
Concurrency Theory
Lecture 5: Fixed-Point Theory

Joost-Pieter Katoen Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/


Outline

1 Recap: Hennessy-Milner Logic with Recursion

2 Complete Lattices

3 The Fixed-Point Theorem

Concurrency Theory Winter Semester 2013/14 5.2



Introducing Recursion

Solution: employ recursion!

Inv(〈a〉tt) ≡ 〈a〉tt ∧ [a] Inv(〈a〉tt)

Pos([a]ff) ≡ [a]ff ∨ 〈a〉Pos([a]ff)

Interpretation: the sets of states X ,Y ⊆ S satisfying the respective
formula should solve the corresponding equation, i.e.,

X = 〈·a·〉(S) ∩ [·a·](X )

Y = [·a·](∅) ∪ 〈·a·〉(Y )

Open questions

Do such recursive equations (always) have solutions?

If so, are they unique?

How can we compute whether a process satisfies a recursive formula?

Concurrency Theory Winter Semester 2013/14 5.3



Syntax of HML with One Recursive Variable

Initially: only one variable

Later: mutual recursion

Definition (Syntax of HML with one variable)

The set HMFX of Hennessy-Milner formulae with one variable X over a
set of actions Act is defined by the following syntax:

F ::= X (variable)
| tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where α ∈ Act.

Concurrency Theory Winter Semester 2013/14 5.4



Semantics of HML with One Recursive Variable I

So far: JF K ⊆ S for F ∈ HMF and LTS (S ,Act,−→)

Now: semantics of formula depends on states that (are assumed
to) satisfy X

Definition (Semantics of HML)

Let (S ,Act,−→) be an LTS and F ∈ HMFX . The semantics of F ,

JF K : 2S → 2S ,

is defined by

JX K(T ) := T
JttK(T ) := S
JffK(T ) := ∅

JF1 ∧ F2K(T ) := JF1K(T ) ∩ JF2K(T )
JF1 ∨ F2K(T ) := JF1K(T ) ∪ JF2K(T )

J〈α〉F K(T ) := 〈·α·〉(JF K(T ))
J[α]F K(T ) := [·α·](JF K(T ))

Concurrency Theory Winter Semester 2013/14 5.5



Semantics of HML with One Recursive Variable III

Idea underlying the definition of

J.K : HMFX → (2S → 2S) :

if T ⊆ S gives the set of states that satisfy X , then JF K(T ) will be
the set of states that satisfy F

How to determine this T?

According to previous discussion: as solution of recursive equation of
the form X = FX where FX ∈ HMFX

But: solution not unique; therefore write:

X
min
= FX or X

max
= FX

In the following we will see:
1 Equation X = FX always solvable
2 Least and greatest solutions are unique and can be obtained by

fixed-point iteration

Concurrency Theory Winter Semester 2013/14 5.6



Outline

1 Recap: Hennessy-Milner Logic with Recursion

2 Complete Lattices

3 The Fixed-Point Theorem

Concurrency Theory Winter Semester 2013/14 5.7



Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 5.2

1 (N,≤) is a total partial order

2 (N, <) is not a partial order (since not reflexive)

3 (2N,⊆) is a (non-total) partial order

4 (Σ∗,v) is a (non-total) partial order, where Σ is some alphabet and
v denotes prefix ordering (u v v ⇐⇒ ∃w ∈ Σ∗ : uw = v)

Concurrency Theory Winter Semester 2013/14 5.8



Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 5.2

1 (N,≤) is a total partial order

2 (N, <) is not a partial order (since not reflexive)

3 (2N,⊆) is a (non-total) partial order

4 (Σ∗,v) is a (non-total) partial order, where Σ is some alphabet and
v denotes prefix ordering (u v v ⇐⇒ ∃w ∈ Σ∗ : uw = v)

Concurrency Theory Winter Semester 2013/14 5.8



Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 5.2

1 (N,≤) is a total partial order

2 (N, <) is not a partial order (since not reflexive)

