Concurrency Theory

Lecture 4: Hennessy-Milner Logic with Recursion

Joost-Pieter Katoen Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY
{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Exercise Class

Next week:

Tue 5 Nov 12:15-13:45 AH 6 (“Fachschafts-VV") —
Thu 7 Nov 14:15-15:45 AH 1

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 4.2

o Recap: Hennessy-Milner Logic

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 4.3

Syntax of HML

Definition (Syntax of HML)

The set HMF of Hennessy-Milner formulae over a set of actions Act is
defined by the following syntax:

F=tt (true)
| ff (false)
| FAANF (conjunction)
| AV F (disjunction)
| (a)F (diamond)
| [a]F (box)

where a € Act.

Abbreviations for L = {a1,...,an} (n € N):
o (L)F :=(a1)F V...V {(anF
o [L]F :=[a1]F A ... Aan]F
e In particular, (0)F :=ff and [0]F := tt

RWTHAACHE Concurrency Theory Winter Semester 2013/14 4.4

Semantics of HML

Definition (Semantics of HML)

Let (S, Act,—) be an LTS and F € HMF. The set of processes in S
that satisfy F, [F] C S, is defined by

[tt] =S ff] :==0
[[Fl A FQ]] = IIFl]] N [[FQ]] [[Fl vV FQ]] = [[Fl]] U HFQ]]
[(a)F] := (a)([F]) [[e]F] := [-e-]([FT)

where (-a-),[-a-] : 2° — 2° are given by
(a)(T)={s€S|3I'cT:5s- 55}
[a(T) ={s€S|VséeS:s-5s = scT}
We write s |= F iff s € [F]. Two HML formulae are equivalent (written
F = G) iff they are satisfied by the same processes in every LTS.

RWNTH HE Concurrency Theory Winter Semester 2013/14 4.5

Process Traces

Goal: reduce processes to the action sequences they can perform
Definition (Trace language)
For every P € Prc, let

Tr(P) := {w € Act* | ex. P € Prc such that P % P’}

be the trace language of P
w al an
(where — :== 5 o0...0 =5 forw=a;...a,).

P, Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Example (One-place buffer)

B = in.out.B
= Tr(B) = (in- out)* - (in+¢)

RWTHAACHE Concurrency Theory Winter Semester 2013/14 4.6

© HML and Process Traces

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.7

HML and Process Traces

Let (Prc, Act,—) be an LTS, and let P, Q € Prc satisfy the same HMF
(ie., VF € HMF : P = F <= Q= F). Then Tr(P) = Tr(Q).

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.8

HML and Process Traces

Let (Prc, Act,—) be an LTS, and let P, Q € Prc satisfy the same HMF
(ie., VF € HMF : P = F <= Q= F). Then Tr(P) = Tr(Q).

on the board] \

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.8

HML and Process Traces

Let (Prc, Act,—>) be an LTS, and let P, Q € Prc satisfy the same HMF
(ie., YF € HMF : P|= F <= Q= F). Then Tr(P) =

on the board

Remark: the converse does not hold.

Example 4.2

o Let P := a.(b.nil + c.nil) € Prc, Q := a.b.nil + a.c.nil € Prc
@ Then Tr(P) = Tr(Q) = {e, a, ab, ac}

v

RWNTH HE Concurrency Theory Winter Semester 2013/14 4.8

HML and Process Traces

Let (Prc, Act,—>) be an LTS, and let P, Q € Prc satisfy the same HMF
(ie., YF € HMF : P|= F <= Q= F). Then Tr(P) =

on the board

Remark: the converse does not hold.

Example 4.2

o Let P := a.(b.nil + c.nil) € Prc, Q := a.b.nil + a.c.nil € Prc
Then Tr(P) = Tr(Q) = {e, a, ab, ac}

Let F := [a]((b)tt A (c)tt) € HMF

Then P = F but Q [~ F

[later: P, Q € Prc HML-equivalent iff bismilar]

v

RWNTH HE Concurrency Theory Winter Semester 2013/14 4.8

© Adding Recursion to HML

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.9

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour
e each modal operator ([.], (.)) talks about one step

@ only finite nesting of operators (modal depth)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.10

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour
e each modal operator ([.], (.)) talks about one step

@ only finite nesting of operators (modal depth)

Example 4.3
o F := ((a)[a]ff) v (b)tt € HMF has modal depth 2

@ Checking F involves analysis of all traces of length < 2

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.10

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour
e each modal operator ([.], (.)) talks about one step

