
Concurrency Theory
Lecture 4: Hennessy-Milner Logic with Recursion

Joost-Pieter Katoen Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Exercise Class

Next week:

Tue 5 Nov 12:15-13:45 AH 6 (“Fachschafts-VV”) →
Thu 7 Nov 14:15-15:45 AH 1

Concurrency Theory Winter Semester 2013/14 4.2

Outline

1 Recap: Hennessy-Milner Logic

2 HML and Process Traces

3 Adding Recursion to HML

4 HML with One Recursive Variable

Concurrency Theory Winter Semester 2013/14 4.3

Syntax of HML

Definition (Syntax of HML)

The set HMF of Hennessy-Milner formulae over a set of actions Act is
defined by the following syntax:

F ::= tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where α ∈ Act.

Abbreviations for L = {α1, . . . , αn} (n ∈ N):

〈L〉F := 〈α1〉F ∨ . . . ∨ 〈αn〉F
[L]F := [α1]F ∧ . . . ∧ [αn]F

In particular, 〈∅〉F := ff and [∅]F := tt

Concurrency Theory Winter Semester 2013/14 4.4

Semantics of HML

Definition (Semantics of HML)

Let (S ,Act,−→) be an LTS and F ∈ HMF . The set of processes in S
that satisfy F , JF K ⊆ S , is defined by

JttK := S JffK := ∅
JF1 ∧ F2K := JF1K ∩ JF2K JF1 ∨ F2K := JF1K ∪ JF2K

J〈α〉F K := 〈·α·〉(JF K) J[α]F K := [·α·](JF K)

where 〈·α·〉, [·α·] : 2S → 2S are given by

〈·α·〉(T) := {s ∈ S | ∃s ′ ∈ T : s
α−→ s ′}

[·α·](T) := {s ∈ S | ∀s ′ ∈ S : s
α−→ s ′ =⇒ s ′ ∈ T}

We write s |= F iff s ∈ JF K. Two HML formulae are equivalent (written
F ≡ G) iff they are satisfied by the same processes in every LTS.

Concurrency Theory Winter Semester 2013/14 4.5

Process Traces

Goal: reduce processes to the action sequences they can perform

Definition (Trace language)

For every P ∈ Prc , let

Tr(P) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P
w−→ P ′}

be the trace language of P
(where

w−→ :=
a1−→ ◦ . . . ◦ an−→ for w = a1 . . . an).

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).

Example (One-place buffer)

B = in.out.B

=⇒ Tr(B) = (in · out)∗ · (in + ε)

Concurrency Theory Winter Semester 2013/14 4.6

Outline

1 Recap: Hennessy-Milner Logic

2 HML and Process Traces

3 Adding Recursion to HML

4 HML with One Recursive Variable

Concurrency Theory Winter Semester 2013/14 4.7

HML and Process Traces

Lemma 4.1

Let (Prc ,Act,−→) be an LTS, and let P,Q ∈ Prc satisfy the same HMF
(i.e., ∀F ∈ HMF : P |= F ⇐⇒ Q |= F). Then Tr(P) = Tr(Q).

Proof.

on the board

Remark: the converse does not hold.

Example 4.2

Let P := a.(b.nil + c .nil) ∈ Prc , Q := a.b.nil + a.c .nil ∈ Prc

Then Tr(P) = Tr(Q) = {ε, a, ab, ac}
Let F := [a](〈b〉tt ∧ 〈c〉tt) ∈ HMF

Then P |= F but Q 6|= F

[later: P,Q ∈ Prc HML-equivalent iff bismilar]

Concurrency Theory Winter Semester 2013/14 4.8

HML and Process Traces

Lemma 4.1

Let (Prc ,Act,−→) be an LTS, and let P,Q ∈ Prc satisfy the same HMF
(i.e., ∀F ∈ HMF : P |= F ⇐⇒ Q |= F). Then Tr(P) = Tr(Q).

Proof.

on the board

Remark: the converse does not hold.

