
Concurrency Theory
Lecture 7: Mutually Recursive Equational Systems

Joost-Pieter Katoen Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/


Outline

1 Recap: Fixed-Point Theory for HML

2 Mutually Recursive Equational Systems

3 Mixing Least and Greatest Fixed Points

4 Modelling Mutual Exclusion Algorithms

Concurrency Theory Winter Semester 2013/14 7.2



Application to HML with Recursion

Lemma

Let (S ,Act,−→) be an LTS and F ∈ HMFX . Then

1 JF K : 2S → 2S is monotonic w.r.t. (2S ,⊆)

2 fix(JF K) =
⋂
{T ⊆ S | JF K(T ) ⊆ T}

3 FIX(JF K) =
⋃
{T ⊆ S | T ⊆ JF K(T )}

If, in addition, S is finite, then

4 fix(JF K) = JF Km(∅) for some m ∈ N
5 FIX(JF K) = JF KM(S) for some M ∈ N

Proof.
1 by induction on the structure of F (details omitted)
2 by Lemma 5.9 and Theorem 5.14
3 by Lemma 5.9 and Theorem 5.14
4 by Lemma 5.9 and Theorem 6.1
5 by Lemma 5.9 and Theorem 6.1

Concurrency Theory Winter Semester 2013/14 7.3



Outline

1 Recap: Fixed-Point Theory for HML

2 Mutually Recursive Equational Systems

3 Mixing Least and Greatest Fixed Points

4 Modelling Mutual Exclusion Algorithms

Concurrency Theory Winter Semester 2013/14 7.4



Introducing Several Variables

Sometimes useful: using more than one variable

Example 7.1

“It is always the case that a process can perform an a-labelled
transition leading to a state where b-transitions can be executed
forever.”

can be specified by

Inv(〈a〉Forever(b))

where

Inv(F )
max
= F ∧ [Act]F (cf. Theorem 6.5)

Forever(b)
max
= 〈b〉Forever(b)

Concurrency Theory Winter Semester 2013/14 7.5



Syntax of Mutually Recursive Equational Systems

Definition 7.2 (Syntax of mutually recursive equational systems)

Let X = {X1, . . . ,Xn} be a set of variables. The set HMFX of
Hennessy-Milner formulae over X is defined by the following syntax:

F ::= Xi (variable)
| tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where 1 ≤ i ≤ n and α ∈ Act. A mutually recursive equational system has
the form

(Xi = FXi
| 1 ≤ i ≤ n)

where FXi
∈ HMFX for every 1 ≤ i ≤ n.

Concurrency Theory Winter Semester 2013/14 7.6



Semantics of Recursive Equational Systems I

As before: semantics of formula depends on states satisfying the variables

Definition 7.3 (Semantics of mutually recursive equational systems)

Let (S ,Act,−→) be an LTS and E = (Xi = FXi
| 1 ≤ i ≤ n) a mutually

recursive equational system. The semantics of E ,

JEK : (2S)n → (2S)n,

is defined by

JEK(T1, . . . ,Tn) := (JFX1K(T1, . . . ,Tn), . . . , JFXnK(T1, . . . ,Tn))

where

JXiK(T1, . . . ,Tn) := Ti

JttK(T1, . . . ,Tn) := S
JffK(T1, . . . ,Tn) := ∅

JF1 ∧ F2K(T1, . . . ,Tn) := JF1K(T1, . . . ,Tn) ∩ JF2K(T1, . . . ,Tn)
JF1 ∨ F2K(T1, . . . ,Tn) := JF1K(T1, . . . ,Tn) ∪ JF2K(T1, . . . ,Tn)

J〈α〉F K(T1, . . . ,Tn) := 〈·α·〉(JF K(T1, . . . ,Tn))
J[α]F K(T1, . . . ,Tn) := [·α·](JF K(T1, . . . ,Tn))

Concurrency Theory Winter Semester 2013/14 7.7



Semantics of Recursive Equational Systems II

Lemma 7.4

Let (S ,Act,−→) be a finite LTS and E = (Xi = FXi
| 1 ≤ i ≤ n) a

mutually recursive equational system. Let (D,v) be given by D := (2S)n

and (T1, . . . ,Tn) v (T ′
1, . . . ,T

′
n) if Ti ⊆ T ′

i for every 1 ≤ i ≤ n.

1 (D,v) is a complete lattice with⊔
{(T i

1, . . . ,T
i
n) | i ∈ I} =

(⋃
{T i

1 | i ∈ I}, . . . ,
⋃
{T i

n | i ∈ I}
)

d
{(T i

1, . . . ,T
i
n) | i ∈ I} =

(⋂
{T i

1 | i ∈ I}, . . . ,
⋂
{T i

n | i ∈ I}
)

2 JEK is monotonic w.r.t. (D,v)

3 fix(JEK) = JEKm(∅, . . . , ∅) for some m ∈ N
4 FIX(JEK) = JEKM(S , . . . ,S) for some M ∈ N

Proof.

omitted

Concurrency Theory Winter Semester 2013/14 7.8



Semantics of Recursive Equational Systems III

Example 7.5

s s1 s2 s3

a

b
a

a
b

Let S := {s, s1, s2, s3} and E given by

X
max
= 〈a〉Y ∧ [a]Y ∧ [b]ff

Y
max
= 〈b〉X ∧ [b]X ∧ [a]ff

Computation of FIX(JEK): on the board

Concurrency Theory Winter Semester 2013/14 7.9



Outline

1 Recap: Fixed-Point Theory for HML

2 Mutually Recursive Equational Systems

3 Mixing Least and Greatest Fixed Points

4 Modelling Mutual Exclusion Algorithms

Concurrency Theory Winter Semester 2013/14 7.10



Mixing Least and Greatest Fixed Points I

So far: least/greatest fixed point of overall system

But: too restrictive

Example 7.6

“It is possible for the system to reach a state which has a
livelock (i.e., an infinite sequence of internal steps).”

can be specified by

Pos(Livelock)

where

Pos(F )
min
= F ∨ 〈Act〉Pos(F ) (cf. Example ??)

