Concurrency Theory

Lecture 3: Hennessy-Milner Logic

Joost-Pieter Katoen Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY
{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Written Exams in Concurrency Theory

© Friday, 21.02.2014, 11:30-14:00, AH 2
@ Tuesday, 25.03.2014, 10:00-12:30, AH 1

Online registration via CampusOffice is enabled.

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 3.2

Wanted: Student Assistant

D-MIiLS

DISTRIBUTED MILS FOR DEPENDABLE INFORMATION
AND COMMUNICATION INFRASTRUCTURES

@ D-MILS research project (http://www.d-mils.org/)
e architectural specification of secure systems
e modular high-assurance platform
o framework for the certification of systems
o basis: MILS-AADL specification language
@ Task: implementation of compiler frontend
e parser
e semantic checker
o based on ANTLR 3 definition of SLIM specification language
(COMPASS project)
o estimated effort: 10 h/week

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 33

http://www.d-mils.org/

@ Recap: Calculus of Communicating Systems

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 3.4

Syntax of CCS |

Definition (Syntax of CCS)

@ Let A be a set of (action) names.

o A:={3| ac A} denotes the set of co-names.

@ Act := AUAU {7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

@ Let Pid be a set of process identifiers.

@ The set Prc of process expressions is defined by the following syntax:

C (process call)

P = nil (inaction)
| a.P (prefixing)
| P14+ P> (choice)
| Pil P2 (parallel composition)
| P\L (restriction)
| P[f] (relabelling)
|

where o € Act, L C A, C € Pid, and f : Act — Act such that

f(r) =7 and f(é)_: f(a) for each a € A.

v

RWNTH Concurrency Theory Winter Semester 2013/14 3.5

Syntax of CCS Il

Definition (continued)

@ A (recursive) process definition is an equation system of the form
(CG=Pi|1<i<k)

where k > 1, C; € Pid (pairwise distinct), and P; € Prc (with process
identifiers from {Cy, ..., Cc}).

Notational Conventions:

@ 3 means a

o 7 Pi (neN) means Py + ...+ P, (where >>0_, P; := nil)

@ P\ a abbreviates P\ {a}

@ [a; — b1,...,a, — by] stands for f : Act — Act with f(a;) = b;
(i € [n]) and f(a) = « otherwise

@ restriction and relabelling bind stronger than prefixing, prefixing
stronger than composition, composition stronger than choice:

P\a+b.Q| R means (P\a)+((b.Q)] R)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.6

Labelled Transition Systems

Goal: represent behaviour of system by (infinite) graph
@ nodes = system states

@ edges = transitions between states

Definition (Labelled transition system)

A (Act-)labelled transition system (LTS) is a triple (S, Act, —)
consisting of

@ a set S of states
@ a set Act of (action) labels

@ a transition relation — C S X Act X S

For (s,a,s’) € — we write s —— s’. An LTS is called finite if S is so.

Remarks:
@ sometimes an initial state sy € S is distinguished (“LTS(sp)")

o (finite) LTSs correspond to (finite) automata without final states

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.7

Semantics of CCS |

Definition (Semantics of CCS)

A process definition (C; = P; | 1 < i < k) determines the LTS
(Prc, Act, —) whose transitions can be inferred from the following rules
(P,P,Q,Q € Prc, a« € Act, \ € AUA, a € A):

(Act) —————
aP— P
o / @ /
(Sumﬂ% (Squ)%
P+Q— P P+Q— @
« / @ /
(Par1) P—P Par 9 Q@

a (Parz) a
PIIQ—FIQ PIIQ—=P[Q

pLMD/QLQ/ P2 P (a,a¢l)
m Res

Co
(PIQ-L P | @ P\L-% P\L
(ReI)Pf(L;)P/ (Call) i 'Da (C/: P)
PIf] " p'if] C—=P

RWNTH Concurrency Theory Winter Semester 2013/14 3.8

Semantics of CCS Il

Example

Parallel two-place buffer: B = (B[f] || B[g]) \ com
B = in.out.B
where f := [out — com] and g := [in — com]

B| ((BIFI || Blg]) \ com) empty

in . out
in

((@uz.B)If] | Ble]) \ com}—{(BI] | (eut.B)lg]) \ com] 1 entry

out n

(((eut.B)[f] | (out.B)[g]) \ com) full

Winter Semester 2013/14 3.9

@ Infinite State Spaces

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.10

The Power of Recursive Definitions

So far: only finite state spaces

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.11

The Power of Recursive Definitions

So far: only finite state spaces

Example 3.1 (Counter)

C = up.(C || down.nil)

v

RWTHAACHE Concurrency Theory Winter Semester 2013/14 3.11

The Power of Recursive Definitions

So far: only finite state spaces

Example 3.1 (Counter)

