

Concurrency Theory

Lecture 7: Mutually Recursive Equational Systems

Joost-Pieter Katoen Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

{katoen, noll}@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/ct13/>

Winter Semester 2013/14

- 1 Recap: Fixed-Point Theory for HML
- 2 Mutually Recursive Equational Systems
- 3 Mixing Least and Greatest Fixed Points
- 4 Modelling Mutual Exclusion Algorithms

Lemma

Let (S, Act, \rightarrow) be an LTS and $F \in \text{HMF}_X$. Then

- ① $\llbracket F \rrbracket : 2^S \rightarrow 2^S$ is monotonic w.r.t. $(2^S, \subseteq)$
- ② $\text{fix}(\llbracket F \rrbracket) = \bigcap\{T \subseteq S \mid \llbracket F \rrbracket(T) \subseteq T\}$
- ③ $\text{FIX}(\llbracket F \rrbracket) = \bigcup\{T \subseteq S \mid T \subseteq \llbracket F \rrbracket(T)\}$

If, in addition, S is finite, then

- ④ $\text{fix}(\llbracket F \rrbracket) = \llbracket F \rrbracket^m(\emptyset)$ for some $m \in \mathbb{N}$
- ⑤ $\text{FIX}(\llbracket F \rrbracket) = \llbracket F \rrbracket^M(S)$ for some $M \in \mathbb{N}$

Proof.

- ① by induction on the structure of F (details omitted)
- ② by Lemma 5.9 and Theorem 5.14
- ③ by Lemma 5.9 and Theorem 5.14
- ④ by Lemma 5.9 and Theorem 6.1
- ⑤ by Lemma 5.9 and Theorem 6.1

- 1 Recap: Fixed-Point Theory for HML
- 2 Mutually Recursive Equational Systems
- 3 Mixing Least and Greatest Fixed Points
- 4 Modelling Mutual Exclusion Algorithms

Introducing Several Variables

Sometimes useful: using more than one variable

Example 7.1

"It is always the case that a process can perform an a -labelled transition leading to a state where b -transitions can be executed forever."

can be specified by

$$\text{Inv}(\langle a \rangle \text{Forever}(b))$$

where

$$\begin{aligned}\text{Inv}(F) &\stackrel{\text{max}}{=} F \wedge [\text{Act}]F && (\text{cf. Theorem 6.5}) \\ \text{Forever}(b) &\stackrel{\text{max}}{=} \langle b \rangle \text{Forever}(b)\end{aligned}$$

Definition 7.2 (Syntax of mutually recursive equational systems)

Let $\mathcal{X} = \{X_1, \dots, X_n\}$ be a set of **variables**. The set $HMF_{\mathcal{X}}$ of **Hennessy-Milner formulae over \mathcal{X}** is defined by the following syntax:

$F ::= X_i$	(variable)
tt	(true)
ff	(false)
$F_1 \wedge F_2$	(conjunction)
$F_1 \vee F_2$	(disjunction)
$\langle \alpha \rangle F$	(diamond)
$[\alpha] F$	(box)

where $1 \leq i \leq n$ and $\alpha \in Act$. A **mutually recursive equational system** has the form

$$(X_i = F_{X_i} \mid 1 \leq i \leq n)$$

where $F_{X_i} \in HMF_{\mathcal{X}}$ for every $1 \leq i \leq n$.

Semantics of Recursive Equational Systems I

As before: semantics of formula depends on states satisfying the variables

Definition 7.3 (Semantics of mutually recursive equational systems)

Let $(S, Act, \longrightarrow)$ be an LTS and $E = (X_i = F_{X_i} \mid 1 \leq i \leq n)$ a mutually recursive equational system. The **semantics** of E ,

$$\llbracket E \rrbracket : (2^S)^n \rightarrow (2^S)^n,$$

is defined by

$$\llbracket E \rrbracket(T_1, \dots, T_n) := (\llbracket F_{X_1} \rrbracket(T_1, \dots, T_n), \dots, \llbracket F_{X_n} \rrbracket(T_1, \dots, T_n))$$

where

$$\llbracket X_i \rrbracket(T_1, \dots, T_n) := T_i$$

$$\llbracket \text{tt} \rrbracket(T_1, \dots, T_n) := S$$

$$\llbracket \text{ff} \rrbracket(T_1, \dots, T_n) := \emptyset$$

$$\llbracket F_1 \wedge F_2 \rrbracket(T_1, \dots, T_n) := \llbracket F_1 \rrbracket(T_1, \dots, T_n) \cap \llbracket F_2 \rrbracket(T_1, \dots, T_n)$$

$$\llbracket F_1 \vee F_2 \rrbracket(T_1, \dots, T_n) := \llbracket F_1 \rrbracket(T_1, \dots, T_n) \cup \llbracket F_2 \rrbracket(T_1, \dots, T_n)$$

$$\llbracket \langle \alpha \rangle F \rrbracket(T_1, \dots, T_n) := \langle \alpha \rangle (\llbracket F \rrbracket(T_1, \dots, T_n))$$

$$\llbracket [\alpha] F \rrbracket(T_1, \dots, T_n) := [\alpha] (\llbracket F \rrbracket(T_1, \dots, T_n))$$