Example 4.2

Let P := a.(b.nil + c .nil) ∈ Prc , Q := a.b.nil + a.c .nil ∈ Prc

Then Tr(P) = Tr(Q) = {ε, a, ab, ac}
Let F := [a](〈b〉tt ∧ 〈c〉tt) ∈ HMF

Then P |= F but Q 6|= F

[later: P,Q ∈ Prc HML-equivalent iff bismilar]

Concurrency Theory Winter Semester 2013/14 4.8

HML and Process Traces

Lemma 4.1

Let (Prc ,Act,−→) be an LTS, and let P,Q ∈ Prc satisfy the same HMF
(i.e., ∀F ∈ HMF : P |= F ⇐⇒ Q |= F). Then Tr(P) = Tr(Q).

Proof.

on the board

Remark: the converse does not hold.

Example 4.2

Let P := a.(b.nil + c .nil) ∈ Prc , Q := a.b.nil + a.c .nil ∈ Prc

Then Tr(P) = Tr(Q) = {ε, a, ab, ac}

Let F := [a](〈b〉tt ∧ 〈c〉tt) ∈ HMF

Then P |= F but Q 6|= F

[later: P,Q ∈ Prc HML-equivalent iff bismilar]

Concurrency Theory Winter Semester 2013/14 4.8

HML and Process Traces

Lemma 4.1

Let (Prc ,Act,−→) be an LTS, and let P,Q ∈ Prc satisfy the same HMF
(i.e., ∀F ∈ HMF : P |= F ⇐⇒ Q |= F). Then Tr(P) = Tr(Q).

Proof.

on the board

Remark: the converse does not hold.

Example 4.2

Let P := a.(b.nil + c .nil) ∈ Prc , Q := a.b.nil + a.c .nil ∈ Prc

Then Tr(P) = Tr(Q) = {ε, a, ab, ac}
Let F := [a](〈b〉tt ∧ 〈c〉tt) ∈ HMF

Then P |= F but Q 6|= F

[later: P,Q ∈ Prc HML-equivalent iff bismilar]

Concurrency Theory Winter Semester 2013/14 4.8

Outline

1 Recap: Hennessy-Milner Logic

2 HML and Process Traces

3 Adding Recursion to HML

4 HML with One Recursive Variable

Concurrency Theory Winter Semester 2013/14 4.9

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour

each modal operator ([.], 〈.〉) talks about one step

only finite nesting of operators (modal depth)

Example 4.3

F := (〈a〉[a]ff) ∨ 〈b〉tt ∈ HMF has modal depth 2

Checking F involves analysis of all traces of length ≤ 2

But: sometimes necessary to refer to arbitrarily long computations
(e.g., “no deadlock state reachable”)

possible solution: support infinite conjunctions and disjunctions

Concurrency Theory Winter Semester 2013/14 4.10

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour

each modal operator ([.], 〈.〉) talks about one step

only finite nesting of operators (modal depth)

Example 4.3

F := (〈a〉[a]ff) ∨ 〈b〉tt ∈ HMF has modal depth 2

Checking F involves analysis of all traces of length ≤ 2

But: sometimes necessary to refer to arbitrarily long computations
(e.g., “no deadlock state reachable”)

possible solution: support infinite conjunctions and disjunctions

Concurrency Theory Winter Semester 2013/14 4.10

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour

each modal operator ([.], 〈.〉) talks about one step

only finite nesting of operators (modal depth)

Example 4.3

F := (〈a〉[a]ff) ∨ 〈b〉tt ∈ HMF has modal depth 2

Checking F involves analysis of all traces of length ≤ 2

But: sometimes necessary to refer to arbitrarily long computations
(e.g., “no deadlock state reachable”)

possible solution: support infinite conjunctions and disjunctions

Concurrency Theory Winter Semester 2013/14 4.10

Infinite Conjunctions

Example 4.4

Let C = a.C , D = a.D + a.nil

Then C |= [a]〈a〉tt but D 6|= [a]〈a〉tt

Now redefine D as Dn = a.Dn + a.En where n ∈ N, Ek = a.Ek−1

(1 ≤ k ≤ n), E0 = nil

Then (for [α]kF := [α] . . . [α]︸ ︷︷ ︸
k times

F):

C |= [a]k〈a〉tt for all k ∈ N
Dn |= [a]k〈a〉tt for all 0 ≤ k ≤ n
Dn 6|= [a]k〈a〉tt for all k > n

