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So far: “Qualitative” Modelling

Algebraic language (CCS) for syntactic description of concurrent
systems

Meaning given by LTSs that define dynamic behaviour of process
terms

Structural operational semantics for mapping CCS processes to LTSs

Notions of behavioural equivalence (trace equivalence, bisimilarity) for
comparing process behaviours

Modal logics (HML) to specify desired system properties

Petri Nets as model of true concurrency with partial-order semantics

⇒ very abstract (if any) notion of time:
logical order of computation steps
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Real-Time Reactive Systems

Example 22.1 (Real-time reactive systems)

brake systems and airbags in cars

plant controls

mobile phones

...

Real-time requirements

The correct behaviour of a real-time system does not only depend on the
logical order in which events are performed but also on their timing.

Example 22.2 (Untimed vs. timed)

Untimed: “if the car crashes, eventually the airbag will be inflated”

Timed: “if the car crashes, the airbag must be inflated within 50
milliseconds”
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Theory of Real-Time Systems

Extensive research work on formal methods for real-time systems:

Modelling
extensions of CCS: Timed CCS (TCCS; Yi 1990), Temporal Process
Algebra (Hennessy/Regan 1995), Temporal CCS (Moller/Tofts 1990)
extensions of other untimed process algebras (ACP, CSP)
timed automata (Alur/Dill 1990)

Requirement specification
HML with time (Laroussinie et al. 1990)
extensions of LTL: Timed Propositional Temporal Logic (TPTL;
Alur/Henzinger 1994), Metric Temporal Logic (MTL; Koymans 1990)
extension of CTL: Timed Computation Tree Logic (TCTL; Alur et
al. 1993)

Analysis
timed behavioural equivalences (timed trace equivalence, timed
bisimilarity)
abstraction of timed automata via regions and zones

Here: syntax and semantics of Timed CCS
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Untimed Modelling

Example 22.3 (Light switch)

1 If the switch is off, and is pressed once, then the light will turn on.

in CCS: Off = press.Light

2 If the switch is pressed again “soon” after the light was turned on,
the light becomes brighter. Otherwise, the light is turned off by the
next button press.

in CCS: Light = press.Bright + τ.press.Off
but: does not properly capture the “soon” requirement
rather: system may internally choose to switch off light after next
button press (after “timeout” action τ)

3 The light is also turned off by a button press when it is bright.

in CCS: Bright = press.Off
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Timed Modelling

Modelling with time delays

Light = press.Bright + ε(1.5).τ.press.Off

passage of time viewed as “action” performed by system

specified by new prefixing operator ε(d).P where d ∈ R≥0 gives
amount of time that needs to elapse before P ∈ Prc is enabled

thus: “soon” interpreted as “within 1.5 time units”

use of τ is crucial here: must be performed when enabled (details
later)
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Timed Labelled Transition Systems I

Definition 22.4 (Timed labelled transition system)

A timed labelled transition system (TLTS) is a triple (S , Lab,−→)
consisting of

a set S of states

a set Lab = Act ∪ R≥0 of labels

actions a ∈ Act
time delays d ∈ R≥0

a transition relation −→ ⊆ S × Lab × S (written s
λ−→ s ′)

Additional requirements:

time additivity: if s
d−→ s ′ and 0 ≤ d ′ ≤ d , then s

d ′
−→ s ′′

d−d ′
−→ s ′ for

some s ′′ ∈ S

self-reachability without delay: s
0−→ s for each s ∈ S

time determinism: if s
d−→ s ′ and s

d−→ s ′′, then s ′ = s ′′
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Timed Labelled Transition Systems II

Example 22.5 (Timed labelled transition system)

(S , Lab,−→)

where

S = R≥0

Lab = {a} ∪ R≥0
a−→ = {(5, 0)}

for all d ∈ R≥0:
d−→ = {(s, s + d) | s ∈ R≥0}

(diagram on the board)
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Syntax of Timed CCS I

Definition 22.6 (Syntax of TCCS (cf. Definition 2.1))

Let A be a set of (action) names.

A := {a | a ∈ A} denotes the set of co-names.
Act := A ∪ A ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.
Let Pid be a set of process identifiers.
The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| C (process call)
| ε(d).P (time delay)

where α ∈ Act, d ∈ R≥0, L ⊆ A, C ∈ Pid , and f : Act → Act such
that f (τ) = τ and f (a) = f (a) for each a ∈ A.
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Syntax of Timed CCS II

Definition 22.6 (continued)

A (recursive) process definition is an equation system of the form

(Ci = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ci ∈ Pid (pairwise distinct), and Pi ∈ Prc (with process
identifiers from {C1, . . . ,Ck}).

