

Concurrency Theory

Lecture 11: Variations of π -Calculus & Communicating Sequential Processes

Joost-Pieter Katoen Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

{katoen,noll}@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/ct13/>

Winter Semester 2013/14

- 1 Recap: Syntax and Semantics of the Monadic π -Calculus
- 2 Mobile Clients Revisited
- 3 The Polyadic π -Calculus
- 4 Adding Recursive Process Calls
- 5 Communicating Sequential Processes (CSP)

Definition (Syntax of monadic π -Calculus)

- Let $A = \{a, b, c \dots, x, y, z, \dots\}$ be a set of **names**.
- The set of **action prefixes** is given by

$$\begin{array}{ll} \pi ::= & x(y) \quad (\text{receive } y \text{ along } x) \\ | & \bar{x}(y) \quad (\text{send } y \text{ along } x) \\ | & \tau \quad (\text{unobservable action}) \end{array}$$

- The set Prc^π of **π -Calculus process expressions** is defined by the following syntax:

$$\begin{array}{ll} P ::= & \sum_{i \in I} \pi_i.P_i \quad (\text{guarded sum}) \\ | & P_1 \parallel P_2 \quad (\text{parallel composition}) \\ | & \text{new } x.P \quad (\text{restriction}) \\ | & !P \quad (\text{replication}) \end{array}$$

(where I finite index set, $x \in A$)

Conventions: $\text{nil} := \sum_{i \in \emptyset} \pi_i.P_i$, $\text{new } x_1, \dots, x_n.P := \text{new } x_1 (\dots \text{new } x_n.P)$

Theorem (Standard form)

Every process expression is structurally congruent to a process of the standard form

$$\text{new } x_1, \dots, x_k (P_1 \parallel \dots \parallel P_m \parallel !Q_1 \parallel \dots \parallel !Q_n)$$

where each P_i is a non-empty sum, and each Q_j is in standard form.

(If $m = n = 0$: nil; if $k = 0$: restriction absent)

Proof.

by induction on the structure of $R \in \text{Prc}^\pi$ (on the board) □

The Reaction Relation

Thanks to Theorem 10.5, only processes in standard form need to be considered for defining the operational semantics:

Definition

The **reaction relation** $\longrightarrow \subseteq Prc^\pi \times Prc^\pi$ is generated by the rules:

$$(\text{Tau}) \frac{}{\tau.P + Q \longrightarrow P}$$

$$(\text{React}) \frac{}{(x(y).P + R) \parallel (\bar{x}\langle z \rangle.Q + S) \longrightarrow P[z/y] \parallel Q}$$

$$(\text{Par}) \frac{P \longrightarrow P'}{P \parallel Q \longrightarrow P' \parallel Q}$$

$$(\text{Res}) \frac{P \rightarrow P'}{\text{new } x.P \longrightarrow \text{new } x.P'}$$

$$(\text{Struct}) \frac{P \longrightarrow P'}{Q \longrightarrow Q'} \quad \text{if } P \equiv Q \text{ and } P' \equiv Q'$$

($P[z/y]$ replaces every free occurrence of y in P by z .

In (React), the pair $(x(y), \bar{x}\langle z \rangle)$ is called a **redex**.)

- 1 Recap: Syntax and Semantics of the Monadic π -Calculus
- 2 Mobile Clients Revisited
- 3 The Polyadic π -Calculus
- 4 Adding Recursive Process Calls
- 5 Communicating Sequential Processes (CSP)

Example: Mobile Clients

Example 11.1

- System specification (cf. Example 9.10):

$$\text{System}_1 = \text{new } L(\text{Client}_1 \parallel \text{Station}_1 \parallel \text{Idle}_2 \parallel \text{Control}_1)$$
$$\text{System}_2 = \text{new } L(\text{Client}_2 \parallel \text{Idle}_1 \parallel \text{Station}_2 \parallel \text{Control}_2)$$
$$\text{Station}(\text{talk}, \text{switch}, \text{gain}, \text{lose})$$
$$= \text{talk}. \text{Station}(\text{talk}, \text{switch}, \text{gain}, \text{lose}) + \\ \text{lose}(t, s). \overline{\text{switch}}(t, s). \text{Idle}(\text{gain}, \text{lose})$$
$$\text{Idle}(\text{gain}, \text{lose}) = \text{gain}(t, s). \text{Station}(t, s, \text{gain}, \text{lose})$$
$$\text{Control}_1 = \overline{\text{lose}_1} \langle \text{talk}_2, \text{switch}_2 \rangle. \overline{\text{gain}_2} \langle \text{talk}_2, \text{switch}_2 \rangle. \text{Control}_2$$
$$\text{Control}_2 = \overline{\text{lose}_2} \langle \text{talk}_1, \text{switch}_1 \rangle. \text{gain}_1 \langle \text{talk}_1, \text{switch}_1 \rangle. \text{Control}_1$$
$$\text{Client}(\text{talk}, \text{switch}) = \text{talk}. \text{Client}(\text{talk}, \text{switch}) + \text{switch}(t, s). \text{Client}(t, s)$$
$$L = (\text{talk}_i, \text{switch}_i, \text{gain}_i, \text{lose}_i \mid i \in \{1, 2\})$$