@ only finite nesting of operators (modal depth)

Example 4.3

o F := ((a)[a]ff) v (b)tt € HMF has modal depth 2

@ Checking F involves analysis of all traces of length < 2

But: sometimes necessary to refer to arbitrarily long computations
(e.g., “no deadlock state reachable™)

@ possible solution: support infinite conjunctions and disjunctions

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.10

Infinite Conjunctions
Example 4.4

@ Llet C =a.C, D=a.D + a.nil
@ Then C | att but D [~ att

v

RWNTH HE Concurrency Theory Winter Semester 2013/14 4.11

Infinite Conjunctions
Example 4.4

@ Llet C =a.C, D=a.D + a.nil
@ Then C | att but D [~ att
@ Now redefine D as D, = a.D, + a.E, where n € N, E, = a.E;_1

(1< k<n), Eg =nil
o Then (for [a]“F :=[a]...[a] F):

—
k times

[a]*(a)tt for all k € N

K

[a]*(a)tt for all 0 < k < n
[

C
Dy = [a]*(
D a](a)tt for all k > n

n

=
=
7~

v

RWNTH Concurrency Theory Winter Semester 2013/14 4.11

Infinite Conjunctions
Example 4.4

@ Llet C =a.C, D=a.D + a.nil
@ Then C | att but D [~ att
@ Now redefine D as D, = a.D, + a.E, where n € N, E, = a.E;_1
(1< k<n), Eoznil
o Then (for [a]“F :=[a]...[a] F):
k times
E[a k(tt for all k € N
= [a]*(a)tt for all 0 < k < n
- [a]

o C
o D,
e D (aytt for all k > n

@ Conclusion: no HML formula can distinguish C and all D,
@ Generally: invariance property “always (a)tt” not expressible
@ Requires infinite conjunction:
Inv({a)tt) = (a)tt A att A [a]att A ... = /\ [a]*(
keN

RWNTH Concurrency Theory Winter Semester 2013/14 4.11

v

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions

Example 4.5
@ Let C=a.C, D = a.D + a.nil as before
@ C has no possibility to terminate

@ D has the option to terminate (i.e., to eventually satisfy [a]ff) at any
time by choosing the a.nil branch

Concurrency Theory Winter Semester 2013/14 4.12

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions

Example 4.5
@ Let C =a.C, D = a.D + a.nil as before

@ C has no possibility to terminate

@ D has the option to terminate (i.e., to eventually satisfy [a]ff) at any
time by choosing the a.nil branch

@ Representable by infinite disjunction:

Pos([alff) = [alff v (a)[alff V (a)(a)[a]ff v ... = \/ (a)*[a]ff
keN

Concurrency Theory Winter Semester 2013/14 4.12

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions

Example 4.5
@ Let C =a.C, D = a.D + a.nil as before

@ C has no possibility to terminate

@ D has the option to terminate (i.e., to eventually satisfy [a]ff) at any
time by choosing the a.nil branch

@ Representable by infinite disjunction:

Pos([alff) = [alff v (a)[alff V (a)(a)[a]ff v ... = \/ (a)*[a]ff
keN

Problem: infinite formulae not easy to handle

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.12

Introducing Recursion
Solution: employ !

e Inv({a)tt) = (a)tt A [a] Inv({a)tt)
e Pos([a]ff) = [a]ff V (a) Pos([a]ff)

nerAACHEN Concurrency Theory Winter Semester 2013/14 4.13

Introducing Recursion
Solution: employ !

e Inv({a)tt) = (a)tt A [a] Inv({a)tt)
e Pos([a]ff) = [a]ff V (a) Pos([a]ff)

Interpretation: the sets of states X, Y C S satisfying the respective
formula should solve the corresponding equation, i.e.,

o X = (-a)(S)N[-2](X)
o ¥ =[al®)U(-a)(Y)

nerAACHEN Concurrency Theory Winter Semester 2013/14 4.13

Introducing Recursion
Solution: employ !

e Inv((a)tt) = (a)tt A [a] Inv((a)tt)

e Pos([a]ff) = [a]ff V (a) Pos([a]ff)
Interpretation: the sets of states X, Y C S satisfying the respective
formula should solve the corresponding equation, i.e.,

o X =(a)(5)N[a](X)

o Y =[a])u(a)(Y)

Open questions

@ Do such recursive equations (always) have solutions?
@ If so, are they unique?

@ How can we compute whether a process satisfies a recursive formula?

