Concurrency Theory

Lecture 22: Timed Modelling & Conclusions

Joost-Pieter Katoen Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY
{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Wanted: Software Engineering HiWis

@ What we offer: work in
e ESA project HASDEL
o Hardware-Software Dependability for Launchers
@ successor of COMPASS project
(compass.informatik.rwth-aachen.de)
o goal: enhance COMPASS for rocket design
validation
e EU project D-MILS

o Dependability and Security of Distributed
Information and Communication Infrastructures

o design and implementation of high-level S =

specification language =
@ What we expect: prospective candidates B MILS
o like formal methods (model checking,
program/model transformations)
o program efficiently (Python)
o work 9-19 hrs/week

e Contact: Thomas Noll (noll@cs.rwth-aachen.de)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 222

compass.informatik.rwth-aachen.de
noll@cs.rwth-aachen.de

© Real-Time Reactive Systems

RWTHAACHEN

So far: “Qualitative” Modelling

@ Algebraic language (CCS) for syntactic description of concurrent
systems

@ Meaning given by LTSs that define dynamic behaviour of process
terms

@ Structural operational semantics for mapping CCS processes to LTSs

@ Notions of behavioural equivalence (trace equivalence, bisimilarity) for
comparing process behaviours

e Modal logics (HML) to specify desired system properties
@ Petri Nets as model of true concurrency with partial-order semantics

= very abstract (if any) notion of time:
logical order of computation steps

nerAACHEN Concurrency Theory Winter Semester 2013/14 22.4

Real-Time Reactive Systems

Example 22.1 (Real-time reactive systems)

brake systems and airbags in cars
plant controls

o
@ mobile phones
o

Real-time requirements

The correct behaviour of a real-time system does not only depend on the
logical order in which events are performed but also on their timing.

Example 22.2 (Untimed vs. timed)

o Untimed: “if the car crashes, eventually the airbag will be inflated”

@ Timed: “if the car crashes, the airbag must be inflated within 50
milliseconds” y

RWNTH HE Concurrency Theory Winter Semester 2013/14 225

Theory of Real-Time Systems

Extensive research work on formal methods for real-time systems:

o Modelling
e extensions of CCS: Timed CCS (TCCS; Yi 1990), Temporal Process
Algebra (Hennessy/Regan 1995), Temporal CCS (Moller/Tofts 1990)
e extensions of other untimed process algebras (ACP, CSP)
o timed automata (Alur/Dill 1990)
@ Requirement specification
o HML with time (Laroussinie et al. 1990)
o extensions of LTL: Timed Propositional Temporal Logic (TPTL;
Alur/Henzinger 1994), Metric Temporal Logic (MTL; Koymans 1990)
o extension of CTL: Timed Computation Tree Logic (TCTL; Alur et
al. 1993)
o Analysis
o timed behavioural equivalences (timed trace equivalence, timed
bisimilarity)
e abstraction of timed automata via regions and zones

@ Here: syntax and semantics of Timed CCS

Concurrency Theory Winter Semester 2013/14 22.6

© CCS with Time Delays

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 22.7

Untimed Modelling

Example 22.3 (Light switch)

@ If the switch is off, and is pressed once, then the light will turn on.
e in CCS: Off = press.Light
@ |If the switch is pressed again “soon” after the light was turned on,
the light becomes brighter. Otherwise, the light is turned off by the
next button press.
e in CCS: Light = press.Bright + 7.press. Off
e but: does not properly capture the “soon” requirement
o rather: system may internally choose to switch off light after next
button press (after “timeout” action 7)
© The light is also turned off by a button press when it is bright.
e in CCS: Bright = press.Off

RWNTH HE Concurrency Theory Winter Semester 2013/14 22.8

Timed Modelling

Modelling with time delays

Light = press.Bright + £(1.5).7.press. Off

@ passage of time viewed as “action” performed by system

o specified by new prefixing operator £(d).P where d € R>¢ gives
amount of time that needs to elapse before P € Prc is enabled

@ thus: “soon” interpreted as “within 1.5 time units”

@ use of 7 is crucial here: must be performed when enabled (details
later)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 22.9

Timed Labelled Transition Systems |

Definition 22.4 (Timed labelled transition system)

A timed labelled transition system (TLTS) is a triple (S, Lab, —)
consisting of

@ aset S of states
@ aset Lab= Act UR>q of labels

e actions a € Act
o time delays d € R>g

- : : A
@ a transition relation — C S x Lab x S (written s — §')
Additional requirements:
: o d ; d_ ,d—d
@ time additivity: if s — s" and 0 < d’ < d, then s — s” — s’ for
some s” € S
@ self-reachability without delay: s O sforeachse S

. . : d d
@ time determinism: if s — s’ and s — s”, then s/ = s”

v

RWNTH Concurrency Theory Winter Semester 2013/14 22.10

Timed Labelled Transition Systems ||

Example 22.5 (Timed labelled transition system)

(S, Lab, —)
where
e S=R>g
e Lab={a} UR>g
o % ={(50)}
e for all d € R>q: 9, = {(s,s+d)|seR>0}
(diagram on the board)

Concurrency Theory Winter Semester 2013/14 22.11

© Syntax of Timed CCS

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 22.12

Syntax of Timed CCS |
Definition 22.6 (Syntax of TCCS (cf. Definition 2.1))

o Let A be a set of (action) names.

o A:= {3 | ac A} denotes the set of co-names.

