Concurrency Theory

Lecture 1: Introduction

Joost-Pieter Katoen Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY
{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/

© Preliminaries

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 1.2

@ Lectures:

o Joost-Pieter Katoen (katoen@cs.rwth-aachen.de)
e Thomas Noll (noll@cs.rwth-aachen.de)

@ Exercise classes:

o Benjamin Kaminski (Benjamin.Kaminski@rwth-aachen.de)
e Stephen Wu (Hao.Wu@cs.rwth-aachen.de)

@ Student assistant:
o Christoph Matheja (christoph.matheja@rwth-aachen.de)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 1.3

katoen@cs.rwth-aachen.de
noll@cs.rwth-aachen.de
Benjamin.Kaminski@rwth-aachen.de
Hao.Wu@cs.rwth-aachen.de
christoph.matheja@rwth-aachen.de

Target Audience

@ Master program Informatik
o Theoretische Informatik

Master program Software Systems Engineering
e Theoretical CS
In general:

e interest in formal models for concurrent (software) systems
e application of mathematical modelling and reasoning methods

Expected: basic knowledge in

e essential concepts of operating systems and system software
e formal languages and automata theory
e mathematical logic

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 1.4

Course Objectives

Objectives

@ Understand the foundations of concurrent systems
@ Model (and compare) concurrent systems in a rigorous manner

@ Understand the main semantical underpinnings of concurrency

@ Supporting the design phase

e “Programming Concurrent Systems”
e synchronization, scheduling, semaphores, ...

o Verifying functional correctness properties

e “Model Checking”
o validation of mutual exclusion, fairness, no deadlocks, ...

@ Comparing expressivity of models of concurrency

o ‘interleaving” vs. “true concurrency”
e equivalence, refinement, abstraction, ...

v

RWNTH Concurrency Theory Winter Semester 2013/14 1.5

@ Schedule:

o Lecture Wed 10:15-11:45 AH 2 (starting 16 Oct)

o Lecture Thu 14:15-15:45 AH 1 (starting 17 Oct)

o Exercise class Tue 12:15-13:45 AH 6 (starting 29 Oct)
Irregular lecture dates — checkout web page!
1st assignment sheet: next Tuesday (22 Oct) on web page

e submission by 29 Oct before exercise class
e presentation on 29 Oct

Work on assignments in groups of three
Examination (6 ECTS credits):

e oral or written (depending on number of participants)
e date to be fixed

Admission requires at least 50% of the points in the exercises

@ Solutions to exercises and exam in English or German

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 1.6

© Concurrency and Interaction

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 1.7

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1
x:=0;
(x=x+1|x:=x+2) value of x: 0123
13 2

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written
@ Thus: x is assigned 2, 1, or 3

@ If exclusive access to shared memory and atomic execution of
assignments guaranteed
— only possible outcome: 3

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 1.8

Concurrency and Interaction

The problem arises due to the combination of
@ concurrency and

e interaction (here: via shared memory)

When modelling concurrent systems, the precise description of the
mechanisms of both concurrency and interaction is crucially important.

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 1.9

Concurrency Everywhere

Operating systems

Embedded/reactive systems:

o parallelism (at least) between hardware, software, and environment
High-end parallel hardware infrastructure

e high-performance computing
Low-end parallel hardware infrastructure:

e increasing performance only achievable by parallelism
e multi-core computers, GPGPUs, FPGAs

transistors

1021020009]
100800000 irﬁ*

100,000,000

MOORE'S LAW

10000000
1,000,000
100,000

080~ 10,000

1,000
1970 1975 1980 1s8s 1950 1s85 2000 2005 2010

Moore's Law: Transistor density doubles every 2 years

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 1.10

Problems Everywhere

e Operating systems:
e mutual exclusion
o fairness
e no deadlocks, ...
@ Embedded systems:
o safety
o liveness, ...
@ Shared-memory systems:
e memory models
e inconsistencies (“sequential consistency” vs. relaxed notions)

Multi-threaded Software Shared-memory Multiprocessor

N4

. Concurrent Executions

it
A Bugs &
"y
RWIHAACHEN Concurrency Theory Winter Semester 2013/14 1.11

© A Closer Look at Memory Models

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 1.12

Memory Maodels

RWTHAACHEN

An illustrative example

Initially: x =y =0
thread1: thread2:
1:x=1 3:y=1
2:rl =y 4:12 =X

Concurrency Theory

Winter Semester 2013/14

1.13

@ A Closer Look at Reactive Systems

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 1.14

Reactive Systems |

@ Thus: “classical” model for sequential systems
System : Input — Output
(transformational systems) is not adequate
@ Missing: aspect of interaction

@ Rather: reactive systems which interact with environment and among
themselves

@ Main interest: not terminating computations but infinite behavior
(system maintains ongoing interaction with environment)

@ Examples:

e embedded systems controlling mechanical or electrical devices
(planes, cars, home appliances, ...)
e power plants, production lines, ...

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 1.15

Reactive Systems II

Observation: reactive systems often safety critical
= correct behavior has to be ensured

o Safety properties: “Nothing bad is going to happen.”
E.g., “at most one process in the critical section”

@ Liveness properties: “Eventually something good will happen.”
E.g., “every request will finally be answered by the server”
@ Fairness properties: “No component will starve to death.”

E.g., “any process requiring entry to the critical section will eventually
be admitted”

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 1.16

© Overview of the Course

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 1.17

Overview of the Course

@ Introduction and Motivation
@ The “Interleaving” Approach

e Syntax and semantics of CCS

o Hennessy-Milner Logic

o Case study: mutual exclusion

o Alternative approaches (value passing, CSP, ACP, ...)
© Equivalence, Refinement and Compositionality
Behavioural equivalences ((bi-)simulation)
Case study: mutual exclusion
(Pre-)congruences and compositional abstraction
HML and bisimilarity

© The “True Concurrency” Approach

Petri nets: basic concepts
Case study: mutual exclusion
Branching processes and net unfoldings
Analyzing Petri nets
o Alternative models (trace languages, event structures, ...)
© Extensions
RWTHAACHEN Concurrency Theory Winter Semester 2013/14 1.18

(also see the collection “Handapparat Softwaremodellierung und
Verifikation" at the CS Library)

o Fundamental:

o Luca Aceto, Anna Ingdlfsdéttir, Kim Guldstrand Larsen and Ji¥i Srba:
Reactive Systems: Modelling, Specification and Verification.
Cambridge University Press, 2007.

e Wolfgang Reisig: Understanding Petri Nets: Modeling Techniques,
Analysis Methods, Case Studies. Springer Verlag, 2012.

@ Supplementary:

e Maurice Herlihy and Nir Shavit: The Art of Multiprocessor

Programming. Elsevier, 2008.
o Jan Bergstra, Alban Ponse and Scott Smolka (Eds.): Handbook of
Process Algebra. Elsevier, 2001.

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 1.19

	Preliminaries
	Concurrency and Interaction
	A Closer Look at Memory Models
	A Closer Look at Reactive Systems
	Overview of the Course