Conclusion: no HML formula can distinguish C and all Dn

Generally: invariance property “always 〈a〉tt” not expressible

Requires infinite conjunction:

Inv(〈a〉tt) = 〈a〉tt ∧ [a]〈a〉tt ∧ [a][a]〈a〉tt ∧ . . . =
∧
k∈N

[a]k〈a〉tt

Concurrency Theory Winter Semester 2013/14 4.11

Infinite Conjunctions

Example 4.4

Let C = a.C , D = a.D + a.nil

Then C |= [a]〈a〉tt but D 6|= [a]〈a〉tt

Now redefine D as Dn = a.Dn + a.En where n ∈ N, Ek = a.Ek−1

(1 ≤ k ≤ n), E0 = nil

Then (for [α]kF := [α] . . . [α]︸ ︷︷ ︸
k times

F):

C |= [a]k〈a〉tt for all k ∈ N
Dn |= [a]k〈a〉tt for all 0 ≤ k ≤ n
Dn 6|= [a]k〈a〉tt for all k > n

Conclusion: no HML formula can distinguish C and all Dn

Generally: invariance property “always 〈a〉tt” not expressible

Requires infinite conjunction:

Inv(〈a〉tt) = 〈a〉tt ∧ [a]〈a〉tt ∧ [a][a]〈a〉tt ∧ . . . =
∧
k∈N

[a]k〈a〉tt

Concurrency Theory Winter Semester 2013/14 4.11

Infinite Conjunctions

Example 4.4

Let C = a.C , D = a.D + a.nil

Then C |= [a]〈a〉tt but D 6|= [a]〈a〉tt

Now redefine D as Dn = a.Dn + a.En where n ∈ N, Ek = a.Ek−1

(1 ≤ k ≤ n), E0 = nil

Then (for [α]kF := [α] . . . [α]︸ ︷︷ ︸
k times

F):

C |= [a]k〈a〉tt for all k ∈ N
Dn |= [a]k〈a〉tt for all 0 ≤ k ≤ n
Dn 6|= [a]k〈a〉tt for all k > n

Conclusion: no HML formula can distinguish C and all Dn

Generally: invariance property “always 〈a〉tt” not expressible

Requires infinite conjunction:

Inv(〈a〉tt) = 〈a〉tt ∧ [a]〈a〉tt ∧ [a][a]〈a〉tt ∧ . . . =
∧
k∈N

[a]k〈a〉tt

Concurrency Theory Winter Semester 2013/14 4.11

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions

Example 4.5

Let C = a.C , D = a.D + a.nil as before

C has no possibility to terminate

D has the option to terminate (i.e., to eventually satisfy [a]ff) at any
time by choosing the a.nil branch

Representable by infinite disjunction:

Pos([a]ff) = [a]ff ∨ 〈a〉[a]ff ∨ 〈a〉〈a〉[a]ff ∨ . . . =
∨
k∈N
〈a〉k [a]ff

Problem: infinite formulae not easy to handle

Concurrency Theory Winter Semester 2013/14 4.12

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions

Example 4.5

Let C = a.C , D = a.D + a.nil as before

C has no possibility to terminate

D has the option to terminate (i.e., to eventually satisfy [a]ff) at any
time by choosing the a.nil branch

Representable by infinite disjunction:

Pos([a]ff) = [a]ff ∨ 〈a〉[a]ff ∨ 〈a〉〈a〉[a]ff ∨ . . . =
∨
k∈N
〈a〉k [a]ff

Problem: infinite formulae not easy to handle

Concurrency Theory Winter Semester 2013/14 4.12

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions

Example 4.5

Let C = a.C , D = a.D + a.nil as before

C has no possibility to terminate

D has the option to terminate (i.e., to eventually satisfy [a]ff) at any
time by choosing the a.nil branch

Representable by infinite disjunction:

Pos([a]ff) = [a]ff ∨ 〈a〉[a]ff ∨ 〈a〉〈a〉[a]ff ∨ . . . =
∨
k∈N
〈a〉k [a]ff

Problem: infinite formulae not easy to handle

Concurrency Theory Winter Semester 2013/14 4.12

Introducing Recursion

Solution: employ recursion!

