Concurrency Theory

Lecture 8: Modelling and Analysing Mutual Exclusion Algorithms

Joost-Pieter Katoen Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY
{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/

@ Recap: Modelling Mutual Exclusion Algorithms

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 8.2

Peterson’s Mutual Exclusion Algorithm

@ Goal: ensuring exclusive access to non-shared resources

@ Here: two competing processes Pi, P> and shared variables
o by, by (Boolean, initially false)
o k (in {1,2}, arbitrary initial value)

@ P; uses local variable j := 2 — /i (index of other process)

Algorithm (Peterson’s algorithm for P;)

while true do
“non-critical section”’;
b; := true;
k= j;
while b; A k = j do skip;
“critical section”;
b; := false;
end

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 8.3

Representing Shared Variables in CCS

o Not directly expressible in CCS (communication by message passing)
o ldea: consider variables as processes that communicate with
environment by processing read/write requests

Example (Shared variables in Peterson’s algorithm)

Encoding of by with two (process) states By (value tt) and B¢ (ff)
Read access along ports bIrt (in state By;) and blrf (in state Bifr)
Write access along ports bIwt and bIwf (in both states)
Possible behaviours:

Bir = bIrf.Bif + blwf.Bir + blwt.By;

Bi: = blrt.By; + blwf.Byf + blwt.By,
Similarly for by and k:

Bor = b2rf .Bor + b2wf .Byr + b2wt. By,
Boi: = b2rt.By; + b2wf .Bor + b2wt. By

Ki = mKl + kwl. K7 + kw2.K5
Ky = W.K2 + kwl.Ki + kw2.K5

RWNTH HE Concurrency Theory Winter Semester 2013/14 8.4

v

Modelling the Processes in CCS

Assumption: P; cannot fail or terminate within critical section

CCS representation

P = let.m.PH
P11 = b2rf .P1o +

Peterson's algorithm b2rt.(krl.Pip + kr2.P11)
while true do P1> = entery.exit; .bIwf.P;
[‘)‘nclnf-critic‘.a/ section”; By = o0 P
e Py = blrf.Py +
4 birt.(krl.Pay + kr2.P2y)

while b; A k = j do skip;

“critical section”’;

bi := false; Peterson = (Py || P2 || Bur || Bar || K1) \ L
end where

L = {blrf,blrt, blwf, blwt,
b2rf, b2rt, b2wf , b2wt,
krl, kr2, kwl, kw2}

P>> = enters.exito.b2wf . Ps

v

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 8.5

© Evaluating the CCS Model

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 8.6

Obtaining the LTS |

Alternatives:

@ By hand (really painful)
e By tools:
e Edinburgh Concurrency Workbench
@ http://homepages.inf.ed.ac.uk/perdita/cwb/
@ see exercises
o TAPAs (“Tool for the Analysis of Process Algebras”)
@ http://rap.dsi.unifi.it/tapas/
o CCS specification of Peterson's algorithm available as example
o yields LTS with 115 states (see next slide)

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 8.7

http://homepages.inf.ed.ac.uk/perdita/cwb/
http://rap.dsi.unifi.it/tapas/

Obtaining the LTS II

[

Concurrency Theory Winter Semester 2013/14 8.8

© Model Checking Mutual Exclusion

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 8.9

The Mutual Exclusion Property

@ Done: formal description of Peterson’s algorithm
@ To do: analysing its behaviour (manually or with tool support)

@ Question: what does “ensuring mutual exclusion” formally mean?

Mutual exclusion
At no point in the execution of the algorithm, processes P; and P, will
both be in their critical section at the same time.

Alternatively:
It is always the case that either P; or P, or both are not in their critical

section.)

Concurrency Theory Winter Semester 2013/14 8.10

Specifying Mutual Exclusion in HML

Mutual exclusion
It is always the case that either P; or P, or both are not in their critical
section.

Observations:
@ Mutual exclusion is an invariance property (“always")

@ P; is in its critical section iff action exit; is enabled

Mutual exclusion in HML

MutEx := Inv(F)
Inv(F) = F A [Act]lnv(F) (cf. Theorem 6.5)
F = [exit;|ff V [exito]ff

Concurrency Theory Winter Semester 2013/14 8.11

Model Checking Mutual Exclusion

@ Using TAPAs Tool
@ Supports property specifications in p-calculus:

property MutEx:
max x. (([exitl] false | [exit2] false) & ([*] x))

end

8.0 6 Model Checking...

3 MutualExclusion.tpj Formulae
v [Processes Enable Property Name Formula

» D [} MutEx v x. (([exit1]false v [exit2]false) A [*]x}

» Gr
» @@
> E@r2
¥ [Systems B
¥s
% :; MutEx v x. ((fexit1]false v [exit2]false) » [*]x) Yes 0.155 s
[«
Ij Spec

Sys

| Open | | Check | | Reset | | Clear |

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 8.12

@ Alternative Verification Approaches

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 8.13

Verification by Bisimulation Checking

@ Alternative to logic-based approaches

o ldea: establish equivalence between (concrete) “implementation” and
(abstract) “specification”

Example 8.1 (Two-place buffers (cf. Example 2.5))

@ Sequential specification:

Bo = in.81
Bi1 = out.By + in.B>
By, = out.B;

@ Parallel implementation:

B, = (B[f] || Blg]) \ com
B = in.out.B

where f := [out — com] and g := [in — com]

Later: (1) and (2) are “weakly bisimilar” (i.e., bisimilar up to 7-transitions)

v

RWTHAACHE Concurrency Theory Winter Semester 2013/14 8.14

Specifying Mutual Exclusion in CCS

@ Goal: express desired behaviour of mutual exclusion algorithm as an
“abstract” CCS process
@ Intuitively:

@ initially, either P; or P, can enter its critical section
@ once this happened, the other process cannot enter the critical section
before the first has exited it

Mutual exlusion in CCS

MutExSpec = enter; .exit; . MutExSpec + enters.exity. MutExSpec

Again: Peterson and MutExSpec are “weakly bisimilar”

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 8.15

	Recap: Modelling Mutual Exclusion Algorithms
	Evaluating the CCS Model
	Model Checking Mutual Exclusion
	Alternative Verification Approaches

