
Concurrency Theory
Lecture 3: Hennessy-Milner Logic

Joost-Pieter Katoen Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/


Written Exams in Concurrency Theory

1 Friday, 21.02.2014, 11:30–14:00, AH 2

2 Tuesday, 25.03.2014, 10:00–12:30, AH 1

Online registration via CampusOffice is enabled.

Concurrency Theory Winter Semester 2013/14 3.2



Wanted: Student Assistant

D-MILS research project (http://www.d-mils.org/)
architectural specification of secure systems
modular high-assurance platform
framework for the certification of systems
basis: MILS-AADL specification language

Task: implementation of compiler frontend
parser
semantic checker
based on ANTLR 3 definition of SLIM specification language
(COMPASS project)
estimated effort: 10 h/week

Concurrency Theory Winter Semester 2013/14 3.3

http://www.d-mils.org/


Outline

1 Recap: Calculus of Communicating Systems

2 Infinite State Spaces

3 Process Traces

4 Hennessy-Milner Logic

5 Closure under Negation

Concurrency Theory Winter Semester 2013/14 3.4



Syntax of CCS I

Definition (Syntax of CCS)

Let A be a set of (action) names.
A := {a | a ∈ A} denotes the set of co-names.
Act := A ∪ A ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.
Let Pid be a set of process identifiers.
The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| C (process call)

where α ∈ Act, L ⊆ A, C ∈ Pid , and f : Act → Act such that
f (τ) = τ and f (a) = f (a) for each a ∈ A.

Concurrency Theory Winter Semester 2013/14 3.5



Syntax of CCS II

Definition (continued)

A (recursive) process definition is an equation system of the form

(Ci = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ci ∈ Pid (pairwise distinct), and Pi ∈ Prc (with process
identifiers from {C1, . . . ,Ck}).

Notational Conventions:

a means a∑n
i=1 Pi (n ∈ N) means P1 + . . .+ Pn (where

∑0
i=1 Pi := nil)

P \ a abbreviates P \ {a}
[a1 7→ b1, . . . , an 7→ bn] stands for f : Act → Act with f (ai ) = bi
(i ∈ [n]) and f (α) = α otherwise
restriction and relabelling bind stronger than prefixing, prefixing
stronger than composition, composition stronger than choice:

P \ a + b.Q ‖ R means (P \ a) + ((b.Q) ‖ R)

Concurrency Theory Winter Semester 2013/14 3.6



Labelled Transition Systems

Goal: represent behaviour of system by (infinite) graph

nodes = system states

edges = transitions between states

Definition (Labelled transition system)

A (Act-)labelled transition system (LTS) is a triple (S ,Act,−→)
consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

For (s, α, s ′) ∈ −→ we write s
α−→ s ′. An LTS is called finite if S is so.

Remarks:

sometimes an initial state s0 ∈ S is distinguished (“LTS(s0)”)

(finite) LTSs correspond to (finite) automata without final states

Concurrency Theory Winter Semester 2013/14 3.7



Semantics of CCS I

Definition (Semantics of CCS)

A process definition (Ci = Pi | 1 ≤ i ≤ k) determines the LTS
(Prc,Act,−→) whose transitions can be inferred from the following rules
(P,P ′,Q,Q ′ ∈ Prc , α ∈ Act, λ ∈ A ∪ A, a ∈ A):

(Act)
α.P

α−→ P

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q ′

P + Q
α−→ Q ′

(Par1)
P

α−→ P ′

P ‖ Q α−→ P ′ ‖ Q
(Par2)

Q
α−→ Q ′

P ‖ Q α−→ P ‖ Q ′

(Com)
P

λ−→ P ′ Q
λ−→ Q ′

P ‖ Q τ−→ P ′ ‖ Q ′
(Res)

P
α−→ P ′ (α, α /∈ L)

P \ L α−→ P ′ \ L

(Rel)
P

α−→ P ′

P[f ]
f (α)−→ P ′[f ]

(Call)
P

α−→ P ′ (C = P)

C
α−→ P ′

Concurrency Theory Winter Semester 2013/14 3.8



Semantics of CCS II

Example

Parallel two-place buffer: B‖ = (B[f ] ‖ B[g ]) \ com
B = in.out.B

where f := [out 7→ com] and g := [in 7→ com]

B‖

((out.B)[f ] ‖ B[g ]) \ com

((out.B)[f ] ‖ (out.B)[g ]) \ com

(B[f ] ‖ (out.B)[g ]) \ com

(B[f ] ‖ B[g ]) \ com empty

1 entry

full

in
in

τ

out

inout

Concurrency Theory Winter Semester 2013/14 3.9



Outline

1 Recap: Calculus of Communicating Systems

2 Infinite State Spaces

3 Process Traces

4 Hennessy-Milner Logic

5 Closure under Negation

Concurrency Theory Winter Semester 2013/14 3.10



The Power of Recursive Definitions

So far: only finite state spaces

Example 3.1 (Counter)

C = up.(C ‖ down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

C C ‖ down C ‖ down ‖ down . . .

C ‖ nil C ‖ down ‖ nil . . .

C ‖ nil ‖ nil . . .

up up up

up up

up

down down

down

Sequential “specification”: C0 = up.C1

Cn = up.Cn+1 + down.Cn−1 (n > 0)

Concurrency Theory Winter Semester 2013/14 3.11



Outline

1 Recap: Calculus of Communicating Systems

2 Infinite State Spaces

3 Process Traces

4 Hennessy-Milner Logic

5 Closure under Negation

Concurrency Theory Winter Semester 2013/14 3.12



Process Traces I

Goal: reduce processes to the action sequences they can perform

Definition 3.2 (Trace language)

For every P ∈ Prc , let

Tr(P) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P
w−→ P ′}

be the trace language of P
(where

w−→ :=
a1−→ ◦ . . . ◦ an−→ for w = a1 . . . an).

