Concurrency Theory

Lecture 11: Variations of 7-Calculus &
Communicating Sequential Processes

Joost-Pieter Katoen Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

{katoen,noll}@cs.rwth-aachen.de

http://www-1i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/

@ Recap: Syntax and Semantics of the Monadic 7-Calculus

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 11.2

Syntax of the Monadic 7-Calculus

Definition (Syntax of monadic m-Calculus)

o Let A={a,b,c...,x,y,z,...} be a set of names.

@ The set of action prefixes is given by

= x(y) (receive y along x)
| x(y) (send y along x)
| 7 (unobservable action)

@ The set Prc”™ of m-Calculus process expressions is defined by the
following syntax:

P =3 mi-Pi (guarded sum)
| Pi P2 (parallel composition)
| newxP (restriction)
| 1P (replication)
(where [finite index set, x € A)
Conventions: nil := . 7m;.P;, newxy, ..., x, P = newxi (...newx, P)

RWNTH Concurrency Theory Winter Semester 2013/14 11.3

A Standard Form

Theorem (Standard form)

Every process expression is structurally congruent to a process of the
standard form

newxy, ..., Xk (P1 |- || Pm [|'Q1 | ---]'Qn)

where each P; is a non-empty sum, and each Q; is in standard form.

(If m = n=0: nil; if k = 0: restriction absent)

by induction on the structure of R € Prc™ (on the board)

RWTHAACHE Concurrency Theory Winter Semester 2013/14 11.4

The Reaction Relation

Thanks to Theorem 11.2, only processes in standard form need to be
considered for defining the operational semantics:

The reaction relation — C Prc™ x Prc™ is generated by the rules:
()i —p
(React) =
(x(y)-P+ R) || (x(2).Q + 5) — Plz/y] || @

/

(Par) P— Pl
PIQ—F|Q
/
(Res) P—P

new x P — new x P’

/
(Struct)ﬁ fP=Qand PP =Q
(P[z/y] replaces every free occurrence of y in P by z.
In (React), the pair (x(y),x(z)) is called a redex.)

V.

RWNTH Concurrency Theory Winter Semester 2013/14

115

© Mobile Clients Revisited

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 11.6

Example: Mobile Clients

Example 11.1

@ System specification (cf. Example 9.10):

System; = new L (Clienty || Stationy || Idley || Controly)
System, = new L (Client, || Idle; || Station, || Controls)
Station(talk, switch, gain, lose)
= talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).ldle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
Controly = lose; (talka, switchy).gain, (talko, switchy).Control,
Control, = /oiﬁtalkl, switchy).gainy (talky, switchy).Control;
Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)
L = (talk;, switch;, gain;, lose; | i € {1,2})
@ Use additional reaction rule for polyadic communication:
(React’) —— = =
(x()-P+R) || (x(2).Q +5) — P[z/¥] || @
@ Use additional congruence rule for process calls:
if A(R) = Pa, then A(Y) = Paly/]
@ Show System; —™ System, (on the board)

4

RWNTH Concurrency Theory Winter Semester 2013/14

11.7

© The Polyadic 7-Calculus

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 11.8

Polyadic Communication |

@ So far: messages with exactly one name
@ Now: arbitrary number

@ New types of action prefixes:

x(Y1y -5 Yn) and
where n € N and all y; distinct

@ Expected behavior:

(React)

(x(¥)-P+ R) [| (x(2).Q + 5) — P[Z/y] | R
(replacement of free names)

@ Obvious attempt for encoding:

X(Y1y -y ¥n)-P = x(y1)...x(yn).P
X(z1,...,2p).Q — X(z1) ... X(2n).Q

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 11.9

Polyadic Communication |l

@ But consider the following counterexample.

