
Concurrency Theory
Lecture 8: Modelling and Analysing Mutual Exclusion Algorithms

Joost-Pieter Katoen Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/


Outline

1 Recap: Modelling Mutual Exclusion Algorithms

2 Evaluating the CCS Model

3 Model Checking Mutual Exclusion

4 Alternative Verification Approaches

Concurrency Theory Winter Semester 2013/14 8.2



Peterson’s Mutual Exclusion Algorithm

Goal: ensuring exclusive access to non-shared resources

Here: two competing processes P1,P2 and shared variables

b1, b2 (Boolean, initially false)
k (in {1, 2}, arbitrary initial value)

Pi uses local variable j := 2− i (index of other process)

Algorithm (Peterson’s algorithm for Pi)

while true do
“non-critical section”;
bi := true;
k := j ;
while bj ∧ k = j do skip;
“critical section”;
bi := false;

end

Concurrency Theory Winter Semester 2013/14 8.3



Representing Shared Variables in CCS

Not directly expressible in CCS (communication by message passing)
Idea: consider variables as processes that communicate with
environment by processing read/write requests

Example (Shared variables in Peterson’s algorithm)

Encoding of b1 with two (process) states B1t (value tt) and B1f (ff)
Read access along ports b1rt (in state B1t) and b1rf (in state B1f )
Write access along ports b1wt and b1wf (in both states)
Possible behaviours:

B1f = b1rf .B1f + b1wf .B1f + b1wt.B1t

B1t = b1rt.B1t + b1wf .B1f + b1wt.B1t

Similarly for b2 and k :

B2f = b2rf .B2f + b2wf .B2f + b2wt.B2t

B2t = b2rt.B2t + b2wf .B2f + b2wt.B2t

K1 = kr1 .K1 + kw1 .K1 + kw2 .K2

K2 = kr2 .K2 + kw1 .K1 + kw2 .K2

Concurrency Theory Winter Semester 2013/14 8.4



Modelling the Processes in CCS

Assumption: Pi cannot fail or terminate within critical section

Peterson’s algorithm

while true do
“non-critical section”;
bi := true;
k := j ;
while bj ∧ k = j do skip;
“critical section”;
bi := false;

end

CCS representation

P1 = b1wt.kw2 .P11

P11 = b2rf .P12 +
b2rt.(kr1 .P12 + kr2 .P11)

P12 = enter1 .exit1 .b1wf .P1

P2 = b2wt.kw1 .P21

P21 = b1rf .P22 +
b1rt.(kr1 .P21 + kr2 .P22)

P22 = enter2 .exit2 .b2wf .P2

Peterson = (P1 ‖ P2 ‖ B1f ‖ B2f ‖ K1) \ L
where

L = {b1rf , b1rt, b1wf , b1wt,
b2rf , b2rt, b2wf , b2wt,
kr1 , kr2 , kw1 , kw2}

Concurrency Theory Winter Semester 2013/14 8.5



Outline

1 Recap: Modelling Mutual Exclusion Algorithms

2 Evaluating the CCS Model

3 Model Checking Mutual Exclusion

4 Alternative Verification Approaches

Concurrency Theory Winter Semester 2013/14 8.6



Obtaining the LTS I

Alternatives:

By hand (really painful)

By tools:
Edinburgh Concurrency Workbench

http://homepages.inf.ed.ac.uk/perdita/cwb/

see exercises

TAPAs (“Tool for the Analysis of Process Algebras”)

http://rap.dsi.unifi.it/tapas/

CCS specification of Peterson’s algorithm available as example
yields LTS with 115 states (see next slide)

Concurrency Theory Winter Semester 2013/14 8.7

http://homepages.inf.ed.ac.uk/perdita/cwb/
http://rap.dsi.unifi.it/tapas/


Obtaining the LTS II

Concurrency Theory Winter Semester 2013/14 8.8



Outline

1 Recap: Modelling Mutual Exclusion Algorithms

2 Evaluating the CCS Model

3 Model Checking Mutual Exclusion

4 Alternative Verification Approaches

Concurrency Theory Winter Semester 2013/14 8.9



The Mutual Exclusion Property

Done: formal description of Peterson’s algorithm

To do: analysing its behaviour (manually or with tool support)

Question: what does “ensuring mutual exclusion” formally mean?

Mutual exclusion

At no point in the execution of the algorithm, processes P1 and P2 will
both be in their critical section at the same time.

Alternatively:
It is always the case that either P1 or P2 or both are not in their critical
section.

Concurrency Theory Winter Semester 2013/14 8.10



Specifying Mutual Exclusion in HML

Mutual exclusion

It is always the case that either P1 or P2 or both are not in their critical
section.

Observations:

Mutual exclusion is an invariance property (“always”)

Pi is in its critical section iff action exiti is enabled

Mutual exclusion in HML

MutEx := Inv(F )
Inv(F )

max
= F ∧ [Act]Inv(F ) (cf. Theorem 6.5)

F := [exit1 ]ff ∨ [exit2 ]ff

Concurrency Theory Winter Semester 2013/14 8.11



Model Checking Mutual Exclusion

Using TAPAs Tool

Supports property specifications in µ-calculus:

property MutEx:

max x. (([exit1] false | [exit2] false) & ([*] x))

end

Concurrency Theory Winter Semester 2013/14 8.12



Outline

1 Recap: Modelling Mutual Exclusion Algorithms

2 Evaluating the CCS Model

3 Model Checking Mutual Exclusion

4 Alternative Verification Approaches

Concurrency Theory Winter Semester 2013/14 8.13



Verification by Bisimulation Checking

Alternative to logic-based approaches

Idea: establish equivalence between (concrete) “implementation” and
(abstract) “specification”

Example 8.1 (Two-place buffers (cf. Example 2.5))

1 Sequential specification:

B0 = in.B1

B1 = out.B0 + in.B2

B2 = out.B1

2 Parallel implementation:

B‖ = (B[f ] ‖ B[g ]) \ com
B = in.out.B

where f := [out 7→ com] and g := [in 7→ com]

Later: (1) and (2) are “weakly bisimilar” (i.e., bisimilar up to τ -transitions)

Concurrency Theory Winter Semester 2013/14 8.14



Specifying Mutual Exclusion in CCS

Goal: express desired behaviour of mutual exclusion algorithm as an
“abstract” CCS process

Intuitively:
1 initially, either P1 or P2 can enter its critical section
2 once this happened, the other process cannot enter the critical section

before the first has exited it

Mutual exlusion in CCS

MutExSpec = enter1 .exit1 .MutExSpec + enter2 .exit2 .MutExSpec

Again: Peterson and MutExSpec are “weakly bisimilar”

Concurrency Theory Winter Semester 2013/14 8.15


	Recap: Modelling Mutual Exclusion Algorithms
	Evaluating the CCS Model
	Model Checking Mutual Exclusion
	Alternative Verification Approaches

