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The Calculus of Communicating Systems

History:

Robin Milner: A Calculus of Communicating Systems
LNCS 92, Springer, 1980

Robin Milner: Communication and Concurrency
Prentice-Hall, 1989

Robin Milner: Communicating and Mobile Systems: the π-calculus
Cambridge University Press, 1999

Approach: describing parallelism on a simple and abstract level, using
only a few basic primitives

no explicit storage (variables)

no explicit representation of values (numbers, Booleans, ...)

=⇒ parallel system reduced to communication potential
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Syntax of CCS I

Definition 2.1 (Syntax of CCS)

Let A be a set of (action) names.

A := {a | a ∈ A} denotes the set of co-names.
Act := A ∪ A ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.
Let Pid be a set of process identifiers.
The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| C (process call)

where α ∈ Act, L ⊆ A, C ∈ Pid , and f : Act → Act such that
f (τ) = τ and f (a) = f (a) for each a ∈ A.
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Syntax of CCS II

Definition 2.1 (continued)

A (recursive) process definition is an equation system of the form

(Ci = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ci ∈ Pid (pairwise distinct), and Pi ∈ Prc (with process
identifiers from {C1, . . . ,Ck}).

Notational Conventions:

a means a∑n
i=1 Pi (n ∈ N) means P1 + . . .+ Pn (where

∑0
i=1 Pi := nil)

P \ a abbreviates P \ {a}
[a1 7→ b1, . . . , an 7→ bn] stands for f : Act → Act with f (ai ) = bi
(i ∈ [n]) and f (α) = α otherwise
restriction and relabelling bind stronger than prefixing, prefixing
stronger than composition, composition stronger than choice:

P \ a + b.Q ‖ R means (P \ a) + ((b.Q) ‖ R)
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Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is
only known within P.

The relabelling P[f ] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of
the corresponding equation.
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CCS Examples

Example 2.2

1 One-place buffer

2 Two-place buffer

3 Parallel specification of two-place buffer

(on the board)
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Labelled Transition Systems

Goal: represent behaviour of system by (infinite) graph

nodes = system states

edges = transitions between states

Definition 2.3 (Labelled transition system)

A (Act-)labelled transition system (LTS) is a triple (S ,Act,−→)
consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

For (s, α, s ′) ∈ −→ we write s
α−→ s ′. An LTS is called finite if S is so.

Remarks:

sometimes an initial state s0 ∈ S is distinguished (“LTS(s0)”)

(finite) LTSs correspond to (finite) automata without final states
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Semantics of CCS I

We define the assignment

syntax → semantics

process definition 7→ LTS

by induction over the syntactic structure of process expressions. Here we
employ derivation rules of the form

rule name
premise(s)

conclusion
which can be composed to complete derivation trees.
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Semantics of CCS II

Definition 2.4 (Semantics of CCS)

A process definition (Ci = Pi | 1 ≤ i ≤ k) determines the LTS
(Prc,Act,−→) whose transitions can be inferred from the following rules
(P,P ′,Q,Q ′ ∈ Prc , α ∈ Act, λ ∈ A ∪ A, a ∈ A):

(Act)
α.P

α−→ P

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q ′

P + Q
α−→ Q ′

(Par1)
P

α−→ P ′

P ‖ Q α−→ P ′ ‖ Q
(Par2)

Q
α−→ Q ′

P ‖ Q α−→ P ‖ Q ′

(Com)
P

λ−→ P ′ Q
λ−→ Q ′

P ‖ Q τ−→ P ′ ‖ Q ′
(Res)

P
α−→ P ′ (α, α /∈ L)

P \ L α−→ P ′ \ L

(Rel)
P

α−→ P ′

P[f ]
f (α)−→ P ′[f ]

(Call)
P

α−→ P ′ (C = P)

C
α−→ P ′
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Semantics of CCS III

Example 2.5

1 One-place buffer:

B = in.out.B

2 Sequential two-place buffer:

B0 = in.B1

B1 = out.B0 + in.B2

B2 = out.B1

3 Parallel two-place buffer:

B‖ = (B[f ] ‖ B[g ]) \ com
B = in.out.B

where f := [out 7→ com] and g := [in 7→ com]

(on the board)
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Semantics of CCS IV

Example 2.5 (continued)

Complete LTS of parallel two-place buffer:

B‖

((out.B)[f ] ‖ B[g ]) \ com

((out.B)[f ] ‖ (out.B)[g ]) \ com

(B[f ] ‖ (out.B)[g ]) \ com

(B[f ] ‖ B[g ]) \ com empty

1 entry

full

in
in

τ

out

inout
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Process Traces

Goal: reduce processes to the action sequences they can perform

Definition 2.6 (Trace language)

For every P ∈ Prc , let

Tr(P) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P
w−→ P ′}

be the trace language of P
(where

w−→ :=
a1−→ ◦ . . . ◦ an−→ for w = a1 . . . an).

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 2.7 (One-place buffer)

B = in.out.B

=⇒ Tr(B) = (in · out)∗ · (in + ε)
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Trace Equivalence II

Remarks:

The trace language of P ∈ Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

Trace equivalence identifies processes with identical LTSs: the trace
language of a process consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) =⇒ Tr(P) = Tr(Q)
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