3 (2N,⊆) is a (non-total) partial order

4 (Σ∗,v) is a (non-total) partial order, where Σ is some alphabet and
v denotes prefix ordering (u v v ⇐⇒ ∃w ∈ Σ∗ : uw = v)

Concurrency Theory Winter Semester 2013/14 5.8



Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 5.2

1 (N,≤) is a total partial order

2 (N, <) is not a partial order (since not reflexive)

3 (2N,⊆) is a (non-total) partial order

4 (Σ∗,v) is a (non-total) partial order, where Σ is some alphabet and
v denotes prefix ordering (u v v ⇐⇒ ∃w ∈ Σ∗ : uw = v)

Concurrency Theory Winter Semester 2013/14 5.8



Partial Orders

Definition 5.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 5.2

1 (N,≤) is a total partial order

2 (N, <) is not a partial order (since not reflexive)

3 (2N,⊆) is a (non-total) partial order

4 (Σ∗,v) is a (non-total) partial order, where Σ is some alphabet and
v denotes prefix ordering (u v v ⇐⇒ ∃w ∈ Σ∗ : uw = v)

Concurrency Theory Winter Semester 2013/14 5.8



Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.

1 An element d ∈ D is called an upper bound of T if t v d for every
t ∈ T (notation: T v d). It is called least upper bound (LUB) (or
supremum) of T if additionally d v d ′ for every upper bound d ′ of T
(notation: d =

⊔
T ).

2 An element d ∈ D is called an lower bound of T if d v t for every
t ∈ T (notation: d v T ). It is called greatest lower bound (GLB) (or
infimum) of T if d ′ v d for every lower bound d ′ of T (notation:
d =

d
T ).

Example 5.4

1 T ⊆ N has a LUB in (N,≤) iff it is finite
2 In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔

T =
⋃

T and
l

T =
⋂

T

Concurrency Theory Winter Semester 2013/14 5.9



Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.

1 An element d ∈ D is called an upper bound of T if t v d for every
t ∈ T (notation: T v d). It is called least upper bound (LUB) (or
supremum) of T if additionally d v d ′ for every upper bound d ′ of T
(notation: d =

⊔
T ).

2 An element d ∈ D is called an lower bound of T if d v t for every
t ∈ T (notation: d v T ). It is called greatest lower bound (GLB) (or
infimum) of T if d ′ v d for every lower bound d ′ of T (notation:
d =

d
T ).

Example 5.4

1 T ⊆ N has a LUB in (N,≤) iff it is finite
2 In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔

T =
⋃

T and
l

T =
⋂

T

Concurrency Theory Winter Semester 2013/14 5.9



Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.

1 An element d ∈ D is called an upper bound of T if t v d for every
t ∈ T (notation: T v d). It is called least upper bound (LUB) (or
supremum) of T if additionally d v d ′ for every upper bound d ′ of T
(notation: d =

⊔
T ).

2 An element d ∈ D is called an lower bound of T if d v t for every
t ∈ T (notation: d v T ). It is called greatest lower bound (GLB) (or
infimum) of T if d ′ v d for every lower bound d ′ of T (notation:
d =

d
T ).

Example 5.4

1 T ⊆ N has a LUB in (N,≤) iff it is finite

2 In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔
T =

⋃
T and

l
T =

⋂
T

Concurrency Theory Winter Semester 2013/14 5.9



Upper and Lower Bounds

Definition 5.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.

1 An element d ∈ D is called an upper bound of T if t v d for every
t ∈ T (notation: T v d). It is called least upper bound (LUB) (or
supremum) of T if additionally d v d ′ for every upper bound d ′ of T
(notation: d =

⊔
T ).

2 An element d ∈ D is called an lower bound of T if d v t for every
t ∈ T (notation: d v T ). It is called greatest lower bound (GLB) (or
infimum) of T if d ′ v d for every lower bound d ′ of T (notation:
d =

d
T ).

Example 5.4

1 T ⊆ N has a LUB in (N,≤) iff it is finite
2 In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔

T =
⋃

T and
l

T =
⋂

T

Concurrency Theory Winter Semester 2013/14 5.9



Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have
LUBs and GLBs. In this case,

⊥ :=
l

D and > :=
⊔

D

respectively denote the least and greatest element of D.