RWNTH HE Concurrency Theory Winter Semester 2013/14 4.13

Existence of Solutions
Example 4.6

o Consider again C = a.C, D = a.D + a.nil

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.14

Existence of Solutions
Example 4.6

o Consider again C = a.C, D = a.D + a.nil
@ Invariant: X = (a)tt A [a]X
o X = () is a solution (as no process can satisfy both (a)tt and [a]ff)
o but we expect C € X (as C can perform a invariantly)
e in fact, X = {C} also solves the equation (and is the greatest solution
w.r.t.)
= write X = (a)tt A [a] X

RWTHAACHE Concurrency Theory Winter Semester 2013/14 4.14

Existence of Solutions

Example 4.6

o Consider again C = a.C, D = a.D + a.nil

@ Invariant: X = (a)tt A [a]X
o X = () is a solution (as no process can satisfy both (a)tt and [a]ff)
o but we expect C € X (as C can perform a invariantly)
e in fact, X = {C} also solves the equation (and is the greatest solution

w.r.t.)
= write X = (a)tt A [a] X

e Possibility: Y = [a]ff V (a) Y
e greatest solution: Y = {C, D, nil}
o but we expect C ¢ Y (as C cannot terminate at all)
o here: least solution w.r.t. C: Y = {D, nil}

— write Y Z [3]ff V (a)Y

RWTHAACHE Concurrency Theory Winter Semester 2013/14 4.14

Uniqueness of Solutions

Uniqueness of solutions

@ Use greatest solutions for properties that hold unless the process has
a finite computation that disproves it.

@ Use least solutions for properties that hold if the process has a finite
computation that proves it.

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.15

Uniqueness of Solutions
Uniqueness of solutions

@ Use greatest solutions for properties that hold unless the process has

a finite computation that disproves it.
@ Use least solutions for properties that hold if the process has a finite

computation that proves it.

Example 4.7

Let (S, Act,—) be an LTS, s € S, and F € HMF.

e Invariant: Inv(F) = X for X = F A [Act] X
o s |= Inv(F) if all states reachable from s satisfy F

RWNTH Concurrency Theory Winter Semester 2013/14 4.15

Uniqueness of Solutions
Uniqueness of solutions

@ Use greatest solutions for properties that hold unless the process has
a finite computation that disproves it.

@ Use least solutions for properties that hold if the process has a finite
computation that proves it.

v

Example 4.7

Let (S, Act,—) be an LTS, s € S, and F € HMF.
e Invariant: Inv(F) = X for X = F A [Act] X
o s |= Inv(F) if all states reachable from s satisfy F
e Possibility: Pos(F) =Y for Y = FV (Act)Y
o s | Pos(F) if a state satisfying F is reachable from s

RWNTH Concurrency Theory Winter Semester 2013/14 4.15

Uniqueness of Solutions
Uniqueness of solutions

@ Use greatest solutions for properties that hold unless the process has
a finite computation that disproves it.

@ Use least solutions for properties that hold if the process has a finite
computation that proves it.

v

Example 4.7

Let (S, Act,—) be an LTS, s € S, and F € HMF.

e Invariant: Inv(F) = X for X = F A [Act] X
o s |= Inv(F) if all states reachable from s satisfy F

e Possibility: Pos(F) =Y for Y = FV (Act)Y
o s | Pos(F) if a state satisfying F is reachable from s

e Safety: Safe(F) = X for X = F A ([Act]ff v (Act)X)
e s |= Safe(F) if s has a complete (i.e., infinite or terminating) transition

sequence where each state satisfies F

RWNTH Concurrency Theory Winter Semester 2013/14 4.15

Uniqueness of Solutions
Uniqueness of solutions

@ Use greatest solutions for properties that hold unless the process has
a finite computation that disproves it.

@ Use least solutions for properties that hold if the process has a finite
computation that proves it.

v

Example 4.7

Let (S, Act,—) be an LTS, s € S, and F € HMF.

e Invariant: Inv(F) = X for X = F A [Act] X
o s |= Inv(F) if all states reachable from s satisfy F
e Possibility: Pos(F) =Y for Y = FV (Act)Y
o s | Pos(F) if a state satisfying F is reachable from s
e Safety: Safe(F) = X for X = F A ([Act]ff v (Act)X)
e s |= Safe(F) if s has a complete (i.e., infinite or terminating) transition
sequence where each state satisfies F
e Eventuality: Evt(F) =Y for Y = F V ({Act)tt A [Act]Y)
e s = Evt(F) if each complete transition sequence starting in s contains
a state satisfying F