Lemma 7.4

Let $(S, Act, \longrightarrow)$ be a finite LTS and $E = (X_i = F_{X_i} \mid 1 \leq i \leq n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and $(T_1, \dots, T_n) \sqsubseteq (T'_1, \dots, T'_n)$ if $T_i \subseteq T'_i$ for every $1 \leq i \leq n$.

- ① (D, \sqsubseteq) is a complete lattice with

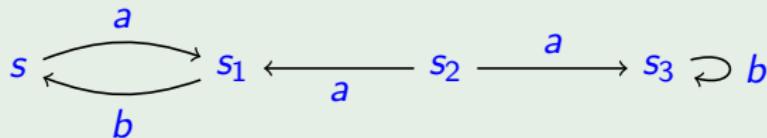
$$\bigsqcup \{(T_1^i, \dots, T_n^i) \mid i \in I\} = (\bigcup \{T_1^i \mid i \in I\}, \dots, \bigcup \{T_n^i \mid i \in I\})$$
$$\bigsqcap \{(T_1^i, \dots, T_n^i) \mid i \in I\} = (\bigcap \{T_1^i \mid i \in I\}, \dots, \bigcap \{T_n^i \mid i \in I\})$$

- ② $\llbracket E \rrbracket$ is monotonic w.r.t. (D, \sqsubseteq)
- ③ $\text{fix}(\llbracket E \rrbracket) = \llbracket E \rrbracket^m(\emptyset, \dots, \emptyset)$ for some $m \in \mathbb{N}$
- ④ $\text{FIX}(\llbracket E \rrbracket) = \llbracket E \rrbracket^M(S, \dots, S)$ for some $M \in \mathbb{N}$

Proof.

omitted

Example 7.5



Let $S := \{s, s_1, s_2, s_3\}$ and E given by

$$\begin{aligned} X &\stackrel{\max}{=} \langle a \rangle Y \wedge [a]Y \wedge [b]\text{ff} \\ Y &\stackrel{\max}{=} \langle b \rangle X \wedge [b]X \wedge [a]\text{ff} \end{aligned}$$

Computation of $\text{FIX}(\llbracket E \rrbracket)$: on the board

- 1 Recap: Fixed-Point Theory for HML
- 2 Mutually Recursive Equational Systems
- 3 Mixing Least and Greatest Fixed Points
- 4 Modelling Mutual Exclusion Algorithms

- **So far:** least/greatest fixed point of **overall** system
- **But:** too **restrictive**

Example 7.6

“It is possible for the system to reach a state which has a livelock (i.e., an infinite sequence of internal steps).”

can be specified by

Pos(Livelock)

where

$$\begin{aligned} \text{Pos}(F) &\stackrel{\text{min}}{=} F \vee \langle \text{Act} \rangle \text{Pos}(F) & (\text{cf. Example ??}) \\ \text{Livelock} &\stackrel{\text{max}}{=} \langle \tau \rangle \text{Livelock} \end{aligned}$$

(thus, *Livelock* \equiv *Forever*(τ) [cf. Example 7.1])

Caveat: arbitrary mixing can entail **non-monotonic behaviour**

Example 7.7

$$\begin{aligned} E : X &\stackrel{\min}{=} Y \\ Y &\stackrel{\max}{=} X \end{aligned}$$

Fixed-point iteration:

$$(\perp, \top) = (\emptyset, S) \xrightarrow{[E]} (S, \emptyset) \xrightarrow{[E]} (\emptyset, S) \xrightarrow{[E]} \dots$$

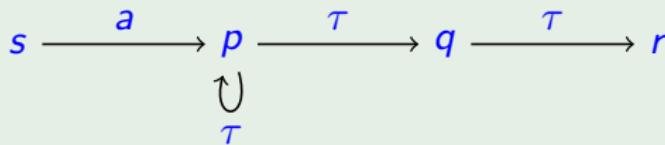
Solution: **nesting** of specifications by partitioning equations into a sequence of blocks such that all equations in one block

- are of **same type** (either *min* or *max*) and
- use only variables defined in **the same or subsequent blocks**

⇒ **bottom-up, block-wise evaluation** by fixed-point iteration

Example 7.8 (cf. Example 7.6)

$$\begin{aligned} PosLL &\stackrel{\min}{=} Livelock \vee \langle Act \rangle PosLL \\ Livelock &\stackrel{\max}{=} \langle \tau \rangle Livelock \end{aligned}$$



