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© Syntax of CCS
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The Calculus of Communicating Systems

History:

@ Robin Milner: A Calculus of Communicating Systems
LNCS 92, Springer, 1980

@ Robin Milner: Communication and Concurrency
Prentice-Hall, 1989

@ Robin Milner: Communicating and Mobile Systems: the m-calculus
Cambridge University Press, 1999

Approach: describing parallelism on a simple and abstract level, using
only a few basic primitives

@ no explicit storage (variables)
@ no explicit representation of values (numbers, Booleans, ...)

— parallel system reduced to communication potential

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 2.8



Syntax of CCS |

Definition 2.1 (Syntax of CCS)

@ Let A be a set of (action) names.

o A:={3| ac A} denotes the set of co-names.

@ Act := AUAU {7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

@ Let Pid be a set of process identifiers.

@ The set Prc of process expressions is defined by the following syntax:

C (process call)

P = nil (inaction)
| a.P (prefixing)
| P14+ P> (choice)
| Pil P2 (parallel composition)
| P\L (restriction)
| P[f] (relabelling)
|

where o € Act, L C A, C € Pid, and f : Act — Act such that

f(r) =7 and f(é)_: f(a) for each a € A.

v
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Syntax of CCS Il

Definition 2.1 (continued)

@ A (recursive) process definition is an equation system of the form
(CG=Pi|1<i<k)

where k > 1, C; € Pid (pairwise distinct), and P; € Prc (with process
identifiers from {Cy, ..., Cc}).

Notational Conventions:

@ 3 means a

o 7 Pi (neN) means Py + ...+ P, (where >>0_, P; := nil)

@ P\ a abbreviates P\ {a}

@ [a; — b1,...,a, — by] stands for f : Act — Act with f(a;) = b;
(i € [n]) and f(a) = « otherwise

@ restriction and relabelling bind stronger than prefixing, prefixing
stronger than composition, composition stronger than choice:

P\a+b.Q| R means (P\a)+((b.Q)] R)
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© Intuitive Meaning and Examples
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Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.
@ «.P can execute «v and then behaves as P.

@ An action a € A (3 € A) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
Pi || P2), they are merged into a T-action.

@ P; + P, represents the nondeterministic choice between P; and Ps.

@ Py || P> denotes the parallel execution of Py and P,, involving
interleaving or communication.

@ The restriction P\ L declares each a € L as a local name which is
only known within P.

@ The relabelling P[f] allows to adapt the naming of actions.

@ The behaviour of a process call C is given by the right-hand side of
the corresponding equation.
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CCS Examples

© One-place buffer
@ Two-place buffer

© Parallel specification of two-place buffer

(on the board)
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9 Formal Semantics of CCS
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Labelled Transition Systems

Goal: represent behaviour of system by (infinite) graph
@ nodes = system states

@ edges = transitions between states

Definition 2.3 (Labelled transition system)

A (Act-)labelled transition system (LTS) is a triple (S, Act, —)
consisting of

@ a set S of states
@ a set Act of (action) labels

@ a transition relation — C S X Act X S

For (s,a,s’) € — we write s —— s’. An LTS is called finite if S is so.

Remarks:
@ sometimes an initial state sy € S is distinguished (“LTS(sp)")

o (finite) LTSs correspond to (finite) automata without final states
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Semantics of CCS |

We define the assignment

syntax — semantics
process definition +— LTS
by induction over the syntactic structure of process expressions. Here we
employ derivation rules of the form
premise(s)

rule name -
conclusion

which can be composed to complete derivation trees.
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Semantics of CCS Il

Definition 2.4 (Semantics of CCS)

A process definition (C; = P; | 1 < i < k) determines the LTS
(Prc, Act, —) whose transitions can be inferred from the following rules
(P,P,Q,Q € Prc, a« € Act, \ € AUA, a € A):

(Act) —————
aP— P
o / @ /
(Sumﬂ% (Squ)%
P+Q— P P+Q— @
« / @ /
(Par1) P—P Par 9 Q@

a (Parz) a
PIIQ—FIQ PIIQ—=P[Q

pLMD/QLQ/ P2 P (a,a¢l)
m Res

Co
( PIQ-L P | @ P\L-% P\L
(ReI)Pf(L;)P/ (Call) i 'Da (C/: P)
PIf] " p'if] C—=P
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Semantics of CCS IlI
Example 2.5

© One-place buffer:

B = in.out.B
@ Sequential two-place buffer:
Bo = in.Bl
By = out.By + in.B;
By = out.B;

© Parallel two-place buffer:
B = (BIf] || Blgl) \ com
B = in.out.B

where f := [out — com] and g := [in — com]

(on the board)
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Semantics of CCS IV

Example 2.5 (continued)
Complete LTS of parallel two-place buffer:

T ((BIFT 1| Ble]) \ com) empty
((out.B)[f] || B[g]<Hy’t B)lgl) \Com] 1 entry
((out.B)[f] || (out.B)[g]) \ com full
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@ Process Traces
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Process Traces

Goal: reduce processes to the action sequences they can perform

Definition 2.6 (Trace language)

For every P € Prc, let
Tr(P) := {w € Act* | ex. P’ € Prc such that P % P’}

be the trace language of P
w al an
(where — :== 5 o0...0 =5 forw=a;...a,).

P, Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 2.7 (One-place buffer)

B = in.out.B
= Tr(B) = (in- out)* - (in+¢)
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Trace Equivalence Il

Remarks:

@ The trace language of P € Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

@ Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

@ Trace equivalence identifies processes with identical LTSs: the trace
language of a process consists of the (finite) paths in the LTS. Thus:

LTS(P)=LTS(Q) = Tr(P) = Tr(Q)
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