Inv(〈a〉tt) ≡ 〈a〉tt ∧ [a] Inv(〈a〉tt)

Pos([a]ff) ≡ [a]ff ∨ 〈a〉Pos([a]ff)

Interpretation: the sets of states X ,Y ⊆ S satisfying the respective
formula should solve the corresponding equation, i.e.,

X = 〈·a·〉(S) ∩ [·a·](X)

Y = [·a·](∅) ∪ 〈·a·〉(Y)

Open questions

Do such recursive equations (always) have solutions?

If so, are they unique?

How can we compute whether a process satisfies a recursive formula?

Concurrency Theory Winter Semester 2013/14 4.13

Introducing Recursion

Solution: employ recursion!

Inv(〈a〉tt) ≡ 〈a〉tt ∧ [a] Inv(〈a〉tt)

Pos([a]ff) ≡ [a]ff ∨ 〈a〉Pos([a]ff)

Interpretation: the sets of states X ,Y ⊆ S satisfying the respective
formula should solve the corresponding equation, i.e.,

X = 〈·a·〉(S) ∩ [·a·](X)

Y = [·a·](∅) ∪ 〈·a·〉(Y)

Open questions

Do such recursive equations (always) have solutions?

If so, are they unique?

How can we compute whether a process satisfies a recursive formula?

Concurrency Theory Winter Semester 2013/14 4.13

Introducing Recursion

Solution: employ recursion!

Inv(〈a〉tt) ≡ 〈a〉tt ∧ [a] Inv(〈a〉tt)

Pos([a]ff) ≡ [a]ff ∨ 〈a〉Pos([a]ff)

Interpretation: the sets of states X ,Y ⊆ S satisfying the respective
formula should solve the corresponding equation, i.e.,

X = 〈·a·〉(S) ∩ [·a·](X)

Y = [·a·](∅) ∪ 〈·a·〉(Y)

Open questions

Do such recursive equations (always) have solutions?

If so, are they unique?

How can we compute whether a process satisfies a recursive formula?

Concurrency Theory Winter Semester 2013/14 4.13

Existence of Solutions

Example 4.6

Consider again C = a.C , D = a.D + a.nil

Invariant: X ≡ 〈a〉tt ∧ [a]X

X = ∅ is a solution (as no process can satisfy both 〈a〉tt and [a]ff)
but we expect C ∈ X (as C can perform a invariantly)
in fact, X = {C} also solves the equation (and is the greatest solution
w.r.t. ⊆)

=⇒ write X
max
= 〈a〉tt ∧ [a]X

Possibility: Y ≡ [a]ff ∨ 〈a〉Y
greatest solution: Y = {C ,D, nil}
but we expect C /∈ Y (as C cannot terminate at all)
here: least solution w.r.t. ⊆: Y = {D, nil}

=⇒ write Y
min
= [a]ff ∨ 〈a〉Y

Concurrency Theory Winter Semester 2013/14 4.14

Existence of Solutions

Example 4.6

Consider again C = a.C , D = a.D + a.nil

Invariant: X ≡ 〈a〉tt ∧ [a]X

X = ∅ is a solution (as no process can satisfy both 〈a〉tt and [a]ff)
but we expect C ∈ X (as C can perform a invariantly)
in fact, X = {C} also solves the equation (and is the greatest solution
w.r.t. ⊆)

=⇒ write X
max
= 〈a〉tt ∧ [a]X

Possibility: Y ≡ [a]ff ∨ 〈a〉Y
greatest solution: Y = {C ,D, nil}
but we expect C /∈ Y (as C cannot terminate at all)
here: least solution w.r.t. ⊆: Y = {D, nil}

=⇒ write Y
min
= [a]ff ∨ 〈a〉Y

Concurrency Theory Winter Semester 2013/14 4.14

Existence of Solutions

Example 4.6

Consider again C = a.C , D = a.D + a.nil

Invariant: X ≡ 〈a〉tt ∧ [a]X

X = ∅ is a solution (as no process can satisfy both 〈a〉tt and [a]ff)
but we expect C ∈ X (as C can perform a invariantly)
in fact, X = {C} also solves the equation (and is the greatest solution
w.r.t. ⊆)

=⇒ write X
max
= 〈a〉tt ∧ [a]X

Possibility: Y ≡ [a]ff ∨ 〈a〉Y
greatest solution: Y = {C ,D, nil}
but we expect C /∈ Y (as C cannot terminate at all)
here: least solution w.r.t. ⊆: Y = {D, nil}

=⇒ write Y
min
= [a]ff ∨ 〈a〉Y

Concurrency Theory Winter Semester 2013/14 4.14

Uniqueness of Solutions

Uniqueness of solutions

Use greatest solutions for properties that hold unless the process has
a finite computation that disproves it.
Use least solutions for properties that hold if the process has a finite
computation that proves it.