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 3.3 (One-place buffer)

B = in.out.B

=⇒ Tr(B) = (in · out)∗ · (in + ε)

Concurrency Theory Winter Semester 2013/14 3.13



Process Traces II

Remarks:

The trace language of P ∈ Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

Trace equivalence identifies processes with identical LTSs: the trace
language of a process consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) =⇒ Tr(P) = Tr(Q)

Later we will see: trace equivalence is too coarse, i.e., identifies too
many processes
=⇒ bisimulation

Concurrency Theory Winter Semester 2013/14 3.14



Outline

1 Recap: Calculus of Communicating Systems

2 Infinite State Spaces

3 Process Traces

4 Hennessy-Milner Logic

5 Closure under Negation

Concurrency Theory Winter Semester 2013/14 3.15



Motivation

Goal: check processes for simple properties

action a is initially enabled

action b is initially disabled

a deadlock never occurs

always sends a reply after receiving a request

formalisation in Hennessy-Milner Logic (HML)

M. Hennessy, R. Milner: On Observing Nondeterminism and
Concurrency , ICALP 1980, Springer LNCS 85, 299–309

checking by exploration of state space

Concurrency Theory Winter Semester 2013/14 3.16



Syntax of HML

Definition 3.4 (Syntax of HML)

The set HMF of Hennessy-Milner formulae over a set of actions Act is
defined by the following syntax:

F ::= tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where α ∈ Act.

Abbreviations for L = {α1, . . . , αn} (n ∈ N):

〈L〉F := 〈α1〉F ∨ . . . ∨ 〈αn〉F
[L]F := [α1]F ∧ . . . ∧ [αn]F

In particular, 〈∅〉F := ff and [∅]F := tt

Concurrency Theory Winter Semester 2013/14 3.17



Meaning of HML Constructs

All processes satisfy tt.

No process satisfies ff.

A process satisfies F ∧ G iff it satisfies F and G .

A process satisfies F ∨ G iff it satisfies either F or G or both.

A process satisfies 〈α〉F for some α ∈ Act iff it affords an α-labelled
transition to a state satisfying F (possibility).

A process satisfies [α]F for some α ∈ Act iff all its α-labelled
transitions lead to a state satisfying F (necessity).

Concurrency Theory Winter Semester 2013/14 3.18



Semantics of HML

Definition 3.5 (Semantics of HML)

Let (S ,Act,−→) be an LTS and F ∈ HMF . The set of processes in S
that satisfy F , JF K ⊆ S , is defined by

JttK := S JffK := ∅
JF1 ∧ F2K := JF1K ∩ JF2K JF1 ∨ F2K := JF1K ∪ JF2K

J〈α〉F K := 〈·α·〉(JF K) J[α]F K := [·α·](JF K)

where 〈·α·〉, [·α·] : 2S → 2S are given by

〈·α·〉(T ) := {s ∈ S | ∃s ′ ∈ T : s
α−→ s ′}

[·α·](T ) := {s ∈ S | ∀s ′ ∈ S : s
α−→ s ′ =⇒ s ′ ∈ T}

We write s |= F iff s ∈ JF K. Two HML formulae are equivalent (written
F ≡ G ) iff they are satisfied by the same processes in every LTS.

Example 3.6 (〈·α·〉, [·α·] operators)

on the board

Concurrency Theory Winter Semester 2013/14 3.19



Simple Properties Revisited

Example 3.7

1 action a is initially enabled: 〈a〉tt

J〈a〉ttK = 〈·a·〉JttK = 〈·a·〉(S)

= {s ∈ S | ∃s ′ ∈ S : s
a−→ s ′} =: {s ∈ S | s a−→}

2 action b is initially disabled: [b]ff

J[b]ffK = [·b·]JffK = [·b·](∅)
= {s ∈ S | ∀s ′ ∈ S : s

b−→ s ′ =⇒ s ′ ∈ ∅}
= {s ∈ S | @s ′ ∈ S : s

b−→ s ′} =: {s ∈ S | s 6 b−→}
3 absence of deadlock:

initially: 〈Act〉tt
always: later (requires recursion)

4 responsiveness:

initially: [request]〈reply〉tt
always: later (requires recursion)

Concurrency Theory Winter Semester 2013/14 3.20



Outline

1 Recap: Calculus of Communicating Systems

2 Infinite State Spaces

3 Process Traces

4 Hennessy-Milner Logic

5 Closure under Negation

Concurrency Theory Winter Semester 2013/14 3.21



Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma 3.8

For every F ∈ HMF there exists F c ∈ HMF such that JF cK = S \ JF K for
every LTS (S ,Act,−→).

Proof.

Definition of F c :

ttc := ff ffc := tt
(F1 ∧ F2)c := F c

1 ∨ F c
2 (F1 ∨ F2)c := F c

1 ∧ F c
2

(〈α〉F )c := [α]F c ([α]F )c := 〈α〉F c

JF cK = S \ JF K: on the board

Concurrency Theory Winter Semester 2013/14 3.22


	Recap: Calculus of Communicating Systems
	Infinite State Spaces
	Process Traces
	Hennessy-Milner Logic
	Closure under Negation