Example 5.6

1 (N,≤) is not a complete lattice as, e.g., N does not have a LUB

2 (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice

3 (2N,⊆) is a complete lattice

Concurrency Theory Winter Semester 2013/14 5.10



Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have
LUBs and GLBs. In this case,

⊥ :=
l

D and > :=
⊔

D

respectively denote the least and greatest element of D.

Example 5.6

1 (N,≤) is not a complete lattice as, e.g., N does not have a LUB

2 (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice

3 (2N,⊆) is a complete lattice

Concurrency Theory Winter Semester 2013/14 5.10



Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have
LUBs and GLBs. In this case,

⊥ :=
l

D and > :=
⊔

D

respectively denote the least and greatest element of D.

Example 5.6

1 (N,≤) is not a complete lattice as, e.g., N does not have a LUB

2 (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice

3 (2N,⊆) is a complete lattice

Concurrency Theory Winter Semester 2013/14 5.10



Complete Lattices

Definition 5.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have
LUBs and GLBs. In this case,

⊥ :=
l

D and > :=
⊔

D

respectively denote the least and greatest element of D.

Example 5.6

1 (N,≤) is not a complete lattice as, e.g., N does not have a LUB

2 (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice

3 (2N,⊆) is a complete lattice

Concurrency Theory Winter Semester 2013/14 5.10



Application to HML with Recursion

Lemma 5.7

Let (S ,Act,−→) be an LTS. Then (2S ,⊆) is a complete lattice with⊔
T =

⋃
T =

⋃
T∈T T for all T ⊆ 2S

d
T =

⋂
T =

⋂
T∈T T for all T ⊆ 2S

⊥ =
d

2S = ∅
> =

⊔
2S = S

Proof.

omitted

Concurrency Theory Winter Semester 2013/14 5.11



Application to HML with Recursion

Lemma 5.7

Let (S ,Act,−→) be an LTS. Then (2S ,⊆) is a complete lattice with⊔
T =

⋃
T =

⋃
T∈T T for all T ⊆ 2S

d
T =

⋂
T =

⋂
T∈T T for all T ⊆ 2S

⊥ =
d

2S = ∅
> =

⊔
2S = S

Proof.

omitted

Concurrency Theory Winter Semester 2013/14 5.11



Application to HML with Recursion

Lemma 5.7

Let (S ,Act,−→) be an LTS. Then (2S ,⊆) is a complete lattice with⊔
T =

⋃
T =

⋃
T∈T T for all T ⊆ 2S

d
T =

⋂
T =

⋂
T∈T T for all T ⊆ 2S

⊥ =
d

2S = ∅
> =

⊔
2S = S

Proof.

omitted

Concurrency Theory Winter Semester 2013/14 5.11



Outline

1 Recap: Hennessy-Milner Logic with Recursion

2 Complete Lattices

3 The Fixed-Point Theorem

Concurrency Theory Winter Semester 2013/14 5.12



Fixed Points

Definition 5.8 (Fixed point)

Let D be some domain, d ∈ D, and f : D → D. If

f (d) = d

then d is called a fixed point of f .

Example 5.9

1 The (only) fixed points of f1 : N→ N : n 7→ n2 are 0 and 1

2 A subset T ⊆ N is a fixed point of f2 : 2N → 2N : T 7→ T ∪ {1, 2} iff
{1, 2} ⊆ T

Concurrency Theory Winter Semester 2013/14 5.13



Fixed Points

Definition 5.8 (Fixed point)

Let D be some domain, d ∈ D, and f : D → D. If

f (d) = d

then d is called a fixed point of f .

Example 5.9

1 The (only) fixed points of f1 : N→ N : n 7→ n2 are 0 and 1

2 A subset T ⊆ N is a fixed point of f2 : 2N → 2N : T 7→ T ∪ {1, 2} iff
{1, 2} ⊆ T

Concurrency Theory Winter Semester 2013/14 5.13



Fixed Points

Definition 5.8 (Fixed point)

Let D be some domain, d ∈ D, and f : D → D. If

f (d) = d

then d is called a fixed point of f .