Example 4.7

Let (S ,Act,−→) be an LTS, s ∈ S , and F ∈ HMF .

Invariant: Inv(F) ≡ X for X
max
= F ∧ [Act]X

s |= Inv(F) if all states reachable from s satisfy F

Possibility: Pos(F) ≡ Y for Y
min
= F ∨ 〈Act〉Y

s |= Pos(F) if a state satisfying F is reachable from s

Safety: Safe(F) ≡ X for X
max
= F ∧ ([Act]ff ∨ 〈Act〉X)

s |= Safe(F) if s has a complete (i.e., infinite or terminating) transition
sequence where each state satisfies F

Eventuality: Evt(F) ≡ Y for Y
min
= F ∨ (〈Act〉tt ∧ [Act]Y)

s |= Evt(F) if each complete transition sequence starting in s contains
a state satisfying F

Concurrency Theory Winter Semester 2013/14 4.15

Uniqueness of Solutions

Uniqueness of solutions

Use greatest solutions for properties that hold unless the process has
a finite computation that disproves it.
Use least solutions for properties that hold if the process has a finite
computation that proves it.

Example 4.7

Let (S ,Act,−→) be an LTS, s ∈ S , and F ∈ HMF .

Invariant: Inv(F) ≡ X for X
max
= F ∧ [Act]X

s |= Inv(F) if all states reachable from s satisfy F

Possibility: Pos(F) ≡ Y for Y
min
= F ∨ 〈Act〉Y

s |= Pos(F) if a state satisfying F is reachable from s

Safety: Safe(F) ≡ X for X
max
= F ∧ ([Act]ff ∨ 〈Act〉X)

s |= Safe(F) if s has a complete (i.e., infinite or terminating) transition
sequence where each state satisfies F

Eventuality: Evt(F) ≡ Y for Y
min
= F ∨ (〈Act〉tt ∧ [Act]Y)

s |= Evt(F) if each complete transition sequence starting in s contains
a state satisfying F

Concurrency Theory Winter Semester 2013/14 4.15

Uniqueness of Solutions

Uniqueness of solutions

Use greatest solutions for properties that hold unless the process has
a finite computation that disproves it.
Use least solutions for properties that hold if the process has a finite
computation that proves it.

Example 4.7

Let (S ,Act,−→) be an LTS, s ∈ S , and F ∈ HMF .

Invariant: Inv(F) ≡ X for X
max
= F ∧ [Act]X

s |= Inv(F) if all states reachable from s satisfy F

Possibility: Pos(F) ≡ Y for Y
min
= F ∨ 〈Act〉Y

s |= Pos(F) if a state satisfying F is reachable from s

Safety: Safe(F) ≡ X for X
max
= F ∧ ([Act]ff ∨ 〈Act〉X)

s |= Safe(F) if s has a complete (i.e., infinite or terminating) transition
sequence where each state satisfies F

Eventuality: Evt(F) ≡ Y for Y
min
= F ∨ (〈Act〉tt ∧ [Act]Y)

s |= Evt(F) if each complete transition sequence starting in s contains
a state satisfying F

Concurrency Theory Winter Semester 2013/14 4.15

Uniqueness of Solutions

Uniqueness of solutions

Use greatest solutions for properties that hold unless the process has
a finite computation that disproves it.
Use least solutions for properties that hold if the process has a finite
computation that proves it.

Example 4.7

Let (S ,Act,−→) be an LTS, s ∈ S , and F ∈ HMF .