Example: Mobile Clients

Example 11.1

- System specification (cf. Example 9.10):

$$\text{System}_1 = \text{new } L(\text{Client}_1 \parallel \text{Station}_1 \parallel \text{Idle}_2 \parallel \text{Control}_1)$$

$$\text{System}_2 = \text{new } L(\text{Client}_2 \parallel \text{Idle}_1 \parallel \text{Station}_2 \parallel \text{Control}_2)$$

$$\text{Station}(\text{talk}, \text{switch}, \text{gain}, \text{lose})$$

$$= \text{talk}. \text{Station}(\text{talk}, \text{switch}, \text{gain}, \text{lose}) + \\ \text{lose}(t, s). \overline{\text{switch}}(t, s). \text{Idle}(\text{gain}, \text{lose})$$

$$\text{Idle}(\text{gain}, \text{lose}) = \text{gain}(t, s). \text{Station}(t, s, \text{gain}, \text{lose})$$

$$\text{Control}_1 = \overline{\text{lose}_1}(\text{talk}_2, \text{switch}_2). \overline{\text{gain}_2}(\text{talk}_2, \text{switch}_2). \text{Control}_2$$

$$\text{Control}_2 = \overline{\text{lose}_2}(\text{talk}_1, \text{switch}_1). \text{gain}_1(\text{talk}_1, \text{switch}_1). \text{Control}_1$$

$$\text{Client}(\text{talk}, \text{switch}) = \text{talk}. \text{Client}(\text{talk}, \text{switch}) + \text{switch}(t, s). \text{Client}(t, s) \\ L = (\text{talk}_i, \text{switch}_i, \text{gain}_i, \text{lose}_i \mid i \in \{1, 2\})$$

- Use additional reaction rule for **polyadic communication**:

$$\text{(React')} \frac{}{(x(\vec{y}).P + R) \parallel (\bar{x}(\vec{z}).Q + S) \longrightarrow P[\vec{z}/\vec{y}] \parallel Q}$$

- Use additional congruence rule for **process calls**:

$$\text{if } A(\vec{x}) = P_A, \text{ then } A(\vec{y}) \equiv P_A[\vec{y}/\vec{x}]$$

Example: Mobile Clients

Example 11.1

- System specification (cf. Example 9.10):

$$\text{System}_1 = \text{new } L(\text{Client}_1 \parallel \text{Station}_1 \parallel \text{Idle}_2 \parallel \text{Control}_1)$$

$$\text{System}_2 = \text{new } L(\text{Client}_2 \parallel \text{Idle}_1 \parallel \text{Station}_2 \parallel \text{Control}_2)$$

$$\text{Station}(\text{talk}, \text{switch}, \text{gain}, \text{lose})$$

$$= \text{talk}. \text{Station}(\text{talk}, \text{switch}, \text{gain}, \text{lose}) + \\ \text{lose}(t, s). \overline{\text{switch}}(t, s). \text{Idle}(\text{gain}, \text{lose})$$

$$\text{Idle}(\text{gain}, \text{lose}) = \underline{\text{gain}}(t, s). \text{Station}(t, s, \text{gain}, \text{lose})$$

$$\text{Control}_1 = \underline{\text{lose}}_1 \langle \text{talk}_2, \text{switch}_2 \rangle. \underline{\text{gain}}_2 \langle \text{talk}_2, \text{switch}_2 \rangle. \text{Control}_2$$

$$\text{Control}_2 = \underline{\text{lose}}_2 \langle \text{talk}_1, \text{switch}_1 \rangle. \underline{\text{gain}}_1 \langle \text{talk}_1, \text{switch}_1 \rangle. \text{Control}_1$$

$$\text{Client}(\text{talk}, \text{switch}) = \text{talk}. \text{Client}(\text{talk}, \text{switch}) + \text{switch}(t, s). \text{Client}(t, s)$$

$$L = (\text{talk}_i, \text{switch}_i, \text{gain}_i, \text{lose}_i \mid i \in \{1, 2\})$$

- Use additional reaction rule for **polyadic communication**:

$$\text{(React')} \frac{}{(x(\vec{y}).P + R) \parallel (\bar{x}(\vec{z}).Q + S) \longrightarrow P[\vec{z}/\vec{y}] \parallel Q}$$

- Use additional congruence rule for **process calls**:

if $A(\vec{x}) = P_A$, then $A(\vec{y}) \equiv P_A[\vec{y}/\vec{x}]$

- Show $\text{System}_1 \longrightarrow^* \text{System}_2$ (on the board)

