2 ↑ 2
x(y1).x(y2).P ‖ x〈z1〉.x〈z2〉.Q ‖ x〈z ′1〉.x〈z ′2〉.Q ′

↓ 2 ↓ 2
P[z1/y1, z

′
1/y2] ‖ . . .  P[z ′1/y1, z1/y2] ‖ . . .  

Solution: avoid interferences by first introducing a fresh channel:

x(y1, . . . , yn).P 7→ x(w).w(y1) . . .w(yn).P
x〈z1, . . . , zn〉.Q 7→ neww (x〈w〉.w〈z1〉 . . .w〈zn〉.Q)

where w /∈ fn(Q)
Correctness: see exercises
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Recursive Process Calls I

So far: process replication !P

Now: parametric process definitions of the form

A(x1, . . . , xn) = PA

where A is a process identifier and PA a process expression containing
calls of A (and other parametric processes)

Semantic interpretation by new congruence rule:

A(y1, . . . , yn) ≡ PA[y1/x1, . . . , yn/xn]

Again: possible to simulate in basic calculus by using

message passing to model parameter passing to A
replication to model the multiple activations of A
restriction to model the scope of the definition of A
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Recursive Process Calls II

The encoding

of a process definition A(~x) = PA

with right-hand side PA = . . .A(~u) . . .A(~v) . . .
for main process Q = . . .A(~y) . . .A(~z) . . .

is defined as follows:

1 Let a ∈ A be a new name (standing for A).
2 For any process R, let R̂ be the result of replacing every call A(~w) by

a〈~w〉.
3 Replace Q by Q ′ := new a (Q̂ ‖ !a(~x).P̂A).

(In the presence of more than one process identifier, Q ′ will contain a
replicated component for each definition.)

Example 11.2

One-place buffer:

B(in, out) = in(x).out〈x〉.B(in, out)

(on the board)
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Communicating Sequential Processes

Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner

Models system of processors that
have (only) local store and
run a sequential program (“process”)

Communication proceeds in the following way:
processes communicate along channels
process can send/receive on a channel if another process
simultaneously performs the complementary I/O operation

=⇒ no buffering (synchronous communication; just as in CCS)

Syntactic categories:
Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z
Truth values B = {tt,ff} t
Variables Var = {x, y, . . .} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands Cmd (next slide) c
Guarded commands GCmd (next slide) gc
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Syntax of CSP

Definition 11.3 (Syntax of CSP)

The syntax of CSP is given by
a ::= z | x | a1+a2 | a1−a2 | a1∗a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | α?x | α!a |

c1; c2 | if gc fi | do gc od | c1 ‖ c2 ∈ Cmd
gc ::= b → c | b ∧ α?x → c | b ∧ α!a→ c | gc1 � gc2 ∈ GCmd

α?x/α!a represents an in/put/output operation along channel α

In c1 ‖ c2, commands c1 and c2 must not share variables (only local store)

Guarded command gc1 � gc2 represents an alternative

In b → c , b acts as a guard that enables the execution of c only if evaluated
to tt

b ∧ α?x → c and b ∧ α!a→ c additionally require the respective I/O
operation to be enabled

If none of its alternatives is enabled, a guarded command gc fails (state fail)

if nondeterministically picks an enabled alternative

A do loop is iterated until its body fails
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Semantics of CSP I

Defined as LTS over commands and memory states (“σ”)
Most important aspect: I/O operations
E.g., 〈α?x ; c , σ〉 can only execute if a parallel command provides
corresponding output

=⇒ Indicate communication potential by labels
L := {α?z | α ∈ Chn, z ∈ Z} ∪ {α!z | α ∈ Chn, z ∈ Z}

Yields following labeled transitions:

〈α?x ; c , σ〉 α?z−→ 〈c , σ[x 7→ z ]〉 (for all z ∈ Z)

〈α!a; c ′, σ〉 α!z−→ 〈c ′, σ〉 (if 〈a, σ〉 → z)

Now both commands, if running in parallel, can communicate:
〈(α?x ; c) ‖ (α!a; c ′), σ〉 → 〈c ‖ c ′, σ[x 7→ z ]〉.