Invariant: Inv(F) ≡ X for X
max
= F ∧ [Act]X

s |= Inv(F) if all states reachable from s satisfy F

Possibility: Pos(F) ≡ Y for Y
min
= F ∨ 〈Act〉Y

s |= Pos(F) if a state satisfying F is reachable from s

Safety: Safe(F) ≡ X for X
max
= F ∧ ([Act]ff ∨ 〈Act〉X)

s |= Safe(F) if s has a complete (i.e., infinite or terminating) transition
sequence where each state satisfies F

Eventuality: Evt(F) ≡ Y for Y
min
= F ∨ (〈Act〉tt ∧ [Act]Y)

s |= Evt(F) if each complete transition sequence starting in s contains
a state satisfying F

Concurrency Theory Winter Semester 2013/14 4.15

Uniqueness of Solutions

Uniqueness of solutions

Use greatest solutions for properties that hold unless the process has
a finite computation that disproves it.
Use least solutions for properties that hold if the process has a finite
computation that proves it.

Example 4.7

Let (S ,Act,−→) be an LTS, s ∈ S , and F ∈ HMF .

Invariant: Inv(F) ≡ X for X
max
= F ∧ [Act]X

s |= Inv(F) if all states reachable from s satisfy F

Possibility: Pos(F) ≡ Y for Y
min
= F ∨ 〈Act〉Y

s |= Pos(F) if a state satisfying F is reachable from s

Safety: Safe(F) ≡ X for X
max
= F ∧ ([Act]ff ∨ 〈Act〉X)

s |= Safe(F) if s has a complete (i.e., infinite or terminating) transition
sequence where each state satisfies F

Eventuality: Evt(F) ≡ Y for Y
min
= F ∨ (〈Act〉tt ∧ [Act]Y)

s |= Evt(F) if each complete transition sequence starting in s contains
a state satisfying F

Concurrency Theory Winter Semester 2013/14 4.15

Outline

1 Recap: Hennessy-Milner Logic

2 HML and Process Traces

3 Adding Recursion to HML

4 HML with One Recursive Variable

Concurrency Theory Winter Semester 2013/14 4.16

Syntax of HML with One Recursive Variable

Initially: only one variable

Later: mutual recursion

Definition 4.8 (Syntax of HML with one variable)

The set HMFX of Hennessy-Milner formulae with one variable X over a
set of actions Act is defined by the following syntax:

F ::= X (variable)
| tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where α ∈ Act.

Concurrency Theory Winter Semester 2013/14 4.17

Syntax of HML with One Recursive Variable

Initially: only one variable

Later: mutual recursion

Definition 4.8 (Syntax of HML with one variable)

The set HMFX of Hennessy-Milner formulae with one variable X over a
set of actions Act is defined by the following syntax:

F ::= X (variable)
| tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where α ∈ Act.

Concurrency Theory Winter Semester 2013/14 4.17

Semantics of HML with One Recursive Variable I

So far: JF K ⊆ S for F ∈ HMF and LTS (S ,Act,−→)

Now: semantics of formula depends on states that (are assumed
to) satisfy X

Definition 4.9 (Semantics of HML)

Let (S ,Act,−→) be an LTS and F ∈ HMFX . The semantics of F ,

JF K : 2S → 2S ,

is defined by

JX K(T) := T
JttK(T) := S
JffK(T) := ∅

JF1 ∧ F2K(T) := JF1K(T) ∩ JF2K(T)
JF1 ∨ F2K(T) := JF1K(T) ∪ JF2K(T)

J〈α〉F K(T) := 〈·α·〉(JF K(T))
J[α]F K(T) := [·α·](JF K(T))

Concurrency Theory Winter Semester 2013/14 4.18

Semantics of HML with One Recursive Variable I

So far: JF K ⊆ S for F ∈ HMF and LTS (S ,Act,−→)

Now: semantics of formula depends on states that (are assumed
to) satisfy X

Definition 4.9 (Semantics of HML)

Let (S ,Act,−→) be an LTS and F ∈ HMFX . The semantics of F ,

JF K : 2S → 2S ,

is defined by

JX K(T) := T
JttK(T) := S
JffK(T) := ∅

JF1 ∧ F2K(T) := JF1K(T) ∩ JF2K(T)
JF1 ∨ F2K(T) := JF1K(T) ∪ JF2K(T)

J〈α〉F K(T) := 〈·α·〉(JF K(T))
J[α]F K(T) := [·α·](JF K(T))

Concurrency Theory Winter Semester 2013/14 4.18

Semantics of HML with One Recursive Variable II

Example 4.10

s1

s2 s3

a ba

a

Let S := {s1, s2, s3}.