- 1 Recap: Syntax and Semantics of the Monadic π -Calculus
- 2 Mobile Clients Revisited
- 3 The Polyadic π -Calculus
- 4 Adding Recursive Process Calls
- 5 Communicating Sequential Processes (CSP)

- **So far:** messages with exactly one name
- **Now:** arbitrary number

- **So far:** messages with exactly one name
- **Now:** arbitrary number
- New types of **action prefixes**:

$$x(y_1, \dots, y_n) \quad \text{and} \quad \bar{x}\langle z_1, \dots, z_n \rangle$$

where $n \in \mathbb{N}$ and all y_i distinct

- **So far:** messages with exactly one name
- **Now:** arbitrary number
- New types of **action prefixes:**

$$x(y_1, \dots, y_n) \quad \text{and} \quad \bar{x}\langle z_1, \dots, z_n \rangle$$

where $n \in \mathbb{N}$ and all y_i distinct

- Expected **behavior:**

$$\text{(React')} \frac{}{(x(\vec{y}).P + R) \parallel (\bar{x}\langle \vec{z} \rangle.Q + S) \longrightarrow P[\vec{z}/\vec{y}] \parallel R}$$

(replacement of **free** names)

- **So far:** messages with exactly one name
- **Now:** arbitrary number
- New types of **action prefixes:**

$$x(y_1, \dots, y_n) \quad \text{and} \quad \bar{x}\langle z_1, \dots, z_n \rangle$$

where $n \in \mathbb{N}$ and all y_i distinct

- Expected **behavior:**

$$\text{(React')} \frac{}{(x(\vec{y}).P + R) \parallel (\bar{x}\langle \vec{z} \rangle.Q + S) \longrightarrow P[\vec{z}/\vec{y}] \parallel R}$$

(replacement of **free** names)

- Obvious attempt for **encoding:**

$$\begin{aligned} x(y_1, \dots, y_n).P &\mapsto x(y_1) \dots x(y_n).P \\ \bar{x}\langle z_1, \dots, z_n \rangle.Q &\mapsto \bar{x}\langle z_1 \rangle \dots \bar{x}\langle z_n \rangle.Q \end{aligned}$$

- But consider the following **counterexample**.

Polyadic representation:

$$x(y_1, y_2).P \parallel \bar{x}\langle z_1, z_2 \rangle.Q \parallel \bar{x}\langle z'_1, z'_2 \rangle.Q'$$
$$P[z_1/y_1, z_2/y_2] \parallel Q \parallel \bar{x}\langle z'_1, z'_2 \rangle.Q' \quad \xleftarrow{\quad} \quad P[z'_1/y_1, z'_2/y_2] \parallel \bar{x}\langle z_1, z_2 \rangle.Q \parallel Q'$$

- But consider the following **counterexample**.

Polyadic representation:

$$x(y_1, y_2).P \parallel \bar{x}\langle z_1, z_2 \rangle.Q \parallel \bar{x}\langle z'_1, z'_2 \rangle.Q'$$
$$P[z_1/y_1, z_2/y_2] \parallel Q \parallel \bar{x}\langle z'_1, z'_2 \rangle.Q' \quad \swarrow \quad \searrow$$
$$P[z'_1/y_1, z'_2/y_2] \parallel \bar{x}\langle z_1, z_2 \rangle.Q \parallel Q'$$

Monadic encoding:

$$P[z_1/y_1, z_2/y_2] \parallel \dots \quad \checkmark \quad P[z'_1/y_1, z'_2/y_2] \parallel \dots \quad \checkmark$$
$$\uparrow 2 \quad \uparrow 2$$
$$x(y_1).x(y_2).P \parallel \bar{x}\langle z_1 \rangle.\bar{x}\langle z_2 \rangle.Q \parallel \bar{x}\langle z'_1 \rangle.\bar{x}\langle z'_2 \rangle.Q'$$
$$\downarrow 2 \quad \downarrow 2$$
$$P[z_1/y_1, z'_1/y_2] \parallel \dots \quad \notin \quad P[z'_1/y_1, z_1/y_2] \parallel \dots \quad \notin$$

- But consider the following **counterexample**.

Polyadic representation:

$$x(y_1, y_2).P \parallel \bar{x}\langle z_1, z_2 \rangle.Q \parallel \bar{x}\langle z'_1, z'_2 \rangle.Q'$$
$$P[z_1/y_1, z_2/y_2] \parallel Q \parallel \bar{x}\langle z'_1, z'_2 \rangle.Q' \quad \swarrow \quad \searrow \quad P[z'_1/y_1, z'_2/y_2] \parallel \bar{x}\langle z_1, z_2 \rangle.Q \parallel Q'$$