C = up.(C || down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

u u u
C | down)—p{C || down || down}—p>@

down down
u u
(C Il nit—2—~{C || down || nil}—2
down

C [nil || nil}——

v

RWNTH HE Concurrency Theory Winter Semester 2013/14 3.11

The Power of Recursive Definitions

So far: only finite state spaces

Example 3.1 (Counter)

C = up.(C || down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

u u u
C | down)—p{C || down || down}—p>@

down down
u u
(C Il nit—2—~{C || down || nil}—2
down

C [nil || nil}——

Sequential “specification”: Cy = up.(y
Cy, = up.Chi1 + down.Cp,_q (n>0)

v

RWNTH HE Concurrency Theory Winter Semester 2013/14 3.11

© Process Traces

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.12

Process Traces |

Goal: reduce processes to the action sequences they can perform

Definition 3.2 (Trace language)

For every P € Prc, let
Tr(P) := {w € Act* | ex. P € Prc such that P % P’}

be the trace language of P
w al an
(where — :== 5 o0...0 =5 forw=a;...a,).

P, Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Concurrency Theory Winter Semester 2013/14 3.13

Process Traces |

Goal: reduce processes to the action sequences they can perform

Definition 3.2 (Trace language)

For every P € Prc, let
Tr(P) := {w € Act* | ex. P’ € Prc such that P % P’}

be the trace language of P
w al an
(where — :== 5 o0...0 =5 forw=a;...a,).

P, Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 3.3 (One-place buffer)

B = in.out.B
= Tr(B) = (in- out)* - (in+¢)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.13

Process Traces Il

Remarks:

@ The trace language of P € Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.14

Process Traces Il

Remarks:

@ The trace language of P € Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

@ Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.14

Process Traces Il

Remarks:

@ The trace language of P € Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

@ Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

@ Trace equivalence identifies processes with identical LTSs: the trace
language of a process consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) = Tr(P) = Tr(Q)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.14

Process Traces Il

Remarks:

@ The trace language of P € Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

@ Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

@ Trace equivalence identifies processes with identical LTSs: the trace
language of a process consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) = Tr(P) = Tr(Q)

@ Later we will see: trace equivalence is too coarse, i.e., identifies too
many processes
= bisimulation

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.14

e Hennessy-Milner Logic

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.15

Goal: check processes for simple properties
@ action a is initially enabled
@ action b is initially disabled
@ a deadlock never occurs
o

always sends a reply after receiving a request

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 3.16

Goal: check processes for simple properties
@ action a is initially enabled
@ action b is initially disabled
@ a deadlock never occurs
o

always sends a reply after receiving a request

formalisation in Hennessy-Milner Logic (HML)

M. Hennessy, R. Milner: On Observing Nondeterminism and
Concurrency, ICALP 1980, Springer LNCS 85, 299-309

checking by exploration of state space

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.16

Syntax of HML

Definition 3.4 (Syntax of HML)

The set HMF of Hennessy-Milner formulae over a set of actions Act is
defined by the following syntax:

F=tt (true)
| ff (false)
| FAANF (conjunction)
| AV F (disjunction)
| (a)F (diamond)
| [a]F (box)

where a € Act.

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.17

Syntax of HML

Definition 3.4 (Syntax of HML)

The set HMF of Hennessy-Milner formulae over a set of actions Act is
defined by the following syntax:

F=tt (true)
| ff (false)
| FAANF (conjunction)
| AV F (disjunction)
| (a)F (diamond)
| [a]F (box)

where a € Act.

Abbreviations for L = {a1,...,an} (n € N):
o (L)F :=(a1)F V...V {(anF
o [L]F :=[a1]F A ... Aan]F
e In particular, (0)F :=ff and [0]F := tt

RWTHAACHE Concurrency Theory Winter Semester 2013/14 3.17

Meaning of HML Constructs

@ All processes satisfy tt.

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 3.18

Meaning of HML Constructs

@ All processes satisfy tt.

@ No process satisfies ff.

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 3.18

Meaning of HML Constructs

@ All processes satisfy tt.
@ No process satisfies ff.
@ A process satisfies F A G iff it satisfies F and G.

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.18

Meaning of HML Constructs

All processes satisfy tt.

No process satisfies ff.

A process satisfies F A G iff it satisfies F and G.

A process satisfies F \V G iff it satisfies either F or G or both.

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.18

Meaning of HML Constructs

All processes satisfy tt.

No process satisfies ff.

A process satisfies F A G iff it satisfies F and G.

A process satisfies F \V G iff it satisfies either F or G or both.

A process satisfies () F for some a € Act iff it affords an a-labelled
transition to a state satisfying F (possibility).

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.18

Meaning of HML Constructs

All processes satisfy tt.

No process satisfies ff.

A process satisfies F A G iff it satisfies F and G.

A process satisfies F \V G iff it satisfies either F or G or both.

A process satisfies () F for some a € Act iff it affords an a-labelled
transition to a state satisfying F (possibility).

