Concurrency Theory

Lecture 9: Extensions of CCS: Value Passing and Mobility

Joost-Pieter Katoen Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY
{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/

@ Syntax of Value-Passing CCS

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 9.2

Value-Passing CCS

@ So far: pure CCS

e communication = mere synchronisation
e no (explicit) exchange of data

@ But: processes usually do pass around data

RWIHAACHEN Concurrency Theory Winter Semester 2013/14]

Value-Passing CCS

@ So far: pure CCS

e communication = mere synchronisation
e no (explicit) exchange of data

@ But: processes usually do pass around data
= value-passing CCS

@ Introduced in Robin Milner: Communication and Concurrency,
Prentice-Hall, 1989

@ Assumption (for simplicity): only integers as data type

RWTHAACHEN Concurrency Theory Winter Semester 2013/14]

Value-Passing CCS

@ So far: pure CCS

e communication = mere synchronisation
e no (explicit) exchange of data

@ But: processes usually do pass around data
= value-passing CCS

@ Introduced in Robin Milner: Communication and Concurrency,
Prentice-Hall, 1989

@ Assumption (for simplicity): only integers as data type

Example 9.1 (One-place buffer with data (cf. Example 2.5))
One-place buffer that outputs successor of stored value:
B = in(x).B'(x)
B'(x) = out(x + 1).B

RWTHAACHEN Concurrency Theory Winter Semester 2013/14]

Syntax of Value-Passing CCS |

Definition 9.2 (Syntax of value-passing CCS)
o Let A, A, Pid (ranked) as in Definition 2.1.

4

RWNTH Concurrency Theory Winter Semester 2013/14 9.4

Syntax of Value-Passing CCS |

Definition 9.2 (Syntax of value-passing CCS)
o Let A, A, Pid (ranked) as in Definition 2.1.

@ Let e and b respectively stand for integer and Boolean expressions,
built from integer variables x, y, ...

4

RWNTH Concurrency Theory Winter Semester 2013/14 9.4

Syntax of Value-Passing CCS |

Definition 9.2 (Syntax of value-passing CCS)
o Let A, A, Pid (ranked) as in Definition 2.1.

@ Let e and b respectively stand for integer and Boolean expressions,
built from integer variables x, y, ...

@ The set Prc™ of value-passing process expressions is defined by:

P ::= nil (inaction)
| a(x).P (input prefixing)
| a(e).P (output prefixing)
| 7.P (7 prefixing)
| P14+ P> (choice)
| Pi P2 (parallel composition)
| P\L (restriction)
| P[f] (relabelling)
| if bthen P (conditional)
| C(er,...,en) (process call)

where a€ A, LC A, C € Pid (of rank n € N), and f : A — A.

RWNTH Concurrency Theory Winter Semester 2013/14 9.4

4

Syntax of Value-Passing CCS Il

Definition 9.2 (Syntax of value-passing CCS; continued)
A value-passing process definition is an equation system of the form

(Ci(x1,..,xn) =Pi |1 <i<k)

where
e k>1,
e C; € Pid of rank n; (pairwise distinct),
e P; € Prct (with process identifiers from {Ci, ..., Cc}), and
@ all occurrences of a integer variable y in each P; are bound, i.e.,

y € {X1,...,Xn, } or y is in the scope of an input prefix of the form
a(y) (to ensure well-definedness of values).

RWNTH HE Concurrency Theory Winter Semester 2013/14 9.5

Syntax of Value-Passing CCS II

Definition 9.2 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form
(Ci(x1,..,xn) =Pi |1 <i<k)
where
e k>1,
e C; € Pid of rank n; (pairwise distinct),
e P; € Prct (with process identifiers from {Cy, ..., Cx}), and
@ all occurrences of a integer variable y in each P; are bound, i.e.,
y € {X1,...,Xn, } or y is in the scope of an input prefix of the form
a(y) (to ensure well-definedness of values).

