

Concurrency Theory

Lecture 6: Application to Hennessy-Milner Logic

Joost-Pieter Katoen Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

`{katoen, noll}@cs.rwth-aachen.de`

`http://www-i2.informatik.rwth-aachen.de/i2/ct13/`

Winter Semester 2013/14

- 1 Recap: Fixed-Point Theory
- 2 The Fixed-Point Theorem for Finite Lattices
- 3 Largest Fixed Points and Invariants

Definition (Partial order)

A **partial order (PO)** (D, \sqsubseteq) consists of a set D , called **domain**, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called **total** if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example

- ① (\mathbb{N}, \leq) is a total partial order
- ② $(\mathbb{N}, <)$ is not a partial order (since not reflexive)
- ③ $(2^{\mathbb{N}}, \subseteq)$ is a (non-total) partial order
- ④ (Σ^*, \sqsubseteq) is a (non-total) partial order, where Σ is some alphabet and \sqsubseteq denotes prefix ordering ($u \sqsubseteq v \iff \exists w \in \Sigma^* : uw = v$)

Upper and Lower Bounds

Definition ((Least) upper bounds and (greatest) lower bounds)

Let (D, \sqsubseteq) be a partial order and $T \subseteq D$.

- ① An element $d \in D$ is called an **upper bound** of T if $t \sqsubseteq d$ for every $t \in T$ (notation: $T \sqsubseteq d$). It is called **least upper bound (LUB)** (or **supremum**) of T if additionally $d \sqsubseteq d'$ for every upper bound d' of T (notation: $d = \sqcup T$).
- ② An element $d \in D$ is called an **lower bound** of T if $d \sqsubseteq t$ for every $t \in T$ (notation: $d \sqsubseteq T$). It is called **greatest lower bound (GLB)** (or **infimum**) of T if $d' \sqsubseteq d$ for every lower bound d' of T (notation: $d = \sqcap T$).

Example

- ① $T \subseteq \mathbb{N}$ has a LUB in (\mathbb{N}, \leq) iff it is finite
- ② In $(2^{\mathbb{N}}, \subseteq)$, every subset $T \subseteq 2^{\mathbb{N}}$ has an LUB and GLB:

$$\sqcup T = \bigcup T \quad \text{and} \quad \sqcap T = \bigcap T$$

Definition (Complete lattice)

A **complete lattice** is a partial order (D, \sqsubseteq) such that all subsets of D have LUBs and GLBs. In this case,

$$\perp := \bigcap D \quad \text{and} \quad \top := \bigcup D$$

respectively denote the **least and greatest element** of D .

Example

- ① (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB
- ② $(\mathbb{N} \cup \{\infty\}, \leq)$ with $n \leq \infty$ for all $n \in \mathbb{N}$ is a complete lattice
- ③ $(2^{\mathbb{N}}, \subseteq)$ is a complete lattice

Lemma

Let (S, Act, \rightarrow) be an LTS. Then $(2^S, \subseteq)$ is a complete lattice with

- $\bigsqcup \mathcal{T} = \bigcup \mathcal{T} = \bigcup_{T \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^S$
- $\bigsqcap \mathcal{T} = \bigcap \mathcal{T} = \bigcap_{T \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^S$
- $\perp = \bigsqcap 2^S = \emptyset$
- $\top = \bigsqcup 2^S = S$

Proof.

omitted

Definition (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f : D \rightarrow D'$ is called **monotonic** (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies f(d_1) \sqsubseteq' f(d_2).$$

Example

- ① $f_1 : \mathbb{N} \rightarrow \mathbb{N} : n \mapsto n^2$ is monotonic w.r.t. (\mathbb{N}, \leq)
- ② $f_2 : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}} : T \mapsto T \cup \{1, 2\}$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$
- ③ Let $\mathcal{T} := \{T \subseteq \mathbb{N} \mid T \text{ finite}\}$. Then $f_3 : \mathcal{T} \rightarrow \mathbb{N} : T \mapsto \sum_{n \in T} n$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ and (\mathbb{N}, \leq) .
- ④ $f_4 : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}} : T \mapsto \mathbb{N} \setminus T$ is not monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $f_4(\emptyset) = \mathbb{N} \not\subseteq f_4(\mathbb{N}) = \emptyset$).