RWNTH Concurrency Theory Winter Semester 2013/14 4.15

e HML with One Recursive Variable

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 4.16

Syntax of HML with One Recursive Variable

Initially: only one variable

Later: mutual recursion

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.17

Syntax of HML with One Recursive Variable

Initially: only one variable

Later: mutual recursion

Definition 4.8 (Syntax of HML with one variable)

The set HMF x of Hennessy-Milner formulae with one variable X over a
set of actions Act is defined by the following syntax:

F:=X (variable)
| tt (true)
| ff (false)
| FAAF (conjunction)
| FiVF (disjunction)
| (a)F (diamond)
| [oF (box)

where v € Act.

Concurrency Theory Winter Semester 2013/14

4.17

Semantics of HML with One Recursive Variable |

So far: [F]] € S for F € HMF and LTS (S, Act,—)

Now: semantics of formula depends on states that (are assumed
to) satisfy X

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.18

Semantics of HML with One Recursive Variable |

So far: [F]] € S for F € HMF and LTS (S, Act,—)

Now: semantics of formula depends on states that (are assumed
to) satisfy X

Definition 4.9 (Semantics of HML)

Let (S, Act,—) be an LTS and F € HMF x. The semantics of F,
[F] :2° — 23,
is defined by
[XI(T) =T
[tt](T) =S
[ff](T) =0
[F1 A FRI(T) = [AI(T) N [F](T)
[F1v RI(T) := [RI(T) U [FI(T)
[(a) FI(T) := {a)([FI(T))
[[a]FI(T) := [-e-]([FI(T))

v

RWTHAACHE Concurrency Theory Winter Semester 2013/14 4.18

Semantics of HML with One Recursive Variable |11

Example 4.10

S1

Sz(TS3

Let S := {s1,52,53}.

Concurrency Theory Winter Semester 2013/14 4.19

Semantics of HML with One Recursive Variable |11

Example 4.10

S1

Sz(TS3

Let S := {s1,52,53}.

o [()X]({s1}) = {s3}

Concurrency Theory Winter Semester 2013/14 4.19

Semantics of HML with One Recursive Variable |11

Example 4.10

S1

Sz(TS3

Let S := {s1,52,53}.
o [(a)X]({s1}) = {s3}
o [(aX]({s1,5}) = {s1,s3}

Concurrency Theory Winter Semester 2013/14 4.19

Semantics of HML with One Recursive Variable |11

Example 4.10

Let S := {s1,52,53}.
o [(a)X]({s1}) = {s3}
o [(a)X]({s1,5}) = {s1,53}
o [[b]X]({s2}) = {s2, 53}

ner‘ﬁL(\L‘] :’ eon Winter Semester 2013/14 4.19

Semantics of HML with One Recursive Variable IlI

@ |dea underlying the definition of
[]: HMFx — (2° — 2°):

if T C S gives the set of states that satisfy X, then [F](T) will be
the set of states that satisfy F

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.20

Semantics of HML with One Recursive Variable IlI

@ |dea underlying the definition of
[]: HMFx — (2° — 2°):
if T C S gives the set of states that satisfy X, then [F](T) will be
the set of states that satisfy F
@ How to determine this T7

@ According to previous discussion: as solution of recursive equation of
the form X = Fx where Fx € HMF x

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.20

Semantics of HML with One Recursive Variable IlI

@ |dea underlying the definition of
[]: HMFx — (2° — 2°):
if T C S gives the set of states that satisfy X, then [F](T) will be
the set of states that satisfy F
@ How to determine this T7

@ According to previous discussion: as solution of recursive equation of
the form X = Fx where Fx € HMF x

@ But: solution not unique; therefore write:

X ™ Fy or X ™ Fyx

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.20

Semantics of HML with One Recursive Variable IlI

Idea underlying the definition of
[]: HMFx — (2° — 2°):
if T C S gives the set of states that satisfy X, then [F](T) will be
the set of states that satisfy F
How to determine this T7

According to previous discussion: as solution of recursive equation of
the form X = Fx where Fx € HMF x

But: solution not unique; therefore write:

X ™ Fy or X ™ Fyx

In the following we will see:
@ Equation X = Fx always solvable
© Least and greatest solutions are unique and can be obtained by
fixed-point iteration

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 4.20

	Recap: Hennessy-Milner Logic
	HML and Process Traces
	Adding Recursion to HML
	HML with One Recursive Variable