J〈a〉X K({s1}) = {s3}
J〈a〉X K({s1, s2}) = {s1, s3}
J[b]X K({s2}) = {s2, s3}

Concurrency Theory Winter Semester 2013/14 4.19

Semantics of HML with One Recursive Variable II

Example 4.10

s1

s2 s3

a ba

a

Let S := {s1, s2, s3}.
J〈a〉X K({s1}) = {s3}

J〈a〉X K({s1, s2}) = {s1, s3}
J[b]X K({s2}) = {s2, s3}

Concurrency Theory Winter Semester 2013/14 4.19

Semantics of HML with One Recursive Variable II

Example 4.10

s1

s2 s3

a ba

a

Let S := {s1, s2, s3}.
J〈a〉X K({s1}) = {s3}
J〈a〉X K({s1, s2}) = {s1, s3}

J[b]X K({s2}) = {s2, s3}

Concurrency Theory Winter Semester 2013/14 4.19

Semantics of HML with One Recursive Variable II

Example 4.10

s1

s2 s3

a ba

a

Let S := {s1, s2, s3}.
J〈a〉X K({s1}) = {s3}
J〈a〉X K({s1, s2}) = {s1, s3}
J[b]X K({s2}) = {s2, s3}

Concurrency Theory Winter Semester 2013/14 4.19

Semantics of HML with One Recursive Variable III

Idea underlying the definition of

J.K : HMFX → (2S → 2S) :

if T ⊆ S gives the set of states that satisfy X , then JF K(T) will be
the set of states that satisfy F

How to determine this T?

According to previous discussion: as solution of recursive equation of
the form X = FX where FX ∈ HMFX

But: solution not unique; therefore write:

X
min
= FX or X

max
= FX

In the following we will see:
1 Equation X = FX always solvable
2 Least and greatest solutions are unique and can be obtained by

fixed-point iteration

Concurrency Theory Winter Semester 2013/14 4.20

Semantics of HML with One Recursive Variable III

Idea underlying the definition of

J.K : HMFX → (2S → 2S) :

if T ⊆ S gives the set of states that satisfy X , then JF K(T) will be
the set of states that satisfy F

How to determine this T?

According to previous discussion: as solution of recursive equation of
the form X = FX where FX ∈ HMFX

But: solution not unique; therefore write:

X
min
= FX or X

max
= FX

In the following we will see:
1 Equation X = FX always solvable
2 Least and greatest solutions are unique and can be obtained by

fixed-point iteration

Concurrency Theory Winter Semester 2013/14 4.20

Semantics of HML with One Recursive Variable III

Idea underlying the definition of

J.K : HMFX → (2S → 2S) :

if T ⊆ S gives the set of states that satisfy X , then JF K(T) will be
the set of states that satisfy F

How to determine this T?

According to previous discussion: as solution of recursive equation of
the form X = FX where FX ∈ HMFX

But: solution not unique; therefore write:

X
min
= FX or X

max
= FX

In the following we will see:
1 Equation X = FX always solvable
2 Least and greatest solutions are unique and can be obtained by

fixed-point iteration

Concurrency Theory Winter Semester 2013/14 4.20

Semantics of HML with One Recursive Variable III

Idea underlying the definition of

J.K : HMFX → (2S → 2S) :

if T ⊆ S gives the set of states that satisfy X , then JF K(T) will be
the set of states that satisfy F

How to determine this T?

According to previous discussion: as solution of recursive equation of
the form X = FX where FX ∈ HMFX

But: solution not unique; therefore write:

X
min
= FX or X

max
= FX

In the following we will see:
1 Equation X = FX always solvable
2 Least and greatest solutions are unique and can be obtained by

fixed-point iteration

Concurrency Theory Winter Semester 2013/14 4.20

	Recap: Hennessy-Milner Logic
	HML and Process Traces
	Adding Recursion to HML
	HML with One Recursive Variable