Example 5.9

1 The (only) fixed points of f1 : N→ N : n 7→ n2 are 0 and 1

2 A subset T ⊆ N is a fixed point of f2 : 2N → 2N : T 7→ T ∪ {1, 2} iff
{1, 2} ⊆ T

Concurrency Theory Winter Semester 2013/14 5.13



Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders. A function f : D → D ′ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ f (d1) v′ f (d2).

Example 5.11

1 f1 : N→ N : n 7→ n2 is monotonic w.r.t. (N,≤)

2 f2 : 2N → 2N : T 7→ T ∪ {1, 2} is monotonic w.r.t. (2N,⊆)

3 Let T := {T ⊆ N | T finite}. Then f3 : T → N : T 7→
∑

n∈T n is
monotonic w.r.t. (2N,⊆) and (N,≤).

4 f4 : 2N → 2N : T 7→ N \ T is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but f4(∅) = N 6⊆ f4(N) = ∅).

Concurrency Theory Winter Semester 2013/14 5.14



Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders. A function f : D → D ′ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ f (d1) v′ f (d2).

Example 5.11

1 f1 : N→ N : n 7→ n2 is monotonic w.r.t. (N,≤)

2 f2 : 2N → 2N : T 7→ T ∪ {1, 2} is monotonic w.r.t. (2N,⊆)

3 Let T := {T ⊆ N | T finite}. Then f3 : T → N : T 7→
∑

n∈T n is
monotonic w.r.t. (2N,⊆) and (N,≤).

4 f4 : 2N → 2N : T 7→ N \ T is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but f4(∅) = N 6⊆ f4(N) = ∅).

Concurrency Theory Winter Semester 2013/14 5.14



Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders. A function f : D → D ′ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ f (d1) v′ f (d2).

Example 5.11

1 f1 : N→ N : n 7→ n2 is monotonic w.r.t. (N,≤)

2 f2 : 2N → 2N : T 7→ T ∪ {1, 2} is monotonic w.r.t. (2N,⊆)

3 Let T := {T ⊆ N | T finite}. Then f3 : T → N : T 7→
∑

n∈T n is
monotonic w.r.t. (2N,⊆) and (N,≤).

4 f4 : 2N → 2N : T 7→ N \ T is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but f4(∅) = N 6⊆ f4(N) = ∅).

Concurrency Theory Winter Semester 2013/14 5.14



Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders. A function f : D → D ′ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ f (d1) v′ f (d2).

Example 5.11

1 f1 : N→ N : n 7→ n2 is monotonic w.r.t. (N,≤)

2 f2 : 2N → 2N : T 7→ T ∪ {1, 2} is monotonic w.r.t. (2N,⊆)

3 Let T := {T ⊆ N | T finite}. Then f3 : T → N : T 7→
∑

n∈T n is
monotonic w.r.t. (2N,⊆) and (N,≤).

4 f4 : 2N → 2N : T 7→ N \ T is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but f4(∅) = N 6⊆ f4(N) = ∅).

Concurrency Theory Winter Semester 2013/14 5.14



Monotonicity of Functions

Definition 5.10 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders. A function f : D → D ′ is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ f (d1) v′ f (d2).

Example 5.11

1 f1 : N→ N : n 7→ n2 is monotonic w.r.t. (N,≤)

2 f2 : 2N → 2N : T 7→ T ∪ {1, 2} is monotonic w.r.t. (2N,⊆)

3 Let T := {T ⊆ N | T finite}. Then f3 : T → N : T 7→
∑

n∈T n is
monotonic w.r.t. (2N,⊆) and (N,≤).

4 f4 : 2N → 2N : T 7→ N \ T is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but f4(∅) = N 6⊆ f4(N) = ∅).

