
Concurrency Theory
Lecture 1: Introduction

Joost-Pieter Katoen Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Outline

1 Preliminaries

2 Concurrency and Interaction

3 A Closer Look at Memory Models

4 A Closer Look at Reactive Systems

5 Overview of the Course

Concurrency Theory Winter Semester 2013/14 1.2

People

Lectures:

Joost-Pieter Katoen (katoen@cs.rwth-aachen.de)
Thomas Noll (noll@cs.rwth-aachen.de)

Exercise classes:

Benjamin Kaminski (Benjamin.Kaminski@rwth-aachen.de)
Stephen Wu (Hao.Wu@cs.rwth-aachen.de)

Student assistant:

Christoph Matheja (christoph.matheja@rwth-aachen.de)

Concurrency Theory Winter Semester 2013/14 1.3

katoen@cs.rwth-aachen.de
noll@cs.rwth-aachen.de
Benjamin.Kaminski@rwth-aachen.de
Hao.Wu@cs.rwth-aachen.de
christoph.matheja@rwth-aachen.de

Target Audience

Master program Informatik

Theoretische Informatik

Master program Software Systems Engineering

Theoretical CS

In general:

interest in formal models for concurrent (software) systems
application of mathematical modelling and reasoning methods

Expected: basic knowledge in

essential concepts of operating systems and system software
formal languages and automata theory
mathematical logic

Concurrency Theory Winter Semester 2013/14 1.4

Course Objectives

Objectives

Understand the foundations of concurrent systems

Model (and compare) concurrent systems in a rigorous manner

Understand the main semantical underpinnings of concurrency

Motivation

Supporting the design phase

“Programming Concurrent Systems”
synchronization, scheduling, semaphores, ...

Verifying functional correctness properties

“Model Checking”
validation of mutual exclusion, fairness, no deadlocks, ...

Comparing expressivity of models of concurrency

“interleaving” vs. “true concurrency”
equivalence, refinement, abstraction, ...

Concurrency Theory Winter Semester 2013/14 1.5

Organization

Schedule:

Lecture Wed 10:15–11:45 AH 2 (starting 16 Oct)
Lecture Thu 14:15–15:45 AH 1 (starting 17 Oct)
Exercise class Tue 12:15–13:45 AH 6 (starting 29 Oct)

Irregular lecture dates – checkout web page!

1st assignment sheet: next Tuesday (22 Oct) on web page

submission by 29 Oct before exercise class
presentation on 29 Oct

Work on assignments in groups of three

Examination (6 ECTS credits):

oral or written (depending on number of participants)
date to be fixed

Admission requires at least 50% of the points in the exercises

Solutions to exercises and exam in English or German

Concurrency Theory Winter Semester 2013/14 1.6

Outline

1 Preliminaries

2 Concurrency and Interaction

3 A Closer Look at Memory Models

4 A Closer Look at Reactive Systems

5 Overview of the Course

Concurrency Theory Winter Semester 2013/14 1.7

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x : 0123

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2, 1, or 3

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Concurrency Theory Winter Semester 2013/14 1.8

Concurrency and Interaction

The problem arises due to the combination of

concurrency and

interaction (here: via shared memory)

Conclusion

When modelling concurrent systems, the precise description of the
mechanisms of both concurrency and interaction is crucially important.

Concurrency Theory Winter Semester 2013/14 1.9

Concurrency Everywhere

Operating systems

Embedded/reactive systems:
parallelism (at least) between hardware, software, and environment

High-end parallel hardware infrastructure
high-performance computing

Low-end parallel hardware infrastructure:
increasing performance only achievable by parallelism
multi-core computers, GPGPUs, FPGAs

Concurrency Theory Winter Semester 2013/14 1.10

Problems Everywhere

Operating systems:
mutual exclusion
fairness
no deadlocks, ...

Embedded systems:
safety
liveness, ...