Example 9.3

Q C(x)=3a(x+1).b(y).C(y) is allowed

v

RWNTH Concurrency Theory Winter Semester 2013/14 9.5

Syntax of Value-Passing CCS II

Definition 9.2 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form
(Ci(x1,..,xn) =Pi |1 <i<k)
where
e k>1,
e C; € Pid of rank n; (pairwise distinct),
e P; € Prct (with process identifiers from {Cy, ..., Cx}), and
@ all occurrences of a integer variable y in each P; are bound, i.e.,
y € {X1,...,Xn, } or y is in the scope of an input prefix of the form
a(y) (to ensure well-definedness of values).

v

Example 9.3

Q@ C(x)=3a(x+1).b(y).C(y) is allowed
@ C(x) =a(x+1).a(y + 1).nil is disallowed as y is not bound

v

RWNTH Concurrency Theory Winter Semester 2013/14 9.5

© Semantics of Value-Passing CCS

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 9.6

Semantics of Value-Passing CCS |

Definition 9.4 (Semantics of value-passing CCS)

A value-passing process definition (Ci(x1,...,x,) = P; | 1 <i < k) determines
the LTS (Prc*, Act,—) with Act := (AU A) x Z U {7} whose transitions can
be inferred from the following rules (P, P, Q, Q' € Prc™, a € A, x integer
variables, e;/b integer/Boolean expressions, z € Z, a € Act, A € (AU A) x Z):
(z value of e)

(In) ((Out)ii((Tau) ———

a(x).P 22 plz/x] 3e).p & p TP —P

a / @’ /
G ——=E gyt
P+Q— P P+Q — @ _
PP Q-5 Q) PHP QS Q
(Pary) = (Par2 = Com =
Pll@—FIQ PlR—=P|Q _ PIQ—F &
@ P2 pr LUT) x Z
(Re|)Pf;PI (Res) — (af (/) x Z)
PIf1 2 priA) P\L-—=P\L
Plzi/X1,. .., 2Zn/Xn] — P’

P %5 P (b true) (C(x1,...,xn) = P, z value of ¢)
(If) - (Call) _

if bthen P — P’ C(e,...,en) — P’

RWNTH Concurrency Theory Winter Semester 2013/14 9.7

Semantics of Value-Passing CCS II

Remarks:
@ The binding restriction ensures that all integer and Boolean
expressions have a defined value

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 9.8

Semantics of Value-Passing CCS II

Remarks:
@ The binding restriction ensures that all integer and Boolean
expressions have a defined value

® Plzi/x1,...,2n/xn] denotes the substitution of each free (i.e.,
unbound) occurrence of x; by z; (1 < i < n)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14

9.8

Semantics of Value-Passing CCS II

Remarks:
@ The binding restriction ensures that all integer and Boolean
expressions have a defined value
® Plzi/x1,...,2n/xn] denotes the substitution of each free (i.e.,
unbound) occurrence of x; by z; (1 < i < n)
@ Relabelling functions are extended to actions by letting

f(a(z)) := f(a)(z) and f(a(z)) := f(a)(z) (and f(7) := 1)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 9.8

Semantics of Value-Passing CCS II

Remarks:

@ The binding restriction ensures that all integer and Boolean
expressions have a defined value

® Plzi/x1,...,2n/xn] denotes the substitution of each free (i.e.,
unbound) occurrence of x; by z; (1 < i < n)

@ Relabelling functions are extended to actions by letting
f(a(2)) := f(a)(z) and f(a(z)) := f(a)(z) (and f(7) :=7)

@ The two-armed conditional

if bthen P else Q

can be defined as
(if b then P) + (if —b then Q)

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 9.8

Semantics of Value-Passing CCS II

Remarks:

@ The binding restriction ensures that all integer and Boolean
expressions have a defined value

® Plzi/x1,...,2n/xn] denotes the substitution of each free (i.e.,
unbound) occurrence of x; by z; (1 < i < n)

@ Relabelling functions are extended to actions by letting
f(a(2)) := f(a)(z) and f(a(z)) := f(a)(z) (and f(7) :=7)

@ The two-armed conditional

if bthen P else Q

can be defined as
(if b then P) + (if —b then Q)

Example 9.5

One-place buffer that outputs non-negative predecessor of stored value:
B = in(x).B'(x)

B’(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x — 1).B)

(on the board)

nerAACHEN Concurrency Theory Winter Semester 2013/14

© Translation of Value-Passing into Pure CCS

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 9.9

Translation of Value-Passing into Pure CCS |

@ To show: value-passing process definitions can be represented in pure
CCS

o ldea: each parametrised construct (a(x), a(e), C(e1,...,en))
corresponds to a family of constructs in pure CCS, one for each
possible integer value

