
Concurrency Theory
Lecture 2: Calculus of Communicating Systems (CCS)

Joost-Pieter Katoen Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/


Outline

1 Syntax of CCS

2 Intuitive Meaning and Examples

3 Formal Semantics of CCS

4 Process Traces

Concurrency Theory Winter Semester 2013/14 2.2



The Calculus of Communicating Systems

History:

Robin Milner: A Calculus of Communicating Systems
LNCS 92, Springer, 1980

Robin Milner: Communication and Concurrency
Prentice-Hall, 1989

Robin Milner: Communicating and Mobile Systems: the π-calculus
Cambridge University Press, 1999

Approach: describing parallelism on a simple and abstract level, using
only a few basic primitives

no explicit storage (variables)

no explicit representation of values (numbers, Booleans, ...)

=⇒ parallel system reduced to communication potential

Concurrency Theory Winter Semester 2013/14 2.3



The Calculus of Communicating Systems

History:

Robin Milner: A Calculus of Communicating Systems
LNCS 92, Springer, 1980

Robin Milner: Communication and Concurrency
Prentice-Hall, 1989

Robin Milner: Communicating and Mobile Systems: the π-calculus
Cambridge University Press, 1999

Approach: describing parallelism on a simple and abstract level, using
only a few basic primitives

no explicit storage (variables)

no explicit representation of values (numbers, Booleans, ...)

=⇒ parallel system reduced to communication potential

Concurrency Theory Winter Semester 2013/14 2.3



Syntax of CCS I

Definition 2.1 (Syntax of CCS)

Let A be a set of (action) names.

A := {a | a ∈ A} denotes the set of co-names.
Act := A ∪ A ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.
Let Pid be a set of process identifiers.
The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| C (process call)

where α ∈ Act, L ⊆ A, C ∈ Pid , and f : Act → Act such that
f (τ) = τ and f (a) = f (a) for each a ∈ A.

Concurrency Theory Winter Semester 2013/14 2.4



Syntax of CCS I

Definition 2.1 (Syntax of CCS)

Let A be a set of (action) names.
A := {a | a ∈ A} denotes the set of co-names.

Act := A ∪ A ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.
Let Pid be a set of process identifiers.
The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| C (process call)

where α ∈ Act, L ⊆ A, C ∈ Pid , and f : Act → Act such that
f (τ) = τ and f (a) = f (a) for each a ∈ A.

Concurrency Theory Winter Semester 2013/14 2.4



Syntax of CCS I

Definition 2.1 (Syntax of CCS)

Let A be a set of (action) names.
A := {a | a ∈ A} denotes the set of co-names.
Act := A ∪ A ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.
The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| C (process call)

where α ∈ Act, L ⊆ A, C ∈ Pid , and f : Act → Act such that
f (τ) = τ and f (a) = f (a) for each a ∈ A.

Concurrency Theory Winter Semester 2013/14 2.4



Syntax of CCS I

Definition 2.1 (Syntax of CCS)

Let A be a set of (action) names.
A := {a | a ∈ A} denotes the set of co-names.
Act := A ∪ A ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.
Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| C (process call)

where α ∈ Act, L ⊆ A, C ∈ Pid , and f : Act → Act such that
f (τ) = τ and f (a) = f (a) for each a ∈ A.

Concurrency Theory Winter Semester 2013/14 2.4



Syntax of CCS I

Definition 2.1 (Syntax of CCS)

Let A be a set of (action) names.
A := {a | a ∈ A} denotes the set of co-names.
Act := A ∪ A ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.
Let Pid be a set of process identifiers.
The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| C (process call)

where α ∈ Act, L ⊆ A, C ∈ Pid , and f : Act → Act such that
f (τ) = τ and f (a) = f (a) for each a ∈ A.

Concurrency Theory Winter Semester 2013/14 2.4



Syntax of CCS II

Definition 2.1 (continued)

A (recursive) process definition is an equation system of the form

(Ci = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ci ∈ Pid (pairwise distinct), and Pi ∈ Prc (with process
identifiers from {C1, . . . ,Ck}).