Monadic encoding:

$$P[z_1/y_1, z_2/y_2] \parallel \dots \quad \checkmark \quad P[z'_1/y_1, z'_2/y_2] \parallel \dots \quad \checkmark$$
$$\uparrow 2 \quad \uparrow 2$$
$$x(y_1).x(y_2).P \parallel \bar{x}\langle z_1 \rangle.\bar{x}\langle z_2 \rangle.Q \parallel \bar{x}\langle z'_1 \rangle.\bar{x}\langle z'_2 \rangle.Q'$$
$$\downarrow 2 \quad \downarrow 2$$
$$P[z_1/y_1, z'_1/y_2] \parallel \dots \quad \notin \quad P[z'_1/y_1, z_1/y_2] \parallel \dots \quad \notin$$

- Solution:** avoid interferences by first introducing a **fresh channel**:

$$x(y_1, \dots, y_n).P \mapsto x(w).w(y_1) \dots w(y_n).P$$
$$\bar{x}\langle z_1, \dots, z_n \rangle.Q \mapsto \text{new } w (\bar{x}\langle w \rangle.\bar{w}\langle z_1 \rangle \dots \bar{w}\langle z_n \rangle.Q)$$

where $w \notin fn(Q)$

Polyadic Communication II

- But consider the following **counterexample**.

Polyadic representation:

$$x(y_1, y_2).P \parallel \bar{x}\langle z_1, z_2 \rangle.Q \parallel \bar{x}\langle z'_1, z'_2 \rangle.Q'$$
$$P[z_1/y_1, z_2/y_2] \parallel Q \parallel \bar{x}\langle z'_1, z'_2 \rangle.Q' \quad \swarrow \quad \searrow$$
$$P[z'_1/y_1, z'_2/y_2] \parallel \bar{x}\langle z_1, z_2 \rangle.Q \parallel Q'$$

Monadic encoding:

$$P[z_1/y_1, z_2/y_2] \parallel \dots \quad \checkmark \quad P[z'_1/y_1, z'_2/y_2] \parallel \dots \quad \checkmark$$
$$\uparrow 2 \quad \uparrow 2$$
$$x(y_1).x(y_2).P \parallel \bar{x}\langle z_1 \rangle.\bar{x}\langle z_2 \rangle.Q \parallel \bar{x}\langle z'_1 \rangle.\bar{x}\langle z'_2 \rangle.Q'$$
$$\downarrow 2 \quad \downarrow 2$$
$$P[z_1/y_1, z'_1/y_2] \parallel \dots \quad \notin \quad P[z'_1/y_1, z_1/y_2] \parallel \dots \quad \notin$$

- Solution:** avoid interferences by first introducing a **fresh channel**:

$$x(y_1, \dots, y_n).P \mapsto x(w).w(y_1) \dots w(y_n).P$$
$$\bar{x}\langle z_1, \dots, z_n \rangle.Q \mapsto \text{new } w (\bar{x}\langle w \rangle.\bar{w}\langle z_1 \rangle \dots \bar{w}\langle z_n \rangle.Q)$$

where $w \notin fn(Q)$

- Correctness:** see exercises

- 1 Recap: Syntax and Semantics of the Monadic π -Calculus
- 2 Mobile Clients Revisited
- 3 The Polyadic π -Calculus
- 4 Adding Recursive Process Calls
- 5 Communicating Sequential Processes (CSP)

- **So far:** process replication $!P$
- **Now:** parametric process definitions of the form

$$A(x_1, \dots, x_n) = P_A$$

where A is a process identifier and P_A a process expression containing calls of A (and other parametric processes)

- **So far:** process replication $!P$
- **Now:** parametric process definitions of the form

$$A(x_1, \dots, x_n) = P_A$$

where A is a process identifier and P_A a process expression containing calls of A (and other parametric processes)

- Semantic interpretation by new congruence rule:

$$A(y_1, \dots, y_n) \equiv P_A[y_1/x_1, \dots, y_n/x_n]$$

- **So far:** process **replication** $!P$
- **Now:** parametric **process definitions** of the form

$$A(x_1, \dots, x_n) = P_A$$

where A is a **process identifier** and P_A a process expression containing **calls** of A (and other parametric processes)

- Semantic interpretation by new **congruence rule**:

$$A(y_1, \dots, y_n) \equiv P_A[y_1/x_1, \dots, y_n/x_n]$$

- Again: possible to **simulate in basic calculus** by using
 - message passing to model parameter passing to A
 - replication to model the multiple activations of A
 - restriction to model the scope of the definition of A

The encoding

- of a process definition $A(\vec{x}) = P_A$
- with right-hand side $P_A = \dots A(\vec{u}) \dots A(\vec{v}) \dots$
- for main process $Q = \dots A(\vec{y}) \dots A(\vec{z}) \dots$

is defined as follows:

The encoding

- of a **process definition** $A(\vec{x}) = P_A$
- with **right-hand side** $P_A = \dots A(\vec{u}) \dots A(\vec{v}) \dots$
- for **main process** $Q = \dots A(\vec{y}) \dots A(\vec{z}) \dots$

is defined as follows:

- ① Let $a \in A$ be a new name (standing for A).
- ② For any process R , let \hat{R} be the result of replacing every call $A(\vec{w})$ by $\bar{a}(\vec{w})$.
- ③ Replace Q by $Q' := \text{new } a(\hat{Q} \parallel !a(\vec{x}).\hat{P}_A)$.