@ Requires extension of pure CCS by infinite choices (*>..."),
restrictions, and process definitions

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 9.10

Translation of Value-Passing into Pure CCS Il

Definition 9.6 (Translation of value-passing into pure CCS)

For each P € Prc™ without free integer variables, its translated form
P € Prc is given by

— ~

nil := nil 7.P :

= T
()P = ¥ ez 2:-Plz/x] a(e).P =3P
(z value of e)
Pli@:: P+ P> P H/:i2 = P H P>
P\L:=P\{a,|ael,zeZ} P[f] := P|f]
A (F(az) = f(a))
_— P ifbt —
if bthen P .= ¢ "D HUC Cler,.- en) == Coym
nil otherwise

RWNTH Concurrency Theory Winter Semester 2013/14 9.11

Translation of Value-Passing into Pure CCS Il

Definition 9.6 (Translation of value-passing into pure CCS)

For each P € Prc™ without free integer variables, its translated form
P € Prc is given by

nil := nil TP:=71.P
a(x).P :=3",cp a:.P[z/X] a(e).P :=a;.P
(z value of e)
Pligziz P+ P> P H/:i2 = P H P>
P\L:=P\{a,|ael,zeZ} P[f] := P|f]
A (F(a:) == F(a)z)
— P ifbt —
if bthen P .= ¢ "D HUC Cler, - en) = Cop.m
nil otherwise o

Moreover, each defining equation C(xi,...,x,) = P of a process identifier

is translated into the indexed collection of process definitions

(Czl,...,zn = Plzi/x1,. .. zZn/Xn] | V1,..., Vs € Z)

RWNTH Concurrency Theory Winter Semester 2013/14

9.11

Translation of Value-Passing into Pure CCS Il

Example 9.7 (cf. Example 9.5)

B = in(x).B'(x) - -
B'(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x — 1).B)
(on the board)

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 9.12

Translation of Value-Passing into Pure CCS IlI

Example 9.7 (cf. Example 9.5)

f()— (g t)hen out(0).B) + (if x > 0 then out(x — 1).B)

B'(x)

(on the board

(i
)

Theorem 9.8 (Correctness of translation)
For all P, P’ € Prc"™ and o € Act,

PP — PL P

where a(z) 1= a,, a(z) == 3,, and T := 7.

Concurrency Theory Winter Semester 2013/14 9.12

Translation of Value-Passing into Pure CCS IlI

Example 9.7 (cf. Example 9.5)

B = ir.l(x).B’(x) - . -
B'(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x — 1).B)

(on the board)

Theorem 9.8 (Correctness of translation)
For all P, P’ € Prc"™ and o € Act,

PP — PL P

where a(z) 1= a,, a(z) == 3,, and T := 7.

by induction on the structure of P (omitted) O

RWTHAACHE Concurrency Theory Winter Semester 2013/14 9.12

e Modelling Mobile Concurrent Systems

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 9.13

Mobility in Concurrent Systems |

Observation: CCS imposes a static communication structure: if
P, Q € Prc want to communicate, then both must syntactically refer to
the same action name

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 9.14

Mobility in Concurrent Systems |

Observation: CCS imposes a static communication structure: if
P, Q € Prc want to communicate, then both must syntactically refer to
the same action name

— every potential communication partner known beforehand,
no dynamic passing of communication links

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 9.14

Mobility in Concurrent Systems |

Observation: CCS imposes a static communication structure: if
P, Q € Prc want to communicate, then both must syntactically refer to
the same action name

— every potential communication partner known beforehand,
no dynamic passing of communication links

= lack of mobility

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 9.14

Mobility in Concurrent Systems |

Observation: CCS imposes a static communication structure: if
P, @ € Prc want to communicate, then both must syntactically refer to
the same action name

— every potential communication partner known beforehand,
no dynamic passing of communication links

= lack of mobility

Goal: develop calculus in the spirit of CCS which supports mobility

— m-Calculus

nerAACHEN Concurrency Theory Winter Semester 2013/14 9.14

Mobility in Concurrent Systems ||

Example 9.9 (Dynamic access to resources)