Notational Conventions:

a means a∑n
i=1 Pi (n ∈ N) means P1 + . . .+ Pn (where

∑0
i=1 Pi := nil)

P \ a abbreviates P \ {a}
[a1 7→ b1, . . . , an 7→ bn] stands for f : Act → Act with f (ai ) = bi
(i ∈ [n]) and f (α) = α otherwise
restriction and relabelling bind stronger than prefixing, prefixing
stronger than composition, composition stronger than choice:

P \ a + b.Q ‖ R means (P \ a) + ((b.Q) ‖ R)

Concurrency Theory Winter Semester 2013/14 2.5



Syntax of CCS II

Definition 2.1 (continued)

A (recursive) process definition is an equation system of the form

(Ci = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ci ∈ Pid (pairwise distinct), and Pi ∈ Prc (with process
identifiers from {C1, . . . ,Ck}).

Notational Conventions:

a means a∑n
i=1 Pi (n ∈ N) means P1 + . . .+ Pn (where

∑0
i=1 Pi := nil)

P \ a abbreviates P \ {a}
[a1 7→ b1, . . . , an 7→ bn] stands for f : Act → Act with f (ai ) = bi
(i ∈ [n]) and f (α) = α otherwise
restriction and relabelling bind stronger than prefixing, prefixing
stronger than composition, composition stronger than choice:

P \ a + b.Q ‖ R means (P \ a) + ((b.Q) ‖ R)

Concurrency Theory Winter Semester 2013/14 2.5



Outline

1 Syntax of CCS

2 Intuitive Meaning and Examples

3 Formal Semantics of CCS

4 Process Traces

Concurrency Theory Winter Semester 2013/14 2.6



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is
only known within P.

The relabelling P[f ] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of
the corresponding equation.

Concurrency Theory Winter Semester 2013/14 2.7



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is
only known within P.

The relabelling P[f ] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of
the corresponding equation.

Concurrency Theory Winter Semester 2013/14 2.7



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is
only known within P.

The relabelling P[f ] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of
the corresponding equation.

Concurrency Theory Winter Semester 2013/14 2.7



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is
only known within P.

The relabelling P[f ] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of
the corresponding equation.

Concurrency Theory Winter Semester 2013/14 2.7



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is
only known within P.

The relabelling P[f ] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of
the corresponding equation.

Concurrency Theory Winter Semester 2013/14 2.7



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is
only known within P.

The relabelling P[f ] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of
the corresponding equation.

Concurrency Theory Winter Semester 2013/14 2.7



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is
only known within P.

The relabelling P[f ] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of
the corresponding equation.

Concurrency Theory Winter Semester 2013/14 2.7



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is
only known within P.

The relabelling P[f ] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of
the corresponding equation.

Concurrency Theory Winter Semester 2013/14 2.7



CCS Examples

Example 2.2

1 One-place buffer

2 Two-place buffer

3 Parallel specification of two-place buffer

(on the board)

Concurrency Theory Winter Semester 2013/14 2.8



Outline

1 Syntax of CCS

2 Intuitive Meaning and Examples

3 Formal Semantics of CCS

4 Process Traces

Concurrency Theory Winter Semester 2013/14 2.9



Labelled Transition Systems

Goal: represent behaviour of system by (infinite) graph

nodes = system states

edges = transitions between states

Definition 2.3 (Labelled transition system)

A (Act-)labelled transition system (LTS) is a triple (S ,Act,−→)
consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

For (s, α, s ′) ∈ −→ we write s
α−→ s ′. An LTS is called finite if S is so.

Remarks:

sometimes an initial state s0 ∈ S is distinguished (“LTS(s0)”)

(finite) LTSs correspond to (finite) automata without final states

Concurrency Theory Winter Semester 2013/14 2.10



Labelled Transition Systems

Goal: represent behaviour of system by (infinite) graph

nodes = system states

edges = transitions between states

Definition 2.3 (Labelled transition system)

A (Act-)labelled transition system (LTS) is a triple (S ,Act,−→)
consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

For (s, α, s ′) ∈ −→ we write s
α−→ s ′. An LTS is called finite if S is so.

Remarks:

sometimes an initial state s0 ∈ S is distinguished (“LTS(s0)”)

(finite) LTSs correspond to (finite) automata without final states

Concurrency Theory Winter Semester 2013/14 2.10



Labelled Transition Systems

Goal: represent behaviour of system by (infinite) graph

nodes = system states

edges = transitions between states

Definition 2.3 (Labelled transition system)

A (Act-)labelled transition system (LTS) is a triple (S ,Act,−→)
consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

For (s, α, s ′) ∈ −→ we write s
α−→ s ′. An LTS is called finite if S is so.