An occurrence of a process identifier C ∈ Pid in an expression
P ∈ Prc is guarded if it occurs within a subexpression of P of the
form λ.Q where λ ∈ Act or λ = ε(d) for some d > 0

A process expression/definition is guarded if all occurrences of process
identifiers are guarded

Conventions:

Processes P and ε(0).P will not be distinguished

All process definitions have to be guarded
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Syntax of Timed CCS III

Example 22.7

1 (a.C1 + (C2 ‖ b.C3) + C1) ‖ (ε(4.2).(C4 ‖ nil) + ε(1.2).C3)

first occurrence of C1 is guarded, second unguarded
occurrence of C2 is unguarded
both occurrences of C3 are guarded
occurrence of C4 is guarded
overall expression is unguarded

2 Off = press.Light
Bright = press.Off
Light = press.Bright + ε(1.5).τ.press.Off

is guarded
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Semantics of Timed CCS

Definition 22.8 (Semantics of TCCS – action transitions; cf. Def. 2.4)

A process definition (Ci = Pi | 1 ≤ i ≤ k) determines the TLTS
(Prc, Lab,−→) whose transitions can be inferred from the following rules
(P,P ′,Q,Q ′ ∈ Prc , α ∈ Act, λ ∈ A ∪ A, a ∈ A):

(Del)
P

α−→ P ′

ε(0).P
α−→ P ′

(Act)
α.P

α−→ P

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q ′

P + Q
α−→ Q ′

(Par1)
P

α−→ P ′

P ‖ Q α−→ P ′ ‖ Q
(Par2)

Q
α−→ Q ′

P ‖ Q α−→ P ‖ Q ′

(Com)
P

λ−→ P ′ Q
λ−→ Q ′

P ‖ Q τ−→ P ′ ‖ Q ′
(Res)

P
α−→ P ′ (α, α /∈ L)

P \ L α−→ P ′ \ L

(Rel)
P

α−→ P ′

P[f ]
f (α)−→ P ′[f ]

(Call)
P

α−→ P ′ (C = P)

C
α−→ P ′
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Semantics of Timed CCS II

Definition 22.8 (Semantics of TCCS – timed transitions)

Additionally for d , d ′ ∈ R≥0:

(tAdd)
P

d ′
−→ P ′

ε(d).P
d+d ′
−→ P ′

(tSub)
(d ′ ≤ d)

ε(d).P
d ′
−→ ε(d − d ′).P ′

(tAct)
(α 6= τ)

α.P
d−→ α.P

(tTau)

τ.P
0−→ τ.P

(tSum)
P

d−→ P ′ Q
d−→ Q ′

P + Q
d−→ P ′ + Q ′

(tRes)
P

d−→ P ′

P \ L d−→ P ′ \ L

(tRel)
P

d−→ P ′

P[f ]
d−→ P ′[f ]

(tCall)
P

d−→ P ′ (C = P)

C
d−→ P ′

Remarks:

parallel composition considered later
delay transitions do not resolve non-deterministic choices
(according to time-determinism property of Definition 22.4)
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Semantics of Timed CCS III

Example 22.9

Off = press.Light
Bright = press.Off
Light = press.Bright + ε(1.5).τ.press.Off

1 Light
press−→ Bright

2 for all 0 ≤ d ≤ 1.5: Light
d−→ press.Bright + ε(1.5− d).τ.press.Off

3 especially for d = 1.5: Light
1.5−→ press.Bright + ε(0).τ.press.Off
τ−→ press.Off
d ′
−→ press.Off
press−→ Off

(for all d ′ ∈ R≥0)

4 moreover: press.Bright + ε(0).τ.press.Off 6 d−→ (for any d > 0)
=⇒ first alternative only enabled up to time point 1.5
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Properties of the Semantics

Lemma 22.10 (cf. Definition 22.4)

1 time additivity: if P
d−→ P ′ and 0 ≤ d ′ ≤ d, then P

d ′
−→ P ′′

d−d ′
−→ P ′

for some P ′′ ∈ Prc

2 self-reachability without delay: P
0−→ P for each P ∈ Prc

3 time determinism: if P
d−→ P ′ and P

d−→ P ′′, then P ′ = P ′′

4 persistency of action transitions: for all P,Q ∈ Prc, α ∈ Act and

d ∈ R≥0, if P
α−→ and P

d−→ Q, then Q
α−→

(1)–(3) implies that the semantics of a TCCS process is indeed a TLTS.