Shared-memory systems:
memory models
inconsistencies (“sequential consistency” vs. relaxed notions)

Concurrency Theory Winter Semester 2013/14 1.11

Outline

1 Preliminaries

2 Concurrency and Interaction

3 A Closer Look at Memory Models

4 A Closer Look at Reactive Systems

5 Overview of the Course

Concurrency Theory Winter Semester 2013/14 1.12

Memory Models

1

 Initially: x = y = 0

 thread1: thread2:
 1: x = 1 3: y = 1

 2: r1 = y 4: r2 = x

 An illustrative example

Tuesday, April 5, 2011
2

Electrical Engineering and
Computer Sciences

x=1

r1=y

y=1

r2=x

x = 0
y = 0

T1 T2
Memory

 Sequential Consistency (SC)

Tuesday, April 5, 2011
2

Electrical Engineering and
Computer Sciences

r1=y

y=1

r2=x

x = 0
y = 0

T1 T2
Memory

x=1

 Sequential Consistency (SC)

Tuesday, April 5, 2011
2

Electrical Engineering and
Computer Sciences

r1=y

y=1

r2=x

y = 0

T1 T2
Memory

x=1

x = 1

 Sequential Consistency (SC)

Tuesday, April 5, 2011
2

Electrical Engineering and
Computer Sciences

x=1

y=1

r2=x

y = 0

T1 T2
Memory

x = 1

r1=y

 Sequential Consistency (SC)

Tuesday, April 5, 2011
2

Electrical Engineering and
Computer Sciences

x=1

y=1

r2=x

y = 0

T1 T2
Memory

x = 1

r1=y [r1=0]

 Sequential Consistency (SC)

Tuesday, April 5, 2011
2

Electrical Engineering and
Computer Sciences

x=1

r1=y

r2=x

y = 0

T1 T2
Memory

x = 1

[r1=0]

y=1

 Sequential Consistency (SC)

Tuesday, April 5, 2011
2

Electrical Engineering and
Computer Sciences

x=1

r1=y

r2=x

T1 T2
Memory

x = 1

[r1=0]

y=1

y = 1

 Sequential Consistency (SC)

Tuesday, April 5, 2011
2

Electrical Engineering and
Computer Sciences

x=1

r1=y

y=1

T1 T2
Memory

x = 1

[r1=0]

y = 1

r2=x

 Sequential Consistency (SC)

Tuesday, April 5, 2011
2

Electrical Engineering and
Computer Sciences

x=1

r1=y

y=1

T1 T2
Memory

x = 1

[r1=0]

y = 1

r2=x [r2=1]

 Sequential Consistency (SC)

Tuesday, April 5, 2011
2

Electrical Engineering and
Computer Sciences

x=1

r1=y

y=1

T1 T2
Memory

x = 1

[r1=0]

y = 1

r2=x [r2=1]

not (r1==0 and r2==0)

 Sequential Consistency (SC)

Tuesday, April 5, 2011
3

x=1

r1=y

y=1

r2=x

x = 0
y = 0

T1 T2
Memory

 Total Store Ordering (TSO)

Tuesday, April 5, 2011
3

x=1

r1=y

y=1

r2=x

x = 0
y = 0

FIFO buffer T1 T1 T2
Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 2011
3

x=1

r1=y

y=1

r2=x

x = 0
y = 0

FIFO buffer T1 T1 T2

x=1

Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 2011
3

x=1

y=1

r2=x

x = 0
FIFO buffer T1 T1 T2x=1 y = 0

r1=y

Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 2011
3

x=1

y=1

r2=x

x = 0
FIFO buffer T1 T1 T2x=1 y = 0

r1=y [r1=0]

Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 2011
3

x=1

r1=y

y=1

r2=x

x = 0
y = 0

FIFO buffer T1 T1 T2x=1

[r1=0]

y=1

Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 2011
3

x=1

r1=y

y=1

x = 0
y = 0

FIFO buffer T1 T1 T2x=1

[r1=0]

y=1

r2=x

Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 2011
3

x=1

r1=y

y=1

y = 0

FIFO buffer T1 T1 T2x=1

[r1=0]

y=1

r2=x

x = 1

[r2=0]

Memory FIFO buffer T2

 Total Store Ordering (TSO)

