Concurrency Theory

Lecture 7: Mutually Recursive Equational Systems

Joost-Pieter Katoen Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY
{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/

@ Recap: Fixed-Point Theory for HML

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 7.2

Application to HML with Recursion

Lemma
Let (S, Act,—) be an LTS and F € HMF x. Then
@ [F] :2° — 2° is monotonic w.r.t. (2°,C)
@ fix([F) ={T < S[IFI(T)C T}
© FIX([F]) = U{T S| T < [FI(T))
If, in addition, S is finite, then
Q fix([F]) = [F]™(D) for some m € N
@ FIX([F]) = [FIM(S) for some M € N

Proof.

@ by induction on the structure of F (details omitted)

© by Lemma 5.9 and Theorem 5.14

© by Lemma 5.9 and Theorem 5.14

© by Lemma 5.9 and Theorem 6.1

© by Lemma 5.9 and Theorem 6.1]

4
RWNTH Concurrency Theory Winter Semester 2013/14 7.3

| A\

e Mutually Recursive Equational Systems

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 7.4

Introducing Several Variables

Sometimes useful: using more than one variable

Example 7.1

“It is always the case that a process can perform an a-labelled
transition leading to a state where b-transitions can be executed
forever.”

can be specified by
Inv({a) Forever(b))

where
Inv(F) = F A[Act]F (cf. Theorem 6.5)
Forever(b) =" (b) Forever(b)

RWTHAACHE Concurrency Theory Winter Semester 2013/14 7.5

Syntax of Mutually Recursive Equational Systems

Definition 7.2 (Syntax of mutually recursive equational systems)

Let X = {Xi,...,X,} be a set of variables. The set HMF yx of
Hennessy-Milner formulae over X is defined by the following syntax:

F =X (variable)
| tt (true)
| ff (false)
| FAAF (conjunction)
| F1VF (disjunction)
| (a)F (diamond)
| [F (box)

where 1 </ < nand o € Act. A mutually recursive equational system has
the form

(Xi:FXi’].SI'Sn)
where Fx. € HMF x for every 1 </ < n.

RWNTH HE Concurrency Theory Winter Semester 2013/14 7.6

Semantics of Recursive Equational Systems |

As before: semantics of formula depends on states satisfying the variables

Definition 7.3 (Semantics of mutually recursive equational systems)
Let (S, Act,—) be an LTS and E = (X; = Fx. | 1 <i < n) a mutually
recursive equational system. The semantics of E,

[E]: (2°)" = (2°)",

is defined by
[[E]](Tl, Celey Tn) = ([[FXI]](TL ey Tn), oeley [[Fxn]](Tl, ey Tn))
where
[Xi(T1,..., Tn) = T;
[tt)(T1,..., Tp) =S
[ff(Te, ..., Tp) =0
[[Fl A Fg]](Tl, . Tn) = [Fl]](Tl, ey Tn) N [[Fg]](Tl, ceey Tn)
[[Fl V Fz]](Tl, RN Tn) = [[Fl]](Tl, ce Tn) U [[Fz]](Tl, RN Tn)
) FI(Tas- -, Tn) == (o) ([FI(T1s- - -, Th))
[ledFI(T, - .- Ta) == [](IFI(T1, - .-, Th))

RWNTH Concurrency Theory Winter Semester 2013/14 7.7

Semantics of Recursive Equational Systems ||

Let (S, Act,—) be a finite LTS and E = (X =Fx, |1 <i<n) a
mutually recursive equational system. Let (D,C) be given by D := (2°)"
and (Ty,..., Tp) C(T{,..., T}))if T; C T/ forevery 1 <i<n.
Q (D,C) is a complete lattice with
(T, T [€ 1y = (ULTE |7 € D ULT € 1))
KT, Ty lie = (({Tiliel}....){T;liel})

@ [E] is monotonic w.r.t. (D,C)
@ fix([E]) = [E]™(D,...,0D) for some m € N
Q FIX([E]) = [E]M (,S) for some M € N)
omitted 0l

RWNTH Concurrency Theory Winter Semester 2013/14 7.8

Semantics of Recursive Equational Systems |1l

Example 7.5

a
- -5 3 52 3 Db

Let S := {s,s1,5,s3} and E given by

X = (a)Y A[a]Y A [b]ff
Y ™ (B)X A [BIX A [a]ff

Computation of FIX([E]): on the board

Concurrency Theory Winter Semester 2013/14 7.9

© Mixing Least and Greatest Fixed Points

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 7.10

Mixing Least and Greatest Fixed Points |

@ So far: least/greatest fixed point of overall system

@ But: too restrictive

Example 7.6

“It is possible for the system to reach a state which has a
livelock (i.e., an infinite sequence of internal steps).”