Alfred Tarski (1901–1983)

Theorem (Tarski's fixed-point theorem)

Let (D, \sqsubseteq) be a complete lattice and $f : D \rightarrow D$ monotonic. Then f has a least fixed point $\text{fix}(f)$ and a greatest fixed point $\text{FIX}(f)$ given by

$$\text{fix}(f) = \bigcap \{d \in D \mid f(d) \sqsubseteq d\} \quad (\text{GLB of all pre-fixed points of } f)$$

$$\text{FIX}(f) = \bigcup \{d \in D \mid d \sqsubseteq f(d)\} \quad (\text{LUB of all post-fixed points of } f)$$

Proof.

on the board

- 1 Recap: Fixed-Point Theory
- 2 The Fixed-Point Theorem for Finite Lattices
- 3 Largest Fixed Points and Invariants

The Fixed-Point Theorem for Finite Lattices

Theorem 6.1 (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f : D \rightarrow D$ monotonic. Then

$$\text{fix}(f) = f^m(\perp) \quad \text{and} \quad \text{FIX}(f) = f^M(\top)$$

for some $m, M \in \mathbb{N}$ where

$$f^0(d) := d \quad \text{and} \quad f^{k+1}(d) := f(f^k(d)).$$

Proof.

on the board □

Example 6.2

- Let $f : 2^{\{0,1\}} \rightarrow 2^{\{0,1\}} : T \mapsto T \cup \{0\}$
- $f^0(\perp) = \emptyset, f^1(\perp) = \{0\}, f^2(\perp) = \{0\} = f^1(\perp)$
 $\implies \text{fix}(f) = \{0\}$ for $m = 2$
- $f^0(\top) = \{0, 1\}, f^1(\top) = \{0, 1\} = f^0(\top)$
 $\implies \text{FIX}(f) = \{0, 1\}$ for $M = 1$

Lemma 6.3

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in \text{HMF}_X$. Then

- ① $\llbracket F \rrbracket : 2^S \rightarrow 2^S$ is monotonic w.r.t. $(2^S, \subseteq)$
- ② $\text{fix}(\llbracket F \rrbracket) = \bigcap\{T \subseteq S \mid \llbracket F \rrbracket(T) \subseteq T\}$
- ③ $\text{FIX}(\llbracket F \rrbracket) = \bigcup\{T \subseteq S \mid T \subseteq \llbracket F \rrbracket(T)\}$

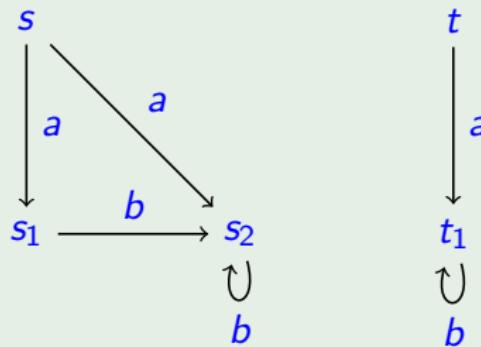
If, in addition, S is finite, then

- ④ $\text{fix}(\llbracket F \rrbracket) = \llbracket F \rrbracket^m(\emptyset)$ for some $m \in \mathbb{N}$
- ⑤ $\text{FIX}(\llbracket F \rrbracket) = \llbracket F \rrbracket^M(S)$ for some $M \in \mathbb{N}$

Proof.

- ① by induction on the structure of F (details omitted)
- ② by Lemma 5.7 and Theorem 5.12
- ③ by Lemma 5.7 and Theorem 5.12
- ④ by Lemma 5.7 and Theorem 6.1
- ⑤ by Lemma 5.7 and Theorem 6.1

Example 6.4



Let $S := \{s, s_1, s_2, t, t_1\}$.

- ① Solution of $X \stackrel{\max}{=} \langle b \rangle tt \wedge [b]X$: on the board
- ② Solution of $Y \stackrel{\min}{=} \langle b \rangle tt \vee \langle \{a, b\} \rangle Y$: on the board

- 1 Recap: Fixed-Point Theory
- 2 The Fixed-Point Theorem for Finite Lattices
- 3 Largest Fixed Points and Invariants

- Remember (Example 4.7):
 - Invariant: $Inv(F) \equiv X$ for $F \in HMF$ and $X \stackrel{\max}{\equiv} F \wedge [Act]X$
 - $s \models Inv(F)$ if all states reachable from s satisfy F
- Now: formalize argument and prove its correctness
- Let $inv : 2^S \rightarrow 2^S : T \mapsto \llbracket F \rrbracket \cap [\cdot Act \cdot]T$ be the corresponding semantic function
- By Theorem 5.12, $FIX(inv) = \bigcup \{T \subseteq S \mid T \subseteq inv(T)\}$
- Direct formulation of invariance property:

$$Inv = \{s \in S \mid \forall w \in Act^*, s' \in S : s \xrightarrow{w} s' \implies s' \in \llbracket F \rrbracket\}$$

Theorem 6.5

For every LTS (S, Act, \rightarrow) , $Inv = FIX(inv)$ holds.

Proof.

on the board