(In the presence of more than one process identifier, Q' will contain a replicated component for each definition.)

Recursive Process Calls II

The **encoding**

- of a **process definition** $A(\vec{x}) = P_A$
- with **right-hand side** $P_A = \dots A(\vec{u}) \dots A(\vec{v}) \dots$
- for **main process** $Q = \dots A(\vec{y}) \dots A(\vec{z}) \dots$

is defined as follows:

- ① Let $a \in A$ be a new name (standing for A).
- ② For any process R , let \hat{R} be the result of replacing every call $A(\vec{w})$ by $\bar{a}(\vec{w})$.
- ③ Replace Q by $Q' := \text{new } a(\hat{Q} \parallel !a(\vec{x}).\hat{P}_A)$.

(In the presence of more than one process identifier, Q' will contain a replicated component for each definition.)

Example 11.2

One-place buffer:

$$B(\text{in}, \text{out}) = \text{in}(\vec{x}).\overline{\text{out}}(\vec{x}).B(\text{in}, \text{out})$$

(on the board)

- 1 Recap: Syntax and Semantics of the Monadic π -Calculus
- 2 Mobile Clients Revisited
- 3 The Polyadic π -Calculus
- 4 Adding Recursive Process Calls
- 5 Communicating Sequential Processes (CSP)

- Approach: **Communicating Sequential Processes (CSP)** by T. Hoare and R. Milner

Communicating Sequential Processes

- Approach: Communicating Sequential Processes (CSP) by T. Hoare and R. Milner
- Models system of processors that
 - have (only) local store and
 - run a sequential program ("process")

- Approach: Communicating Sequential Processes (CSP) by T. Hoare and R. Milner
- Models system of processors that
 - have (only) local store and
 - run a sequential program ("process")
- Communication proceeds in the following way:
 - processes communicate along channels
 - process can send/receive on a channel if another process simultaneously performs the complementary I/O operation

⇒ no buffering (synchronous communication; just as in CCS)

Communicating Sequential Processes

- Approach: Communicating Sequential Processes (CSP) by T. Hoare and R. Milner
- Models system of processors that
 - have (only) local store and
 - run a sequential program ("process")
- Communication proceeds in the following way:
 - processes communicate along channels
 - process can send/receive on a channel if another process simultaneously performs the complementary I/O operation \implies no buffering (synchronous communication; just as in CCS)
- Syntactic categories:

Category	Domain	Meta variable
Numbers	$\mathbb{Z} = \{0, 1, -1, \dots\}$	z
Truth values	$\mathbb{B} = \{tt, ff\}$	t
Variables	$Var = \{x, y, \dots\}$	x
Arithmetic expressions	$AExp$ (next slide)	a
Boolean expressions	$BExp$ (next slide)	b
Commands	Cmd (next slide)	c
Guarded commands	$GCmd$ (next slide)	gc

Definition 11.3 (Syntax of CSP)

The syntax of CSP is given by

$$\begin{aligned} a &::= z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in AExp \\ b &::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg b \mid b_1 \wedge b_2 \mid b_1 \vee b_2 \in BExp \\ c &::= \text{skip} \mid x := a \mid \alpha?x \mid \alpha!a \mid \\ &\quad c_1; c_2 \mid \text{if } gc \text{ fi} \mid \text{do } gc \text{ od} \mid c_1 \parallel c_2 \in Cmd \\ gc &::= b \rightarrow c \mid b \wedge \alpha?x \rightarrow c \mid b \wedge \alpha!a \rightarrow c \mid gc_1 \square gc_2 \in GCmd \end{aligned}$$

Definition 11.3 (Syntax of CSP)

The syntax of CSP is given by

$$\begin{aligned} a &::= z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in AExp \\ b &::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg b \mid b_1 \wedge b_2 \mid b_1 \vee b_2 \in BExp \\ c &::= \text{skip} \mid x := a \mid \alpha?x \mid \alpha!a \\ &\quad c_1; c_2 \mid \text{if } gc \text{ fi} \mid \text{do } gc \text{ od} \mid c_1 \parallel c_2 \in Cmd \\ gc &::= b \rightarrow c \mid b \wedge \alpha?x \rightarrow c \mid b \wedge \alpha!a \rightarrow c \mid gc_1 \square gc_2 \in GCmd \end{aligned}$$

- $\alpha?x/\alpha!a$ represents an in/put/output operation along channel α
- In $c_1 \parallel c_2$, commands c_1 and c_2 must **not share variables** (only local store)
- **Guarded command** $gc_1 \square gc_2$ represents an **alternative**
- In $b \rightarrow c$, b acts as a **guard** that enables the execution of c only if evaluated to **tt**
- $b \wedge \alpha?x \rightarrow c$ and $b \wedge \alpha!a \rightarrow c$ additionally require the respective I/O operation to be enabled
- If none of its alternatives is enabled, a guarded command gc **fails** (state **fail**)
- **if** nondeterministically picks an enabled alternative
- A **do** loop is iterated until its body fails