A process satisfies [a|F for some a € Act iff all its a-labelled
transitions lead to a state satisfying F (necessity).

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.18

Semantics of HML

Definition 3.5 (Semantics of HML)

Let (S, Act,—) be an LTS and F € HMF. The set of processes in S
that satisfy F, [F] C S, is defined by

[tt] =S [ff] =0
[[Fl N FQ]] = [[Fl]] N [[FQ]] [[Fl V Fg]] = [[Fl]] U HF2]]
[(a)F] := (a)([F]) [[e]F] := [-e-I([FT)

where (-a-),[-a-] : 2° — 2° are given by
(a)(T)={s€S|3I'cT:5s- 55}
[a(T) ={s€S|VseS:s-5s = scT}
We write s |= F iff s € [F]. Two HML formulae are equivalent (written
F = G) iff they are satisfied by the same processes in every LTS.

RWNTH HE Concurrency Theory Winter Semester 2013/14 3.19

Semantics of HML

Definition 3.5 (Semantics of HML)

Let (S, Act,—) be an LTS and F € HMF. The set of processes in S
that satisfy F, [F] C S, is defined by

[tt] =S [ff] =0
[[Fl N FQ]] = [[Fl]] N [[F2]] [[Fl V Fg]] = [[Fl]] U H:F2]]
[(a)F] := (a)([F]) [[e]F] := [-e-I([FT)

where (-a-),[-a-] : 2° — 2° are given by
(a)(T)={s€S|3I'cT:5s- 55}
[a(T) ={s€S|VseS:s-5s = scT}
We write s |= F iff s € [F]. Two HML formulae are equivalent (written
F = G) iff they are satisfied by the same processes in every LTS.

Example 3.6 ((-a-), [-o] operators)

on the board

RWNTH Concurrency Theory Winter Semester 2013/14 3.19

Simple Properties Revisited

@ action a is initially enabled: (a)tt

[(a)tt] = (-a)[tt] = (-a-)(S)

={s€S|3I'cS:s L} ={seS|s-}

V.

RWNTH HE Concurrency Theory Winter Semester 2013/14 3.20

Simple Properties Revisited

@ action a is initially enabled: (a)tt
[(a)tt] = () [tt] = (2)(S)
={seS|IecS:sL}={seS|s}
@ action b is initially disabled: [b]ff
[[61fF] = [-61#F] = [-61(0)
:{S€S|VSIGSZSL>S/ = s e}
:{565|§95’€5:si>5’}=:{5€5|57&>}

V.

RWNTH HE Concurrency Theory Winter Semester 2013/14 3.20

Simple Properties Revisited

@ action a is initially enabled: (a)tt
[(a)tt] = (-a)[tt] = (-a-)(S)
={s€S|3I'cS:s L} ={seS|s-}
@ action b is initially disabled: [b]ff
[[b]ff] = [-6-][fF] = [-6:](®)
—{seS|VseS:ss = s e
—{seS|fTeS:sLst={seS|s/ s}
© absence of deadlock:

o initially: (Act)tt
o always: later (requires recursion)

V.

RWNTH HE Concurrency Theory Winter Semester 2013/14 3.20

Simple Properties Revisited

@ action a is initially enabled: (a)tt
[(a)tt] = (-a)[tt] = (-a-)(S)
={s€S|3I'cS:s L} ={seS|s-}
@ action b is initially disabled: [b]ff
[[6]ff] = [-b-][fF] = [-6-](0)

—{seS|VseS:ss = s e
b b
={seS|P'eS:s—>s}={seS|s >}
© absence of deadlock:
o initially: (Act)tt
o always: later (requires recursion)
© responsiveness:
o initially: [request](reply)tt
o always: later (requires recursion)

V.

RWNTH Concurrency Theory Winter Semester 2013/14 3.20

© Closure under Negation

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 3.21

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 3.22

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma 3.8

For every F € HMF there exists F© € HMF such that [F¢] = S\ [F] for
every LTS (S, Act,—).

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 3.22

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma 3.8

For every F € HMF there exists F© € HMF such that [F¢] = S\ [F] for
every LTS (S, Act,—).

Proof.
Definition of F€:

tte = ff ffe .= tt
(F1 A Fg)c = Flc V cm (Fl V FQ)C = Flc N F2C
({(a)F)e == [0 F€ ([a]F)© = () F€

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.22

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma 3.8

For every F € HMF there exists F© € HMF such that [F¢] = S\ [F] for
every LTS (S, Act, —).

Proof.

Definition of F€:
tte = ff ff€ -— tt
(AAAR) :=FVF (FVF) :=F AF;
() F) == [a]F€ ([2]F)¢ = (a)F©
[F¢] = S\ [F]: on the board O

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 3.22

	Recap: Calculus of Communicating Systems
	Infinite State Spaces
	Process Traces
	Hennessy-Milner Logic
	Closure under Negation