@ Server S controls access to printer P

@ Client C wishes to use P

RWNTH HE Concurrency Theory Winter Semester 2013/14 9.15

Mobility in Concurrent Systems ||

Example 9.9 (Dynamic access to resources)

@ Server S controls access to printer P
o Client C wishes to use P

@ In CCS: P and C must share some action name a
— C could access P without being granted it by S

RWNTH Concurrency Theory Winter Semester 2013/14 9.15

Mobility in Concurrent Systems ||

Example 9.9 (Dynamic access to resources)

@ Server S controls access to printer P

@ Client C wishes to use P

@ In CCS: P and C must share some action name a
— C could access P without being granted it by S

@ In m-Calculus:

e initially only S has access to P (using link a)
e using another link b, C can request access to P

RWNTH Concurrency Theory Winter Semester 2013/14 9.15

Mobility in Concurrent Systems ||

Example 9.9 (Dynamic access to resources)

@ Server S controls access to printer P
o Client C wishes to use P

@ In CCS: P and C must share some action name a
— C could access P without being granted it by S
In m-Calculus:

e initially only S has access to P (using link a)
e using another link b, C can request access to P

Formally:

: link to P
o b: link between S and C

5]

Bb(a).S" || b(c).E(d).C" | a(e).P’
—_—— —} —— ——

S C P

°
o

“placeholder” for a

e d: data to be printed

e e: “placeholder” for d

RWNTH Concurrency Theory Winter Semester 2013/14 9.15

Mobility in Concurrent Systems ||

Example 9.9 (Dynamic access to resources)

@ Server S controls access to printer P
o Client C wishes to use P

@ In CCS: P and C must share some action name a
— C could access P without being granted it by S

@ In 7-Calculus:
e initially only S has access to P (using link a)
e using another link b, C can request access to P
o Formally:
_ , , , a: link to P
b(a).S" || b(c).c(d).C" || a(e).P
~~—~— “——— “~—— o b: link between S and C
S C P
Ty g | a(d).C" || a(e).P’ e c: “placeholder” for a

e d: data to be printed

e e: “placeholder” for d

RWNTH Concurrency Theory Winter Semester 2013/14 9.15

Mobility in Concurrent Systems ||

Example 9.9 (Dynamic access to resources)

@ Server S controls access to printer P
o Client C wishes to use P

@ In CCS: P and C must share some action name a
— C could access P without being granted it by S

@ In 7-Calculus:
e initially only S has access to P (using link a)
e using another link b, C can request access to P
o Formally:
_ , , , a: link to P
b(a).S" || b(c).c(d).C" || a(e).P
~~—~— “——— “~—— o b: link between S and C
S C P
Ty g | a(d).C" || a(e).P’ e c: “placeholder” for a
- g | C"|| P'[d/e] e d: data to be printed

e e: “placeholder” for d

RWNTH Concurrency Theory Winter Semester 2013/14 9.15

Mobility in Concurrent Systems Il|

Example 9.9 (Dynamic access to resources; continued)

o Different rdles of action name a:

e in interaction between S and C:
object transferred from S to C

e in interaction between C and P:
name of communication link

Concurrency Theory Winter Semester 2013/14 9.16

Mobility in Concurrent Systems Il|

Example 9.9 (Dynamic access to resources; continued)

o Different roles of action name a:
e in interaction between S and C:
object transferred from S to C
e in interaction between C and P:
name of communication link

@ Intuitively, names represent access rights:

e a: for P
e b: for S
e d: for data to be printed

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 9.16

Mobility in Concurrent Systems Il|

Example 9.9 (Dynamic access to resources; continued)

o Different rdles of action name a:

e in interaction between S and C:
object transferred from S to C
e in interaction between C and P:
name of communication link
@ Intuitively, names represent access rights:
e a: for P
e b: for S
e d: for data to be printed

e If ais only way to access P
= P "moves” from S to C

RWTHAACHEN Concurrency Theory Winter Semester 2013/14 9.16

© Another Example: Mobile Clients

RWIHAACHEN Concurrency Theory Winter Semester 2013/14 9.17

Mobile Clients |

Example 9.10 (Hand-over protocol)

Scenario:
@ client devices moving around (phones, PCs, sensors, ...)
@ each radio-connected to some base station
@ stations wired to central control
°

some event (e.g., signal fading) may cause a client to be switched to
another station