- Defined as LTS over commands and memory states (" σ ")
- Most important aspect: **I/O operations**
- E.g., $\langle \alpha?x; c, \sigma \rangle$ can only execute if a parallel command provides corresponding output

- Defined as LTS over commands and memory states (" σ ")
- Most important aspect: **I/O operations**
- E.g., $\langle \alpha?x; c, \sigma \rangle$ can only execute if a parallel command provides corresponding output

⇒ Indicate **communication potential** by labels

$$L := \{\alpha?z \mid \alpha \in \text{Chn}, z \in \mathbb{Z}\} \cup \{\alpha!z \mid \alpha \in \text{Chn}, z \in \mathbb{Z}\}$$

- Yields following **labeled transitions**:

$$\begin{aligned} \langle \alpha?x; c, \sigma \rangle &\xrightarrow{\alpha?z} \langle c, \sigma[x \mapsto z] \rangle & (\text{for all } z \in \mathbb{Z}) \\ \langle \alpha!a; c', \sigma \rangle &\xrightarrow{\alpha!z} \langle c', \sigma \rangle & (\text{if } \langle a, \sigma \rangle \rightarrow z) \end{aligned}$$

- Defined as LTS over commands and memory states (" σ ")
- Most important aspect: **I/O operations**
- E.g., $\langle \alpha?x; c, \sigma \rangle$ can only execute if a parallel command provides corresponding output

⇒ Indicate **communication potential** by labels

$$L := \{\alpha?z \mid \alpha \in \text{Chn}, z \in \mathbb{Z}\} \cup \{\alpha!z \mid \alpha \in \text{Chn}, z \in \mathbb{Z}\}$$

- Yields following **labeled transitions**:

$$\begin{aligned}\langle \alpha?x; c, \sigma \rangle &\xrightarrow{\alpha?z} \langle c, \sigma[x \mapsto z] \rangle \quad (\text{for all } z \in \mathbb{Z}) \\ \langle \alpha!a; c', \sigma \rangle &\xrightarrow{\alpha!z} \langle c', \sigma \rangle \quad (\text{if } \langle a, \sigma \rangle \rightarrow z)\end{aligned}$$

- Now both commands, if running in parallel, can **communicate**:
 $\langle (\alpha?x; c) \parallel (\alpha!a; c'), \sigma \rangle \rightarrow \langle c \parallel c', \sigma[x \mapsto z] \rangle.$

- Defined as LTS over commands and memory states (" σ ")
- Most important aspect: **I/O operations**
- E.g., $\langle \alpha?x; c, \sigma \rangle$ can only execute if a parallel command provides corresponding output

⇒ Indicate **communication potential** by labels

$$L := \{\alpha?z \mid \alpha \in \text{Chn}, z \in \mathbb{Z}\} \cup \{\alpha!z \mid \alpha \in \text{Chn}, z \in \mathbb{Z}\}$$

- Yields following **labeled transitions**:

$$\begin{aligned}\langle \alpha?x; c, \sigma \rangle &\xrightarrow{\alpha?z} \langle c, \sigma[x \mapsto z] \rangle \quad (\text{for all } z \in \mathbb{Z}) \\ \langle \alpha!a; c', \sigma \rangle &\xrightarrow{\alpha!z} \langle c', \sigma \rangle \quad (\text{if } \langle a, \sigma \rangle \rightarrow z)\end{aligned}$$

- Now both commands, if running in parallel, can **communicate**:
 $\langle (\alpha?x; c) \parallel (\alpha!a; c'), \sigma \rangle \rightarrow \langle c \parallel c', \sigma[x \mapsto z] \rangle.$
- To allow communication with **other processes**, the following transitions should also be possible (for all $z' \in \mathbb{Z}$, $\langle a, \sigma \rangle \rightarrow z$):

$$\begin{aligned}\langle (\alpha?x; c) \parallel (\alpha!a; c'), \sigma \rangle &\xrightarrow{\alpha?z'} \langle c \parallel (\alpha!a; c'), \sigma[x \mapsto z'] \rangle \\ \langle (\alpha?x; c) \parallel (\alpha!a; c'), \sigma \rangle &\xrightarrow{\alpha!z} \langle (\alpha?x; c) \parallel c', \sigma \rangle\end{aligned}$$

Definition of **transition relation**

$$\xrightarrow{\lambda} \subseteq (Cmd \times S) \times ((Cmd \cup \{\downarrow\}) \times S) \cup (GCmd \times S) \times ((Cmd \times S) \cup \{\text{fail}\})$$

(see following slides)