Livelock
max
= 〈τ〉Livelock

(thus, Livelock ≡ Forever(τ) [cf. Example 7.1])

Concurrency Theory Winter Semester 2013/14 7.11



Mixing Least and Greatest Fixed Points II

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 7.7

E : X
min
= Y

Y
max
= X

Fixed-point iteration:

(⊥,>) = (∅, S)
JEK7→ (S , ∅) JEK7→ (∅, S)

JEK7→ . . .

Solution: nesting of specifications by partitioning equations into a
sequence of blocks such that all equations in one block

are of same type (either min or max) and

use only variables defined in the same or subsequent blocks

=⇒ bottom-up, block-wise evaluation by fixed-point iteration

Concurrency Theory Winter Semester 2013/14 7.12



Mixing Least and Greatest Fixed Points III

Example 7.8 (cf. Example 7.6)

PosLL
min
= Livelock ∨ 〈Act〉PosLL

Livelock
max
= 〈τ〉Livelock

s p q r
a τ τ

τ

1 Fixed-point iteration for Livelock : T 7→ 〈·τ ·〉(T ):

S = {s, p, q, r} 7→ {p, q} 7→ {p} 7→ {p}

2 Fixed-point iteration for PosLL : T 7→ {p} ∪ 〈·Act·〉(T ):

∅ 7→ {p} 7→ {s, p} 7→ {s, p}

Concurrency Theory Winter Semester 2013/14 7.13



The Modal µ-Calculus

Logic that supports free mixing of least and greatest fixed points:

D. Kozen: Results on the Propositional µ-Calculus, Theoretical
Computer Science 27, 1983, 333–354

HML variants are fragments thereof

Expressivity increases with alternation of least and greatest fixed
points:

J.C. Bradfield: The Modal Mu-Calculus Alternation Hierarchy is Strict,
Theoretical Computer Science 195(2), 1998, 133–153

Decidable model-checking problem for finite LTSs
(in NP ∩ co-NP; linear for HML with one variable)

Generally undecidable for infinite LTSs and HML with one variable
(CCS, Petri nets, ...)

Overview paper:

O. Burkart, D. Caucal, F. Moller, B. Steffen: Verification on Infinite
Structures, Chapter 9 of Handbook of Process Algebra, Elsevier, 2001,
545–623

Concurrency Theory Winter Semester 2013/14 7.14



Outline

1 Recap: Fixed-Point Theory for HML

2 Mutually Recursive Equational Systems

3 Mixing Least and Greatest Fixed Points

4 Modelling Mutual Exclusion Algorithms

Concurrency Theory Winter Semester 2013/14 7.15



Peterson’s Mutual Exclusion Algorithm

Goal: ensuring exclusive access to non-shared resources

Here: two competing processes P1,P2 and shared variables

b1, b2 (Boolean, initially false)
k (in {1, 2}, arbitrary initial value)

Pi uses local variable j := 2− i (index of other process)

Algorithm 7.9 (Peterson’s algorithm for Pi)

while true do
“non-critical section”;
bi := true;
k := j ;
while bj ∧ k = j do skip;
“critical section”;
bi := false;

end

Concurrency Theory Winter Semester 2013/14 7.16



Representing Shared Variables in CCS

Not directly expressible in CCS (communication by message passing)
Idea: consider variables as processes that communicate with
environment by processing read/write requests

Example 7.10 (Shared variables in Peterson’s algorithm)

Encoding of b1 with two (process) states B1t (value tt) and B1f (ff)
Read access along ports b1rt (in state B1t) and b1rf (in state B1f )
Write access along ports b1wt and b1wf (in both states)
Possible behaviours:

B1f = b1rf .B1f + b1wf .B1f + b1wt.B1t

B1t = b1rt.B1t + b1wf .B1f + b1wt.B1t

Similarly for b2 and k :

B2f = b2rf .B2f + b2wf .B2f + b2wt.B2t

B2t = b2rt.B2t + b2wf .B2f + b2wt.B2t

K1 = kr1 .K1 + kw1 .K1 + kw2 .K2

K2 = kr2 .K2 + kw1 .K1 + kw2 .K2

Concurrency Theory Winter Semester 2013/14 7.17



Modelling the Processes in CCS

Assumption: Pi cannot fail or terminate within critical section

Peterson’s algorithm

while true do
“non-critical section”;
bi := true;
k := j ;
while bj ∧ k = j do skip;
“critical section”;
bi := false;

end

CCS representation

P1 = b1wt.kw2 .P11

P11 = b2rf .P12 +
b2rt.(kr1 .P12 + kr2 .P11)

P12 = enter1 .exit1 .b1wf .P1

P2 = b2wt.kw1 .P21

P21 = b1rf .P22 +
b1rt.(kr1 .P21 + kr2 .P22)

P22 = enter2 .exit2 .b2wf .P2

Peterson = (P1 ‖ P2 ‖ B1f ‖ B2f ‖ K1) \ L
where

L = {b1rf , b1rt, b1wf , b1wt,
b2rf , b2rt, b2wf , b2wt,
kr1 , kr2 , kw1 , kw2}

Concurrency Theory Winter Semester 2013/14 7.18


	Recap: Fixed-Point Theory for HML
	Mutually Recursive Equational Systems
	Mixing Least and Greatest Fixed Points
	Modelling Mutual Exclusion Algorithms