Remarks:

sometimes an initial state s0 ∈ S is distinguished (“LTS(s0)”)

(finite) LTSs correspond to (finite) automata without final states

Concurrency Theory Winter Semester 2013/14 2.10



Semantics of CCS I

We define the assignment

syntax → semantics

process definition 7→ LTS

by induction over the syntactic structure of process expressions. Here we
employ derivation rules of the form

rule name
premise(s)

conclusion
which can be composed to complete derivation trees.

Concurrency Theory Winter Semester 2013/14 2.11



Semantics of CCS II

Definition 2.4 (Semantics of CCS)

A process definition (Ci = Pi | 1 ≤ i ≤ k) determines the LTS
(Prc,Act,−→) whose transitions can be inferred from the following rules
(P,P ′,Q,Q ′ ∈ Prc , α ∈ Act, λ ∈ A ∪ A, a ∈ A):

(Act)
α.P

α−→ P

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q ′

P + Q
α−→ Q ′

(Par1)
P

α−→ P ′

P ‖ Q α−→ P ′ ‖ Q
(Par2)

Q
α−→ Q ′

P ‖ Q α−→ P ‖ Q ′

(Com)
P

λ−→ P ′ Q
λ−→ Q ′

P ‖ Q τ−→ P ′ ‖ Q ′
(Res)

P
α−→ P ′ (α, α /∈ L)

P \ L α−→ P ′ \ L

(Rel)
P

α−→ P ′

P[f ]
f (α)−→ P ′[f ]

(Call)
P

α−→ P ′ (C = P)

C
α−→ P ′

Concurrency Theory Winter Semester 2013/14 2.12



Semantics of CCS III

Example 2.5

1 One-place buffer:

B = in.out.B

2 Sequential two-place buffer:

B0 = in.B1

B1 = out.B0 + in.B2

B2 = out.B1

3 Parallel two-place buffer:

B‖ = (B[f ] ‖ B[g ]) \ com
B = in.out.B

where f := [out 7→ com] and g := [in 7→ com]

(on the board)

Concurrency Theory Winter Semester 2013/14 2.13



Semantics of CCS IV

Example 2.5 (continued)

Complete LTS of parallel two-place buffer:

B‖

((out.B)[f ] ‖ B[g ]) \ com

((out.B)[f ] ‖ (out.B)[g ]) \ com

(B[f ] ‖ (out.B)[g ]) \ com

(B[f ] ‖ B[g ]) \ com empty

1 entry

full

in
in

τ

out

inout

Concurrency Theory Winter Semester 2013/14 2.14



Outline

1 Syntax of CCS

2 Intuitive Meaning and Examples

3 Formal Semantics of CCS

4 Process Traces

Concurrency Theory Winter Semester 2013/14 2.15



Process Traces

Goal: reduce processes to the action sequences they can perform

Definition 2.6 (Trace language)

For every P ∈ Prc , let

Tr(P) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P
w−→ P ′}

be the trace language of P
(where

w−→ :=
a1−→ ◦ . . . ◦ an−→ for w = a1 . . . an).

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 2.7 (One-place buffer)

B = in.out.B

=⇒ Tr(B) = (in · out)∗ · (in + ε)

Concurrency Theory Winter Semester 2013/14 2.16



Process Traces

Goal: reduce processes to the action sequences they can perform

Definition 2.6 (Trace language)

For every P ∈ Prc , let

Tr(P) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P
w−→ P ′}

be the trace language of P
(where

w−→ :=
a1−→ ◦ . . . ◦ an−→ for w = a1 . . . an).

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 2.7 (One-place buffer)

B = in.out.B

=⇒ Tr(B) = (in · out)∗ · (in + ε)

Concurrency Theory Winter Semester 2013/14 2.16



Trace Equivalence II

Remarks:

The trace language of P ∈ Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

Trace equivalence identifies processes with identical LTSs: the trace
language of a process consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) =⇒ Tr(P) = Tr(Q)

Concurrency Theory Winter Semester 2013/14 2.17



Trace Equivalence II

Remarks:

The trace language of P ∈ Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

Trace equivalence identifies processes with identical LTSs: the trace
language of a process consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) =⇒ Tr(P) = Tr(Q)

Concurrency Theory Winter Semester 2013/14 2.17



Trace Equivalence II

Remarks:

The trace language of P ∈ Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

Trace equivalence identifies processes with identical LTSs: the trace
language of a process consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) =⇒ Tr(P) = Tr(Q)

Concurrency Theory Winter Semester 2013/14 2.17


	Syntax of CCS
	Intuitive Meaning and Examples
	Formal Semantics of CCS
	Process Traces