Definition of **transition relation**

$$\xrightarrow{\lambda} \subseteq (Cmd \times S) \times ((Cmd \cup \{\downarrow\}) \times S) \cup (GCmd \times S) \times ((Cmd \times S) \cup \{\text{fail}\})$$

(see following slides)

- **Memory states** given by $S := \{\sigma \mid \sigma : \mathcal{X} \rightarrow \mathbb{Z}\}$

Definition of **transition relation**

$$\xrightarrow{\lambda} \subseteq (Cmd \times S) \times ((Cmd \cup \{\downarrow\}) \times S) \cup (GCmd \times S) \times ((Cmd \times S) \cup \{\text{fail}\})$$

(see following slides)

- **Memory states** given by $S := \{\sigma \mid \sigma : \mathcal{X} \rightarrow \mathbb{Z}\}$
- **Action λ** can be a label or empty: $\lambda \in L \cup \{\varepsilon\}$

Definition of **transition relation**

$$\xrightarrow{\lambda} \subseteq (Cmd \times S) \times ((Cmd \cup \{\downarrow\}) \times S) \cup (GCmd \times S) \times ((Cmd \times S) \cup \{\text{fail}\})$$

(see following slides)

- **Memory states** given by $S := \{\sigma \mid \sigma : \mathcal{X} \rightarrow \mathbb{Z}\}$
- **Action λ** can be a label or empty: $\lambda \in L \cup \{\varepsilon\}$
- \downarrow stands for **terminated command**
 - avoids explicit distinction of final state σ (represented by $\langle \downarrow, \sigma \rangle$)
 - satisfies $\downarrow; c = c; \downarrow = \downarrow \parallel c = c \parallel \downarrow = c$

Definition of **transition relation**

$$\xrightarrow{\lambda} \subseteq (Cmd \times S) \times ((Cmd \cup \{\downarrow\}) \times S) \cup (GCmd \times S) \times ((Cmd \times S) \cup \{\text{fail}\})$$

(see following slides)

- **Memory states** given by $S := \{\sigma \mid \sigma : \mathcal{X} \rightarrow \mathbb{Z}\}$
- **Action λ** can be a label or empty: $\lambda \in L \cup \{\varepsilon\}$
- \downarrow stands for **terminated command**
 - avoids explicit distinction of final state σ (represented by $\langle \downarrow, \sigma \rangle$)
 - satisfies $\downarrow; c = c; \downarrow = \downarrow \parallel c = c \parallel \downarrow = c$
- **fail** stands for **failing guarded command** (due to invalidity of guard)

Definition 11.4 (Semantics of CSP)

Rules for **commands**:

$$\begin{array}{c}
 \frac{}{\langle \text{skip}, \sigma \rangle \rightarrow \langle \downarrow, \sigma \rangle} \\[10pt]
 \frac{\langle \alpha?x, \sigma \rangle \xrightarrow{\alpha?z} \langle \downarrow, \sigma[x \mapsto z] \rangle}{\langle c_1, \sigma \rangle \xrightarrow{\lambda} \langle c'_1, \sigma' \rangle} \\[10pt]
 \frac{\langle c_1; c_2, \sigma \rangle \xrightarrow{\lambda} \langle c'_1; c_2, \sigma' \rangle}{\langle gc, \sigma \rangle \xrightarrow{\lambda} \langle c, \sigma' \rangle} \\[10pt]
 \frac{\langle \text{do } gc \text{ od}, \sigma \rangle \xrightarrow{\lambda} \langle c; \text{do } gc \text{ od}, \sigma' \rangle}{\langle c_1, \sigma \rangle \xrightarrow{\lambda} \langle c'_1, \sigma' \rangle} \\[10pt]
 \frac{\langle c_1 \parallel c_2, \sigma \rangle \xrightarrow{\lambda} \langle c'_1 \parallel c_2, \sigma' \rangle}{\langle c_1, \sigma \rangle \xrightarrow{\alpha?z} \langle c'_1, \sigma' \rangle \quad \langle c_2, \sigma \rangle \xrightarrow{\alpha!z} \langle c'_2, \sigma \rangle} \\[10pt]
 \frac{}{\langle c_1 \parallel c_2, \sigma \rangle \rightarrow \langle c'_1 \parallel c'_2, \sigma' \rangle}
 \end{array}$$