Tuesday, April 5, 2011
3

x=1

r1=y

y=1

r2=x

y = 0

FIFO buffer T1 T1 T2x=1

[r1=0]

y=1x = 1

[r2=0]

Memory FIFO buffer T2

r3=y

 Total Store Ordering (TSO)

Tuesday, April 5, 2011
3

x=1

r1=y

y=1

r2=x

y = 0

FIFO buffer T1 T1 T2x=1

[r1=0]

y=1x = 1

[r2=0]

Memory FIFO buffer T2

r3=y

y=1

 Total Store Ordering (TSO)

Tuesday, April 5, 2011
3

x=1

r1=y

y=1

r2=x

y = 0

FIFO buffer T1 T1 T2x=1

[r1=0]

y=1x = 1

[r2=0]

Memory FIFO buffer T2

r3=y

y=1

[r3=1]

 Total Store Ordering (TSO)

Tuesday, April 5, 2011

Concurrency Theory Winter Semester 2013/14 1.13

Outline

1 Preliminaries

2 Concurrency and Interaction

3 A Closer Look at Memory Models

4 A Closer Look at Reactive Systems

5 Overview of the Course

Concurrency Theory Winter Semester 2013/14 1.14

Reactive Systems I

Thus: “classical” model for sequential systems

System : Input → Output

(transformational systems) is not adequate

Missing: aspect of interaction

Rather: reactive systems which interact with environment and among
themselves

Main interest: not terminating computations but infinite behavior
(system maintains ongoing interaction with environment)

Examples:

embedded systems controlling mechanical or electrical devices
(planes, cars, home appliances, ...)
power plants, production lines, ...

Concurrency Theory Winter Semester 2013/14 1.15

Reactive Systems II

Observation: reactive systems often safety critical
=⇒ correct behavior has to be ensured

Safety properties: “Nothing bad is going to happen.”
E.g., “at most one process in the critical section”

Liveness properties: “Eventually something good will happen.”
E.g., “every request will finally be answered by the server”

Fairness properties: “No component will starve to death.”
E.g., “any process requiring entry to the critical section will eventually
be admitted”

Concurrency Theory Winter Semester 2013/14 1.16

Outline

1 Preliminaries

2 Concurrency and Interaction

3 A Closer Look at Memory Models

4 A Closer Look at Reactive Systems

5 Overview of the Course

Concurrency Theory Winter Semester 2013/14 1.17

Overview of the Course

1 Introduction and Motivation
2 The “Interleaving” Approach

Syntax and semantics of CCS
Hennessy-Milner Logic
Case study: mutual exclusion
Alternative approaches (value passing, CSP, ACP, ...)

3 Equivalence, Refinement and Compositionality

Behavioural equivalences ((bi-)simulation)
Case study: mutual exclusion
(Pre-)congruences and compositional abstraction
HML and bisimilarity

4 The “True Concurrency” Approach

Petri nets: basic concepts
Case study: mutual exclusion
Branching processes and net unfoldings
Analyzing Petri nets
Alternative models (trace languages, event structures, ...)

5 Extensions
Concurrency Theory Winter Semester 2013/14 1.18

Literature

(also see the collection “Handapparat Softwaremodellierung und
Verifikation” at the CS Library)

Fundamental:

Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen and Jǐŕı Srba:
Reactive Systems: Modelling, Specification and Verification.
Cambridge University Press, 2007.
Wolfgang Reisig: Understanding Petri Nets: Modeling Techniques,
Analysis Methods, Case Studies. Springer Verlag, 2012.

Supplementary:

Maurice Herlihy and Nir Shavit: The Art of Multiprocessor
Programming . Elsevier, 2008.
Jan Bergstra, Alban Ponse and Scott Smolka (Eds.): Handbook of
Process Algebra. Elsevier, 2001.

Concurrency Theory Winter Semester 2013/14 1.19

	Preliminaries
	Concurrency and Interaction
	A Closer Look at Memory Models
	A Closer Look at Reactive Systems
	Overview of the Course