@ essential: specification of switching process (“hand-over protocol”)

RWNTH Concurrency Theory Winter Semester 2013/14 9.18

Mobile Clients |

Example 9.10 (Hand-over protocol)

Scenario:
@ client devices moving around (phones, PCs, sensors, ...)
@ each radio-connected to some base station
@ stations wired to central control
°

some event (e.g., signal fading) may cause a client to be switched to
another station

@ essential: specification of switching process (“hand-over protocol”)

Simplest case: two stations, one client

Client
switchy
talk,
Station Idle
gain,
losey lose,
gain;
Control

RWNTH Concurrency Theory Winter Semester 2013/14 9.18

Mobile Clients I

Example 9.10 (Hand-over protocol; continued)

@ Every station is in one of two modes: Station (active; four links) or Idle
(inactive; two links)

RWNTH Concurrency Theory Winter Semester 2013/14 9.19

Mobile Clients I

Example 9.10 (Hand-over protocol; continued)

@ Every station is in one of two modes: Station (active; four links) or Idle
(inactive; two links)

@ Client can talk via Station, and at any time Control can request
Station/Idle to lose/gain Client:

Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).ldle(gain, lose)
Idle(gain, lose) = gain(t,s).Station(t, s, gain, lose)

RWNTH Concurrency Theory Winter Semester 2013/14 9.19

Mobile Clients I

Example 9.10 (Hand-over protocol; continued)

@ Every station is in one of two modes: Station (active; four links) or Idle
(inactive; two links)

@ Client can talk via Station, and at any time Control can request
Station/Idle to lose/gain Client:

Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).ldle(gain, lose)
Idle(gain, lose) = gain(t,s).Station(t, s, gain, lose)

@ If Control decides Station to lose Client, it issues a new pair of channels to
be shared by Client and Idle:

Controly = lose; (talky, switchy).gain,(talko, switchy).Control,
Controly = losey(talky, switchy).gain, (talky, switchy).Controly

RWNTH Concurrency Theory Winter Semester 2013/14 9.19

Mobile Clients I

Example 9.10 (Hand-over protocol; continued)

@ Every station is in one of two modes: Station (active; four links) or Idle
(inactive; two links)

@ Client can talk via Station, and at any time Control can request
Station/Idle to lose/gain Client:

Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).ldle(gain, lose)
Idle(gain, lose) = gain(t,s).Station(t, s, gain, lose)

@ If Control decides Station to lose Client, it issues a new pair of channels to
be shared by Client and Idle:

Controly = lose; (talky, switchy).gain,(talko, switchy).Control,
Controly = losey(talky, switchy).gain, (talky, switchy).Controly

@ Client can either talk or, if requested, switch to a new pair of channels:

Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)

RWNTH Concurrency Theory Winter Semester 2013/14 9.19

Mobile Clients lll

Example 9.10 (Hand-over protocol; continued)

@ As usual, the whole system is a restricted composition of processes:
System; = new L (Clienty || Station; || Idle, || Controly)

where
Client; := Client(talk;, switch;)
Station; := Station(talk;, switch;, gain;, lose;)
Idle; := Idle(gain;, lose;)
L := (talk;, switch;, gain;, lose; | i € {1,2})

RWNTH Concurrency Theory Winter Semester 2013/14 9.20

Mobile Clients lll

Example 9.10 (Hand-over protocol; continued)

@ As usual, the whole system is a restricted composition of processes:
System; = new L (Clienty || Station; || Idle, || Controly)
where)))
Client; := Client(talk;, switch;)
Station; := Station(talk;, switch;, gain;, lose;)

Idle; := Idle(gain;, lose;)
L := (talk;, switch;, gain;, lose; | i € {1,2})

@ After having formally defined the 7-Calculus we will see that this protocol is
correct, i.e., that the hand-over does indeed occur:

System; —* System,
where

System, = new L (Client, || Idle; || Station; || Control,)

RWNTH Concurrency Theory Winter Semester 2013/14 9.20

	Syntax of Value-Passing CCS
	Semantics of Value-Passing CCS
	Translation of Value-Passing into Pure CCS
	Modelling Mobile Concurrent Systems
	Another Example: Mobile Clients