- ① Fixed-point iteration for $Livelock : T \mapsto \langle \cdot \tau \cdot \rangle(T)$:

$$S = \{s, p, q, r\} \mapsto \{p, q\} \mapsto \{p\} \mapsto \{p\}$$

- ② Fixed-point iteration for $PosLL : T \mapsto \{p\} \cup \langle \cdot Act \cdot \rangle(T)$:

$$\emptyset \mapsto \{p\} \mapsto \{s, p\} \mapsto \{s, p\}$$

- Logic that supports free mixing of least and greatest fixed points:
 - D. Kozen: *Results on the Propositional μ -Calculus*, Theoretical Computer Science 27, 1983, 333–354
- HML variants are fragments thereof
- Expressivity increases with alternation of least and greatest fixed points:
 - J.C. Bradfield: *The Modal Mu-Calculus Alternation Hierarchy is Strict*, Theoretical Computer Science 195(2), 1998, 133–153
- Decidable model-checking problem for finite LTSs
(in $\text{NP} \cap \text{co-NP}$; linear for HML with one variable)
- Generally undecidable for infinite LTSs and HML with one variable
(CCS, Petri nets, ...)
- Overview paper:
 - O. Burkart, D. Caucal, F. Moller, B. Steffen: *Verification on Infinite Structures*, Chapter 9 of *Handbook of Process Algebra*, Elsevier, 2001, 545–623

- 1 Recap: Fixed-Point Theory for HML
- 2 Mutually Recursive Equational Systems
- 3 Mixing Least and Greatest Fixed Points
- 4 Modelling Mutual Exclusion Algorithms

- **Goal:** ensuring **exclusive access to non-shared resources**
- Here: two competing processes P_1, P_2 and shared variables
 - b_1, b_2 (Boolean, initially **false**)
 - k (in $\{1, 2\}$, arbitrary initial value)
- P_i uses local variable $j := 2 - i$ (index of other process)

Algorithm 7.9 (Peterson's algorithm for P_i)

```
while true do
    "non-critical section";
     $b_i := \text{true}$ ;
     $k := j$ ;
    while  $b_j \wedge k = j$  do skip;
    "critical section";
     $b_i := \text{false}$ ;
end
```

Representing Shared Variables in CCS

- Not directly expressible in CCS (communication by message passing)
- Idea: consider variables as **processes** that communicate with environment by processing read/write requests

Example 7.10 (Shared variables in Peterson's algorithm)

- Encoding of b_1 with two (process) **states** B_{1t} (value **tt**) and B_{1f} (**ff**)
- **Read access** along ports $b1rt$ (in state B_{1t}) and $b1rf$ (in state B_{1f})
- **Write access** along ports $b1wt$ and $b1wf$ (in both states)
- Possible behaviours:

$$B_{1f} = \overline{b1rf}.B_{1f} + b1wf.B_{1f} + b1wt.B_{1t}$$
$$B_{1t} = \overline{b1rt}.B_{1t} + b1wf.B_{1f} + b1wt.B_{1t}$$

- Similarly for b_2 and k :

$$B_{2f} = \overline{b2rf}.B_{2f} + b2wf.B_{2f} + b2wt.B_{2t}$$
$$B_{2t} = \overline{b2rt}.B_{2t} + b2wf.B_{2f} + b2wt.B_{2t}$$

$$K_1 = \overline{kr1}.K_1 + kw1.K_1 + kw2.K_2$$
$$K_2 = \overline{kr2}.K_2 + kw1.K_1 + kw2.K_2$$

Modelling the Processes in CCS

Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do
  "non-critical section";
   $b_i := \text{true};$ 
   $k := j;$ 
  while  $b_j \wedge k = j$  do skip;
  "critical section";
   $b_i := \text{false};$ 
end
```

CCS representation

$$P_1 = \overline{b1wt}.\overline{kw2}.P_{11}$$

$$P_{11} = b2rf.P_{12} + \\ b2rt.(\overline{kr1}.P_{12} + \overline{kr2}.P_{11})$$

$$P_{12} = \text{enter}_1.\text{exit}_1.\overline{b1wf}.P_1$$

$$P_2 = \overline{b2wt}.\overline{kw1}.P_{21}$$

$$P_{21} = b1rf.P_{22} + \\ b1rt.(\overline{kr1}.P_{21} + \overline{kr2}.P_{22})$$

$$P_{22} = \text{enter}_2.\text{exit}_2.\overline{b2wf}.P_2$$

$$\text{Peterson} = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L$$

where

$$L = \{b1rf, b1rt, b1wf, b1wt, \\ b2rf, b2rt, b2wf, b2wt, \\ kr1, kr2, kw1, kw2\}$$