can be specified by
Pos(Livelock)
where

Pos(F) ™ FV (Act) Pos(F) (cf. Example 77)
Livelock = (t)Livelock

(thus, Livelock = Forever(7) [cf. Example 7.1])

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 7.11

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 7.7

Solution: nesting of specifications by partitioning equations into a
sequence of blocks such that all equations in one block

@ are of same type (either min or max) and
@ use only variables defined in the same or subsequent blocks

=—> bottom-up, block-wise evaluation by fixed-point iteration

EN Concurrency Theory Winter Semester 2013/14 [av;

Mixing Least and Greatest Fixed Points Ill

Example 7.8 (cf. Example 7.6)

PosLL ™ Livelock \/ {Act)PosLL
Livelock =" (t) Livelock

@ Fixed-point iteration for Livelock : T — (-7-)(T):
S={sp.q:r} = {p,a} = {p} = {p}
@ Fixed-point iteration for PosLL : T +— {p} U (-Act-)(T):
0= {p} = {s.p} — {s, p}

v

RWNTH HE Concurrency Theory Winter Semester 2013/14 7.13

The Modal p-Calculus

@ Logic that supports free mixing of least and greatest fixed points:

o D. Kozen: Results on the Propositional ji-Calculus, Theoretical
Computer Science 27, 1983, 333-354

HML variants are fragments thereof

Expressivity increases with alternation of least and greatest fixed
points:
e J.C. Bradfield: The Modal Mu-Calculus Alternation Hierarchy is Strict,
Theoretical Computer Science 195(2), 1998, 133-153

Decidable model-checking problem for finite LTSs
(in NP N co-NP; linear for HML with one variable)

Generally undecidable for infinite LTSs and HML with one variable
(CCS, Petri nets, ...)
Overview paper:

e O. Burkart, D. Caucal, F. Moller, B. Steffen: Verification on Infinite
Structures, Chapter 9 of Handbook of Process Algebra, Elsevier, 2001,
545-623

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 7.14

@ Modelling Mutual Exclusion Algorithms

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 7.15

Peterson’s Mutual Exclusion Algorithm

@ Goal: ensuring exclusive access to non-shared resources
@ Here: two competing processes Pi, P> and shared variables

o by, by (Boolean, initially false)
o k (in {1,2}, arbitrary initial value)

@ P; uses local variable j := 2 — /i (index of other process)

Algorithm 7.9 (Peterson’s algorithm for P;)

while true do
“non-critical section”’;
b; := true;
k= j;
while b; A k = j do skip;
“critical section”;
b; := false;
end

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 7.16

Representing Shared Variables in CCS

o Not directly expressible in CCS (communication by message passing)
o ldea: consider variables as processes that communicate with
environment by processing read/write requests

Example 7.10 (Shared variables in Peterson’s algorithm)

Encoding of by with two (process) states By (value tt) and Bys (ff)
Read access along ports bIrt (in state By;) and blrf (in state Bifr)
Write access along ports bIwt and bIwf (in both states)
Possible behaviours:

Bir = bIrf.Bif + blwf.Bir + blwt.By;

Bi: = blrt.By: + blwf.Byf + blwt.By,
Similarly for by and k:

Bor = b2rf .Bor + b2wf .Byr + b2wt. By,
Boi: = b2rt.By; + b2wf . By + b2wt. By

Ki = mKl + kwl. Ky + kw2.K5
Ky = W.K2 + kwl.Ki + kw2.K5

RWNTH HE Concurrency Theory Winter Semester 2013/14 7.17

v

Modelling the Processes in CCS

Assumption: P; cannot fail or terminate within critical section

CCS representation

P = let.m.PH
P11 = b2rf .P1o +

Peterson's algorithm b2rt.(krl.Pip + kr2.P11)
while true do P1> = entery.exit; .bIwf.P;
[‘)‘nclnf-critic‘.a/ section”; By = o0 P
e Py = blrf.Py +
4 birt.(krl.Pay + kr2.P2y)

while b; A k = j do skip;

“critical section”’;

bi := false; Peterson = (Py || P2 || Bur || Bar || K1) \ L
end where

L = {blrf,blrt, blwf, blwt,
b2rf, b2rt, b2wf , b2wt,
krl, kr2, kwl, kw2}

P>> = enters.exito.b2wf . Ps

v

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 7.18

	Recap: Fixed-Point Theory for HML
	Mutually Recursive Equational Systems
	Mixing Least and Greatest Fixed Points
	Modelling Mutual Exclusion Algorithms