Polyadic representation:
x(y1,y2)-P || X(z1, 22).Q || X(z1, 2). Q'

Plzi/y1, 22/y2] || Q I X(z1,22). Q" Plz1/y1, z2/y2] || X(21,22).Q || Q'
Monadic encoding:

P[Zl/Y17224Y2] ... v P[Z{/Y17Z§/y22] ... v
x(y1)-x(y2)-P || X(z1).X(22).Q || X(21).X(25). Q'
12 12
Plzi/y1,z1/y2l |l .- & Pla/yi,z/ye] | .. 4

@ Solution: avoid interferences by first introducing a fresh channel:
x(y1,. -y ¥n)-P = x(w).w(y1) ... w(yn).P
X(z1,...,2p).Q — new w (X(w).w(z1) ... W(z,).Q)
where w ¢ n(Q)
o Correctness: see exercises
RWTHAACHEN Concurrency Theory Winter Semester 2013/14 11.10

@ Adding Recursive Process Calls

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 11.11

Recursive Process Calls |

@ So far: process replication P
@ Now: parametric process definitions of the form
A(Xl, . 7X,-,) = PA
where A is a process identifier and P4 a process expression containing
calls of A (and other parametric processes)

@ Semantic interpretation by new congruence rule:

A(y17~- . 7yn) = PA[yl/X17"' 7y”/X”]

@ Again: possible to simulate in basic calculus by using

@ message passing to model parameter passing to A
o replication to model the multiple activations of A
e restriction to model the scope of the definition of A

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 11.12

Recursive Process Calls |11

The encoding
@ of a process definition A(X) = Pa
@ with right-hand side Py = ... A(d) ... A(V)...
@ for main process Q = ... A(Y)...A(2)...
is defined as follows:
Q@ Let a € A be a new name (standing for A).
@ For any process R, let R be the result of replacing every call A(w) by
a(w).
© Replace Q by Q' :=newa(Q ||'a(x).Pa).
(In the presence of more than one process identifier, Q" will contain a
replicated component for each definition.)

One-place buffer:
B(in, out) = in(x).out(x).B(in, out)

(on the board)
nerAACHEN Concurrency Theory Winter Semester 2013/14 11.13

© Communicating Sequential Processes (CSP)

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 11.14

Communicating Sequential Processes

@ Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner
@ Models system of processors that
o have (only) local store and
e run a sequential program (“process”)
@ Communication proceeds in the following way:
@ processes communicate along channels
e process can send/receive on a channel if another process
simultaneously performs the complementary 1/0O operation
= no buffering (synchronous communication; just as in CCS)

@ Syntactic categories:

Category Domain Meta variable
Numbers 7Z=1{0,1,-1,...} =z

Truth values B = {tt, ff} t

Variables Var = {x,y,...} X

Arithmetic expressions AExp (next slide) a

Boolean expressions BExp (next slide) b

Commands Cmd (next slide) ¢

Guarded commands GCmd (next slide) gc

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 11.15

Syntax of CSP

Definition 11.3 (Syntax of CSP)

The syntax of CSP is given by

a:=z|x|ata|ai—a | a1xa, € AExp
o) o= t|81—32‘81>32|ﬁb| b1 A by | by V by € BExp
cu=skip|x:=a|a?x|ala]

c1;¢ | if gcfi|dogcod|c || e € Cmd
gci=b—c|bAa?x —c|bAala— c|ge g € GCmd

a?x/ala represents an in/put/output operation along channel «
In ¢ || ¢, commands ¢; and ¢, must not share variables (only local store)
Guarded command gc; [gc, represents an alternative

In b — ¢, b acts as a guard that enables the execution of ¢ only if evaluated
to tt

@ bAa?x — c and b A ala — c additionally require the respective 1/0O
operation to be enabled

@ If none of its alternatives is enabled, a guarded command gc fails (state fail)
@ if nondeterministically picks an enabled alternative

@ Ado Ioop is |terated until its body fails
RWNTH

Concurrency Theory Winter Semester 2013/14 11.16

Semantics of CSP |

@ Defined as LTS over commands and memory states (“c")

@ Most important aspect: 1/O operations

e E.g., (a?x;c,0) can only execute if a parallel command provides

corresponding output
= Indicate communication potential by labels
L:={a?z|ae Chnyze Z}U{alz|a € Chn,z € Z}

@ Yields following labeled transitions:
(a?x;¢,0) a% (c,o[x— z]) (forall z € Z)
(ala; o) 25 (', o) (if (a,0) — 2)

@ Now both commands, if running in parallel, can communicate:
{(a?x;¢) || (ala;), o) — (c || ¢, o[x — z]).