To allow communication with other processes, the following
transitions should also be possible (for all z ′ ∈ Z, 〈a, σ〉 → z):

〈(α?x ; c) ‖ (α!a; c ′), σ〉 α?z ′−→ 〈c ‖ (α!a; c ′), σ[x 7→ z ′]〉
〈(α?x ; c) ‖ (α!a; c ′), σ〉 α!z−→ 〈(α?x ; c) ‖ c ′, σ〉
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Semantics of CSP II

Definition of transition relation
λ−→⊆ (Cmd × S)× ((Cmd ∪ {↓})× S) ∪

(GCmd × S)× ((Cmd × S) ∪ {fail})
(see following slides)

Memory states given by S := {σ | σ : X → Z}
Action λ can be a label or empty: λ ∈ L ∪ {ε}
↓ stands for terminated command

avoids explicit distinction of final state σ (represented by 〈↓, σ〉)
satisfies ↓; c = c ; ↓ = ↓ ‖ c = c ‖ ↓ = c

fail stands for failing guarded command (due to invalidity of guard)
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Semantics of CSP III

Definition 11.4 (Semantics of CSP)

Rules for commands:

〈skip, σ〉 → 〈↓, σ〉
〈a, σ〉 → z

〈x := a, σ〉 → 〈↓, σ[x 7→ z ]〉

〈α?x , σ〉 α?z−→ 〈↓, σ[x 7→ z ]〉

〈a, σ〉 → z

〈α!a, σ〉 α!z−→ 〈↓, σ〉
〈c1, σ〉

λ−→ 〈c ′1, σ′〉

〈c1; c2, σ〉
λ−→ 〈c ′1; c2, σ

′〉

〈gc , σ〉 λ−→ 〈c , σ′〉

〈if gc fi, σ〉 λ−→ 〈c , σ′〉
〈gc , σ〉 λ−→ 〈c , σ′〉

〈do gc od, σ〉 λ−→ 〈c ; do gc od, σ′〉

〈gc , σ〉 → fail

〈do gc od, σ〉 → 〈↓, σ〉

〈c1, σ〉
λ−→ 〈c ′1, σ′〉

〈c1 ‖ c2, σ〉
λ−→ 〈c ′1 ‖ c2, σ

′〉

〈c2, σ〉
λ−→ 〈c ′2, σ′〉

〈c1 ‖ c2, σ〉
λ−→ 〈c1 ‖ c ′2, σ′〉

〈c1, σ〉
α?z−→ 〈c ′1, σ′〉 〈c2, σ〉

α!z−→ 〈c ′2, σ〉
〈c1 ‖ c2, σ〉 → 〈c ′1 ‖ c ′2, σ′〉

〈c1, σ〉
α!z−→ 〈c ′1, σ〉 〈c2, σ〉

α?z−→ 〈c ′2, σ′〉
〈c1 ‖ c2, σ〉 → 〈c ′1 ‖ c ′2, σ′〉
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Semantics of CSP IV

Definition 11.4 (Semantics of CSP; continued)

Rules for guarded commands:
〈b, σ〉 → tt

〈b → c, σ〉 → 〈c , σ〉
〈b, σ〉 → ff

〈b → c , σ〉 → fail

〈b, σ〉 → tt

〈b ∧ α?x → c , σ〉 α?z−→ 〈c, σ[x 7→ z ]〉

〈b, σ〉 → ff

〈b ∧ α?x → c , σ〉 → fail

〈b, σ〉 → tt 〈a, σ〉 → z

〈b ∧ α!a→ c , σ〉 α!z−→ 〈c , σ〉

〈b, σ〉 → ff

〈b ∧ α!a→ c , σ〉 → fail

〈gc1, σ〉
λ−→ 〈c , σ′〉

〈gc1 � gc2, σ〉
λ−→ 〈c, σ′〉

〈gc2, σ〉
λ−→ 〈c , σ′〉

〈gc1 � gc2, σ〉
λ−→ 〈c , σ′〉

〈gc1, σ〉 → fail 〈gc2, σ〉 → fail

〈gc1 � gc2, σ〉 → fail

Concurrency Theory Winter Semester 2013/14 11.20



CSP Examples

Example 11.5

(on the board)

1 do (tt ∧ α?x → β!x) od
describes a process that repeatedly receives a value along α and
forwards it along β (i.e., a one-place buffer)

2 do tt ∧ α?x → β!x od ‖ do tt ∧ β?y → γ!y od
specifies a two-place buffer that receives along α and sends along γ
(using β for internal communication)

3 Nondeterministic choice between input channels:
1 if (tt ∧ α?x → c1 � tt ∧ β?y → c2) fi
2 if (tt→ (α?x ; c1)� tt→ (β?y ; c2)) fi

Expected: progress whenever environment provides data on α or β
1 correct
2 incorrect (can deadlock)
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