Proof.
1 by Rules (tAdd), (tSub) and (tAct)

2 by Rules (tSub), (tAct) and (tTau) (note that every P is guarded)

3 by induction on derivation tree

4 by induction on derivation tree
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The Light Switch Example Revisited

Example 22.11

Off = press.Light
Bright = press.Off
Light = press.Bright + ε(1.5).τ.press.Off

FastUser = press.ε(0.3).press.FastUser

Expect immediate synchronisation between FastUser and Off :
(FastUser ‖ Off ) \ press

τ−→ (ε(0.3).press.FastUser ‖ Light) \ press

Now press-transition only enabled after 0.3 time units, which is also a possible

delay for Light: Light
0.3−→ press.Bright + ε(1.2).τ.press.Off

Therefore expected that whole system can delay:
((ε(0.3).press.FastUser) ‖ Light) \ press

0.3−→ ((press.FastUser) ‖ (press.Bright + ε(1.2).τ.press.Off )) \ press

Now another synchronisation should be possible:
((press.FastUser) ‖ (press.Bright + ε(1.2).τ.press.Off )) \ press (∗)
τ−→ (FastUser ‖ Bright) \ press

But: both parallel components of (∗) can delay for 1.2 time units, giving rise to

(∗) 1.2−→ τ−→ τ−→ (FastUser ‖ Off ) \ press

How to enforce that intended synchronisation occurs immediately?
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The Maximal-Progress Assumption

Maximal-progress assumption

If a process is ready to perform an action that is entirely under its control,
then it will immediately do so without further delay.

In the setting of timed CCS, the only action that is entirely under the
control of a process is the τ -action. Therefore:

Maximal-progress assumption for Timed CCS

For each TCCS process P ∈ Prc , if P
τ−→ then P 6 d−→ for any d > 0.
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Operational Semantics with Maximal Progress

Definition 22.12 (Semantics of TCCS – timed parallel transitions)

Additionally for P,P ′,Q,Q ′ ∈ Prc and d ∈ R≥0:

(tPar)
P

d−→ P ′ Q
d−→ Q ′ NoSync(P,Q, d)

P ‖ Q d−→ P ′ ‖ Q ′

where predicate NoSync(P,Q, d) expresses that no synchronisation
between P and Q becomes enabled by delaying less than d time units:

For each 0 ≤ d ′ < d and P ′,Q ′ ∈ Prc ,

if P
d ′
−→ P ′ and Q

d ′
−→ Q ′ then P ′ ‖ Q ′ 6 τ−→ .

Example 22.13

1 (ε(0.3).press.FastUser ‖ Light) \ press 6 d−→ for any d > 0.3

2 ((press.FastUser) ‖ (press.Bright + ε(1.2).τ.press.Off )) \ press 6 d−→
for any d > 0
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Modelling a Slow User

Example 22.14 (cf. Example 22.11)

Off = press.Light
Bright = press.Off
Light = press.Bright + ε(1.5).τ.press.Off

SlowUser = press.ε(1.7).press.SlowUser

As before:
(SlowUser ‖ Off ) \ press

τ−→ (ε(1.7).press.SlowUser ‖ Light) \ press

Now press-transition only enabled after 1.7 time units, but Light can
only delay for at most 1.5 units:

((ε(1.7).press.SlowUser) ‖ Light) \ press
1.5−→

((ε(0.2).press.SlowUser) ‖ (press.Bright +ε(0).τ.press.Off ))\press (∗)
Here the right-hand process of (∗) can do a τ -action, disabling further
delays and thus avoiding the Bright state:
(∗) τ−→ ((ε(0.2).press.SlowUser) ‖ (press.Off )) \ press
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Miscellaneous

Written exams:

1st Friday 21 February 11:30 AH 2
2nd Tuesday 25 March 10:00 AH 1

Teaching in Summer 2014:

Seminar Concurrency Theory [Katoen/Noll]
Course Advanced Model Checking [Katoen/NN]
Course Modelling and Verification of Probabilistic Systems
[Katoen/NN]
Course Compiler Construction [Noll/NN]

Concurrency Theory Winter Semester 2013/14 22.27



Miscellaneous

Written exams:

1st Friday 21 February 11:30 AH 2
2nd Tuesday 25 March 10:00 AH 1

Teaching in Summer 2014:

Seminar Concurrency Theory [Katoen/Noll]
Course Advanced Model Checking [Katoen/NN]
Course Modelling and Verification of Probabilistic Systems
[Katoen/NN]
Course Compiler Construction [Noll/NN]

Concurrency Theory Winter Semester 2013/14 22.27


	Real-Time Reactive Systems
	CCS with Time Delays
	Syntax of Timed CCS
	Semantics of Timed CCS
	Handling Parallel Composition
	Miscellaneous