@ To allow communication with other processes, the following
transitions should also be possible (for all 2’ € Z, (a,0) — z):

{((a?x;¢) || (ala;), 0) CLIZ; (c| (ala;), o[x — Z])
((a?x;¢) || (la; '), 0) =5 ((a?x;¢) || ¢, 0)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 11.17

Semantics of CSP Il

Definition of transition relation

25 C(Cmd x S)

X ((CmdU{l}) x S)U
(GCmd x S) x

((Cmd x S) U {fail})
(see following slides)
@ Memory states given by S :={o |0 : X — Z}

@ Action A can be a label or empty: A € LU {¢}
@ | stands for terminated command

e avoids explicit distinction of final state o (represented by (|, o))
e satisfies |;c=c;l =1 c=c]|l=c

e fail stands for failing guarded command (due to invalidity of guard)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 11.18

Semantics of CSP Il

Definition 11.4 (Semantics of CSP)

Rules for commands:
(a,0) = z
(skip, o) = (1, 0) (x:=a,0) = (},o0[x — z])
(a,0) = z
(a?x,0) 25 (1, o[x — 2]) (ala,0) 25 (], 0)
(c1,0) = (c], o) (gc,0) = (c,0")
(c1; 02, 0) =25 (i ¢, 07) (if gc fi,o) = (c,0")
(ge, o) =2 (c, o) (g, o) — fail
(do gc od, o) 2 (c;do gc od,d’) (do gc od, o) — (I, 0)
(a,0) = (¢,) (c2,0) 2 (), 0")
(1 || @2,0) = (] || @2, 0) (a1 || @2,0) = (a1 || &, 0")
(c1,0) 23 (c],0") (c,0) “B(ch0) (e, 0) 25 (d],0) {c,0) 5 (ch,0")
(all c2,0) = (] || &,0") (1 | 2, 0) = (cf II 5, 0")

v

RWNTH Concurrency Theory Winter Semester 2013/14 11.19

Semantics of CSP IV

Definition 11.4 (Semantics of CSP; continued)

Rules for guarded commands:

(b,o) — tt (b,o) — ff
(b— c,0) = (c,0) (b — c,o) — fall
(b,o) — tt (b,o) — ff

(bAa?x — c,o) o'z (c,o[x — z]) (bAa?x — c,0) — fall

(b,o) = tt (a,0) = z (b,c) — ff
(bAala— c,o) — fail

(bAala— c,0) 25 (c,o)

(ger, o) 2 (c,0’) (ge2,0) 2 (¢,)
(g D gea, o) 2 (¢, o) (gar Oger,0) =2+ (c,0')
(gc1,0) — fail (gep, o) — fail

(gc1 O gep, o) — fall

v

RWNTH Concurrency Theory Winter Semester 2013/14 11.20

CSP Examples

(on the board)
Q@ do (tt A a?x — Blx) od
describes a process that repeatedly receives a value along « and
forwards it along £ (i.e., a one-place buffer)
@ dottAa?x — Slx od || do tt A B?y — !y od
specifies a two-place buffer that receives along o and sends along ~
(using 3 for internal communication)
© Nondeterministic choice between input channels:
0 if (ttAa?x — g OttAS?y — o) fi
@ if (tt = (a?x;) Ott — (B?y;) fi
Expected: progress whenever environment provides data on « or 3

@ correct
@ incorrect (can deadlock)

RWNTH Concurrency Theory Winter Semester 2013/14 11.21

	Recap: Syntax and Semantics of the Monadic -Calculus
	Mobile Clients Revisited
	The Polyadic -Calculus
	Adding Recursive Process Calls
	Communicating Sequential Processes (CSP)