@ Act .= AUAU {7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

o Let Pid be a set of process identifiers.

@ The set Prc of process expressions is defined by the following syntax:

P = nil (inaction)
| a.P (prefixing)
| P14+ P> (choice)
| Pi P2 (parallel composition)
| P\L (restriction)
| PI[f] (relabelling)
| C (process call)
|

e(d).P (time delay)

where o € Act, d € R>o, LC A, C € Pid, and f : Act — Act such
that f(7) = 7 and f(3) = f(a) for each a € A.

-0
RWNTH Concurrency Theory Winter Semester 2013/14 22.13

Syntax of Timed CCS Il

Definition 22.6 (continued)
@ A (recursive) process definition is an equation system of the form
(CG=Pi|1<i<k)
where k > 1, C; € Pid (pairwise distinct), and P; € Prc (with process
identifiers from {Cy, ..., Cc}).

@ An occurrence of a process identifier C € Pid in an expression
P € Prc is guarded if it occurs within a subexpression of P of the
form A\.Q where A € Act or A = £(d) for some d > 0

@ A process expression/definition is guarded if all occurrences of process
identifiers are guarded

v

Conventions:
@ Processes P and £(0).P will not be distinguished
@ All process definitions have to be guarded

RWNTH Concurrency Theory Winter Semester 2013/14 22.14

Syntax of Timed CCS IlI

Example 22.7
QO G+ (G bG)+ G) |l (e(4.2).(Ca || nil) +£(1.2).G)
e first occurrence of C; is guarded, second unguarded
e occurrence of G, is unguarded
e both occurrences of (3 are guarded
o
o

occurrence of G, is guarded
overall expression is unguarded

@ Off = press.Light
Bright = press. Off
Light = press.Bright + ¢(1.5).7.press. Off

is guarded

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 22.15

@ Semantics of Timed CCS

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 22.16

Semantics of Timed CCS

Definition 22.8 (Semantics of TCCS — action transitions; cf. Def. 2.4)

A process definition (C; = P; | 1 < < k) determines the TLTS
(Prc, Lab, —) whose transitions can be inferred from the following rules
(P,P,Q,Q € Prc, a« € Act, \ € AUA, a € A):

o /
(pey——F__ (Act) ————
e(0).P — P’ a.P— P
« o /
(Sumﬂiapl (Sumg)%
P+Q—F P+Q —Q
« o /
(Pary) P— P Par Q—@

a (Parz) a
Pl —=F@ PIQR—P|Q
mp@p/QLQl ReSPi>P’(a,5¢L)

Co
(P|lQ= P | Q@ P\L-% P\ L
(Rel)# (Call) — Pa (C/: P)
Pif] 4 Prif] C—P

RWNTH Concurrency Theory Winter Semester 2013/14 22.17

Semantics of Timed CCS I

Definition 22.8 (Semantics of TCCS — timed transitions)

Additionally for d, d" € Rxq:
a, pr d<d
(tAdd)Ld'Z (tSub) (_—)
e(d).p 4 pr e(d).P L5 e(d — d').P’
(a#7)
(tAct) ———— (Tau) —————
Oél'P—>a'cllD 7P — 1.P
/ / d ’
(tSum) i Pd H=a (tRes) P 7 P
P+Q =P +q P\L— P'\L
d, pr PP (C=P
(tReI)PT>—P (tCall)—— d()
PIf] -4 P[f] c-%p

Remarks:
@ parallel composition considered later
@ delay transitions do not resolve non-deterministic choices
(according to time-determinism property of Definition 22.4)

RWNTH HE Concurrency Theory Winter Semester 2013/14 22.18

Semantics of Timed CCS il

Off = press.Light
Bright = press. Off
Light = press.Bright + £(1.5).7.press.Off

O Light ™= Bright
Q forall 0 <d<1.5: Light 4, press.Bright + (1.5 — d).7.press. Off

© especially for d = 1.5: Light 15 press.Bright + £(0).7.press. Off
T press.Off

LN press. Off
= off

(for all d' € R>q)

© moreover: press.Bright + £(0).7.press. Off 7i> (for any d > 0)
— first alternative only enabled up to time point 1.5