$$\begin{array}{c}
 \frac{\langle a, \sigma \rangle \rightarrow z}{\langle x := a, \sigma \rangle \rightarrow \langle \downarrow, \sigma[x \mapsto z] \rangle} \\[10pt]
 \frac{\langle a, \sigma \rangle \rightarrow z}{\langle \alpha!a, \sigma \rangle \xrightarrow{\alpha!z} \langle \downarrow, \sigma \rangle} \\[10pt]
 \frac{\langle gc, \sigma \rangle \xrightarrow{\lambda} \langle c, \sigma' \rangle}{\langle \text{if } gc \text{ fi}, \sigma \rangle \xrightarrow{\lambda} \langle c, \sigma' \rangle} \\[10pt]
 \frac{\langle gc, \sigma \rangle \rightarrow \text{fail}}{\langle \text{do } gc \text{ od}, \sigma \rangle \rightarrow \langle \downarrow, \sigma \rangle} \\[10pt]
 \frac{\langle c_2, \sigma \rangle \xrightarrow{\lambda} \langle c'_2, \sigma' \rangle}{\langle c_1 \parallel c_2, \sigma \rangle \xrightarrow{\lambda} \langle c_1 \parallel c'_2, \sigma' \rangle} \\[10pt]
 \frac{\langle c_1, \sigma \rangle \xrightarrow{\alpha!z} \langle c'_1, \sigma \rangle \quad \langle c_2, \sigma \rangle \xrightarrow{\alpha?z} \langle c'_2, \sigma' \rangle}{\langle c_1 \parallel c_2, \sigma \rangle \rightarrow \langle c'_1 \parallel c'_2, \sigma' \rangle}
 \end{array}$$

Definition 11.4 (Semantics of CSP; continued)

Rules for **guarded commands**:

$$\frac{\langle b, \sigma \rangle \rightarrow \text{tt}}{\langle b \rightarrow c, \sigma \rangle \rightarrow \langle c, \sigma \rangle}$$

$$\frac{\langle b, \sigma \rangle \rightarrow \text{tt}}{\langle b \wedge \alpha?x \rightarrow c, \sigma \rangle \xrightarrow{\alpha?z} \langle c, \sigma[x \mapsto z] \rangle}$$

$$\frac{\langle b, \sigma \rangle \rightarrow \text{tt} \quad \langle a, \sigma \rangle \rightarrow z}{\langle b \wedge \alpha!a \rightarrow c, \sigma \rangle \xrightarrow{\alpha!z} \langle c, \sigma \rangle}$$

$$\frac{\langle gc_1, \sigma \rangle \xrightarrow{\lambda} \langle c, \sigma' \rangle}{\langle gc_1 \square gc_2, \sigma \rangle \xrightarrow{\lambda} \langle c, \sigma' \rangle}$$

$$\frac{\langle gc_1, \sigma \rangle \rightarrow \text{fail} \quad \langle gc_2, \sigma \rangle \rightarrow \text{fail}}{\langle gc_1 \square gc_2, \sigma \rangle \rightarrow \text{fail}}$$

$$\frac{\langle b, \sigma \rangle \rightarrow \text{ff}}{\langle b \rightarrow c, \sigma \rangle \rightarrow \text{fail}}$$

$$\frac{\langle b, \sigma \rangle \rightarrow \text{ff}}{\langle b \wedge \alpha?x \rightarrow c, \sigma \rangle \rightarrow \text{fail}}$$

$$\frac{\langle b, \sigma \rangle \rightarrow \text{ff}}{\langle b \wedge \alpha!a \rightarrow c, \sigma \rangle \rightarrow \text{fail}}$$

$$\frac{\langle gc_2, \sigma \rangle \xrightarrow{\lambda} \langle c, \sigma' \rangle}{\langle gc_1 \square gc_2, \sigma \rangle \xrightarrow{\lambda} \langle c, \sigma' \rangle}$$

Example 11.5

(on the board)

① $\text{do } (tt \wedge \alpha?x \rightarrow \beta!x) \text{ od}$

describes a process that repeatedly receives a value along α and forwards it along β (i.e., a **one-place buffer**)

Example 11.5

(on the board)

① $\text{do } (tt \wedge \alpha?x \rightarrow \beta!x) \text{ od}$

describes a process that repeatedly receives a value along α and forwards it along β (i.e., a **one-place buffer**)

② $\text{do } tt \wedge \alpha?x \rightarrow \beta!x \text{ od} \parallel \text{do } tt \wedge \beta?y \rightarrow \gamma!y \text{ od}$

specifies a **two-place buffer** that receives along α and sends along γ (using β for internal communication)

Example 11.5

(on the board)

① $\text{do } (tt \wedge \alpha?x \rightarrow \beta!x) \text{ od}$

describes a process that repeatedly receives a value along α and forwards it along β (i.e., a **one-place buffer**)

② $\text{do } tt \wedge \alpha?x \rightarrow \beta!x \text{ od} \parallel \text{do } tt \wedge \beta?y \rightarrow \gamma!y \text{ od}$

specifies a **two-place buffer** that receives along α and sends along γ (using β for internal communication)

③ Nondeterministic choice between input channels:

① $\text{if } (tt \wedge \alpha?x \rightarrow c_1 \square tt \wedge \beta?y \rightarrow c_2) \text{ fi}$

② $\text{if } (tt \rightarrow (\alpha?x; c_1) \square tt \rightarrow (\beta?y; c_2)) \text{ fi}$

Expected: progress whenever environment provides data on α or β

① correct

② incorrect (can **deadlock**)