Concurrency Theory Winter Semester 2013/14 5.14



The Fixed-Point Theorem I

Alfred Tarski (1901–1983)

Theorem 5.12 (Tarski’s fixed-point theorem)

Let (D,v) be a complete lattice and f : D → D monotonic. Then f has a
least fixed point fix(f ) and a greatest fixed point FIX(f ) given by

fix(f ) =
d
{d ∈ D | f (d) v d} (GLB of all pre-fixed points of f )

FIX(f ) =
⊔
{d ∈ D | d v f (d)} (LUB of all post-fixed points of f )

Proof.

on the board

Concurrency Theory Winter Semester 2013/14 5.15



The Fixed-Point Theorem I

Alfred Tarski (1901–1983)

Theorem 5.12 (Tarski’s fixed-point theorem)

Let (D,v) be a complete lattice and f : D → D monotonic. Then f has a
least fixed point fix(f ) and a greatest fixed point FIX(f ) given by

fix(f ) =
d
{d ∈ D | f (d) v d} (GLB of all pre-fixed points of f )

FIX(f ) =
⊔
{d ∈ D | d v f (d)} (LUB of all post-fixed points of f )

Proof.

on the board

Concurrency Theory Winter Semester 2013/14 5.15



The Fixed-Point Theorem II

Example 5.13 (cf. Example 5.9)

Let f : 2N → 2N : T 7→ T ∪ {1, 2}
As seen before: f (T ) = T iff {1, 2} ⊆ T

Theorem 5.12 for fix:

fix(f ) =
d
{d ∈ D | f (d) v d}

=
⋂
{T ⊆ N | f (T ) ⊆ T}

=
⋂
{T ⊆ N | T ∪ {1, 2} ⊆ T}

=
⋂
{T ⊆ N | {1, 2} ⊆ T}

= {1, 2}

Theorem 5.12 for FIX:

FIX(f ) =
⊔
{d ∈ D | d v f (d)}

=
⋃
{T ⊆ N | T ⊆ f (T )}

=
⋃
{T ⊆ N | T ⊆ T ∪ {1, 2}}

=
⋃

2N

= N

Concurrency Theory Winter Semester 2013/14 5.16



The Fixed-Point Theorem II

Example 5.13 (cf. Example 5.9)

Let f : 2N → 2N : T 7→ T ∪ {1, 2}
As seen before: f (T ) = T iff {1, 2} ⊆ T

Theorem 5.12 for fix:

fix(f ) =
d
{d ∈ D | f (d) v d}

=
⋂
{T ⊆ N | f (T ) ⊆ T}

=
⋂
{T ⊆ N | T ∪ {1, 2} ⊆ T}

=
⋂
{T ⊆ N | {1, 2} ⊆ T}

= {1, 2}

Theorem 5.12 for FIX:

FIX(f ) =
⊔
{d ∈ D | d v f (d)}

=
⋃
{T ⊆ N | T ⊆ f (T )}

=
⋃
{T ⊆ N | T ⊆ T ∪ {1, 2}}

=
⋃

2N

= N

Concurrency Theory Winter Semester 2013/14 5.16



The Fixed-Point Theorem II

Example 5.13 (cf. Example 5.9)

Let f : 2N → 2N : T 7→ T ∪ {1, 2}
As seen before: f (T ) = T iff {1, 2} ⊆ T

Theorem 5.12 for fix:

fix(f ) =
d
{d ∈ D | f (d) v d}

=
⋂
{T ⊆ N | f (T ) ⊆ T}

=
⋂
{T ⊆ N | T ∪ {1, 2} ⊆ T}

=
⋂
{T ⊆ N | {1, 2} ⊆ T}

= {1, 2}

Theorem 5.12 for FIX:

FIX(f ) =
⊔
{d ∈ D | d v f (d)}

=
⋃
{T ⊆ N | T ⊆ f (T )}

=
⋃
{T ⊆ N | T ⊆ T ∪ {1, 2}}

=
⋃

2N

= N

Concurrency Theory Winter Semester 2013/14 5.16


	Recap: Hennessy-Milner Logic with Recursion
	Complete Lattices
	The Fixed-Point Theorem