RWNTH Concurrency Theory Winter Semester 2013/14 22.19

Properties of the Semantics

Lemma 22.10 (cf. Definition 22.4)

@ time additivity: if P —%> P' and 0 < d' < d, then P % p" =% p’
for some P" € Prc

@ self-reachability without delay: P 9 P for each P € Prc

© time determinism: if P s P and P -2 P" then P' = P”

@ persistency of action transitions: for all P, @ € Prc, a € Act and
d € Rso, if P - and P -%5 Q, then Q -

(1)-(3) implies that the semantics of a TCCS process is indeed a TLTS.

v

© by Rules (tAdd), (tSub) and (tAct)
@ by Rules (tSub), (tAct) and (tTau) (note that every P is guarded)

© by induction on derivation tree

@ by induction on derivation tree

RWNTH Concurrency Theory Winter Semester 2013/14 22.20

© Handling Parallel Composition

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 22.21

The Light Switch Example Revisited

Example 22.11

Off = press.Light
Bright = press. Off
Light = press.Bright + €(1.5).7.press. Off
FastUser = press.c(0.3).press. FastUser
@ Expect immediate synchronisation between FastUser and Off:
(FastUser || Off) \ press — (¢(0.3).press. FastUser || Light) \ press
@ Now press-transition only enabled after 0.3 time units, which is also a possible
delay for Light: Light 23, press.Bright + £(1.2).7.press. Off
@ Therefore expected that whole system can delay:
((£(0.3).press. FastUser) || Light) \ press
23 ((press. FastUser) || (press.Bright + €(1.2).7.press.Off)) \ press
@ Now another synchronisation should be possible:
((press.FastUser) || (press.Bright + £(1.2).7.press.Off)) \ press (%)
— (FastUser || Bright) \ press
@ But: both parallel components of () can delay for 1.2 time units, giving rise to

T T

(%) I N (FastUser || Off) \ press

@ How to enforce that intended synchronisation occurs immediately?
w

RWNTH Concurrency Theory Winter Semester 2013/14 22.22

The Maximal-Progress Assumption

Maximal-progress assumption

If a process is ready to perform an action that is entirely under its control,
then it will immediately do so without further delay.

In the setting of timed CCS, the only action that is entirely under the
control of a process is the T-action. Therefore:

Maximal-progress assumption for Timed CCS

For each TCCS process P € Prc, if P — then P 7i> for any d > 0.

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 22.23

Operational Semantics with Maximal Progress

Definition 22.12 (Semantics of TCCS — timed parallel transitions)
Additionally for P, P, Q, Q" € Prc and d € R>:

P-4 P Q-% Q NoSync(P,Q,d)

(tPar) ”
PIIQ—=FIQ

where predicate NoSync(P, Q, d) expresses that no synchronisation
between P and @ becomes enabled by delaying less than d time units:

Foreach 0 < d’ < d and P', Q' € Prc,
if P P and Q@ -5 Q' then P || @ /= .

v

Example 22.13

O (2(0.3).press. FastUser || Light) \ press 7& for any d > 0.3

@ ((press.FastUser) || (press.Bright + £(1.2).7.press.Off)) \ press 7&
for any d >0

RWNTH Concurrency Theory Winter Semester 2013/14 22.24

Modelling a Slow User

Example 22.14 (cf. Example 22.11)

Off = press.Light
Bright = press.Off
Light = press.Bright + £(1.5).7.press. Off
SlowUser = press.c(1.7).press.SlowUser

@ As before:

(SlowUser || Off) \ press — (£(1.7).press.SlowUser || Light) \ press
o Now press-transition only enabled after 1.7 time units, but Light can

only delay for at most 1.5 units:

((e(1.7).press.SlowUser) || Light) \ press RSN

((¢(0.2).press.SlowUser) || (press.Bright+¢c(0).7.press.Off)\ press (x)
@ Here the right-hand process of (x) can do a 7-action, disabling further

delays and thus avoiding the Bright state:

() — ((£(0.2).press. SlowUser) || (press.Off)) \ press

v

RWNTH Concurrency Theory Winter Semester 2013/14 22.25

@ Miscellaneous

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 22.26

Miscellaneous

@ Written exams:
o 1st Friday 21 February 11:30 AH 2
e 2nd Tuesday 25 March 10:00 AH 1
@ Teaching in Summer 2014:
e Seminar Concurrency Theory [Katoen/Noll]
o Course Advanced Model Checking [Katoen/NN]

e Course Modelling and Verification of Probabilistic Systems
[Katoen/NN]
o Course Compiler Construction [Noll/NN]

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 22.27

	Real-Time Reactive Systems
	CCS with Time Delays
	Syntax of Timed CCS
	Semantics of Timed CCS
	Handling Parallel Composition
	Miscellaneous

