
Concurrency Theory
Lecture 9: Extensions of CCS: Value Passing and Mobility

Joost-Pieter Katoen Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

{katoen,noll}@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/ct13/

Winter Semester 2013/14

{katoen,noll}@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/ct13/


Outline

1 Syntax of Value-Passing CCS

2 Semantics of Value-Passing CCS

3 Translation of Value-Passing into Pure CCS

4 Modelling Mobile Concurrent Systems

5 Another Example: Mobile Clients

Concurrency Theory Winter Semester 2013/14 9.2



Value-Passing CCS

So far: pure CCS

communication = mere synchronisation
no (explicit) exchange of data

But: processes usually do pass around data

⇒ value-passing CCS

Introduced in Robin Milner: Communication and Concurrency ,
Prentice-Hall, 1989

Assumption (for simplicity): only integers as data type

Example 9.1 (One-place buffer with data (cf. Example 2.5))

One-place buffer that outputs successor of stored value:

B = in(x).B ′(x)
B ′(x) = out(x + 1).B

Concurrency Theory Winter Semester 2013/14 9.3



Syntax of Value-Passing CCS I

Definition 9.2 (Syntax of value-passing CCS)

Let A, A, Pid (ranked) as in Definition 2.1.

Let e and b respectively stand for integer and Boolean expressions,
built from integer variables x , y , . . .

The set Prc+ of value-passing process expressions is defined by:

P ::= nil (inaction)
| a(x).P (input prefixing)
| a(e).P (output prefixing)
| τ.P (τ prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| if b then P (conditional)
| C (e1, . . . , en) (process call)

where a ∈ A, L ⊆ A, C ∈ Pid (of rank n ∈ N), and f : A→ A.

Concurrency Theory Winter Semester 2013/14 9.4



Syntax of Value-Passing CCS II

Definition 9.2 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form

(Ci (x1, . . . , xni ) = Pi | 1 ≤ i ≤ k)

where

k ≥ 1,

Ci ∈ Pid of rank ni (pairwise distinct),

Pi ∈ Prc+ (with process identifiers from {C1, . . . ,Ck}), and

all occurrences of a integer variable y in each Pi are bound, i.e.,
y ∈ {x1, . . . , xni} or y is in the scope of an input prefix of the form
a(y) (to ensure well-definedness of values).

Example 9.3

1 C (x) = a(x + 1).b(y).C (y) is allowed

2 C (x) = a(x + 1).a(y + 1).nil is disallowed as y is not bound

Concurrency Theory Winter Semester 2013/14 9.5



Outline

1 Syntax of Value-Passing CCS

2 Semantics of Value-Passing CCS

3 Translation of Value-Passing into Pure CCS

4 Modelling Mobile Concurrent Systems

5 Another Example: Mobile Clients

Concurrency Theory Winter Semester 2013/14 9.6



Semantics of Value-Passing CCS I

Definition 9.4 (Semantics of value-passing CCS)

A value-passing process definition (Ci (x1, . . . , xni ) = Pi | 1 ≤ i ≤ k) determines
the LTS (Prc+,Act,−→) with Act := (A ∪ A)× Z ∪ {τ} whose transitions can
be inferred from the following rules (P,P ′,Q,Q ′ ∈ Prc+, a ∈ A, xi integer
variables, ei/b integer/Boolean expressions, z ∈ Z, α ∈ Act, λ ∈ (A ∪ A)× Z):

(In)

a(x).P
a(z)−→ P[z/x ]

(Out)
(z value of e)

a(e).P
a(z)−→ P

(Tau)
τ.P

τ−→ P

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q ′

P + Q
α−→ Q ′

(Par1)
P

α−→ P ′

P ‖ Q α−→ P ′ ‖ Q
(Par2)

Q
α−→ Q ′

P ‖ Q α−→ P ‖ Q ′
(Com)

P
λ−→ P ′ Q

λ−→ Q ′

P ‖ Q τ−→ P ′ ‖ Q ′

(Rel)
P

α−→ P ′

P[f ]
f (α)−→ P ′[f ]

(Res)
P

α−→ P ′ (α /∈ (L ∪ L)× Z)

P \ L α−→ P ′ \ L

(If)
P

α−→ P ′ (b true)

if b then P
α−→ P ′

(Call)

P[z1/x1, . . . , zn/xn]
α−→ P ′

(C (x1, . . . , xn) = P, zi value of ei )

C (e1, . . . , en)
α−→ P ′

Concurrency Theory Winter Semester 2013/14 9.7



Semantics of Value-Passing CCS II

Remarks:

The binding restriction ensures that all integer and Boolean
expressions have a defined value
P[z1/x1, . . . , zn/xn] denotes the substitution of each free (i.e.,
unbound) occurrence of xi by zi (1 ≤ i ≤ n)
Relabelling functions are extended to actions by letting
f (a(z)) := f (a)(z) and f (a(z)) := f (a)(z) (and f (τ) := τ)
The two-armed conditional

if b then P else Q

can be defined as
(if b then P) + (if ¬b then Q)

Example 9.5

One-place buffer that outputs non-negative predecessor of stored value:
B = in(x).B ′(x)

B ′(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x − 1).B)

(on the board)
Concurrency Theory Winter Semester 2013/14 9.8



Outline

1 Syntax of Value-Passing CCS

2 Semantics of Value-Passing CCS

3 Translation of Value-Passing into Pure CCS

4 Modelling Mobile Concurrent Systems

5 Another Example: Mobile Clients

Concurrency Theory Winter Semester 2013/14 9.9



Translation of Value-Passing into Pure CCS I

To show: value-passing process definitions can be represented in pure
CCS

Idea: each parametrised construct (a(x), a(e), C (e1, . . . , en))
corresponds to a family of constructs in pure CCS, one for each
possible integer value

Requires extension of pure CCS by infinite choices (“
∑
. . .”),

restrictions, and process definitions

Concurrency Theory Winter Semester 2013/14 9.10



Translation of Value-Passing into Pure CCS II

Definition 9.6 (Translation of value-passing into pure CCS)

For each P ∈ Prc+ without free integer variables, its translated form
P̂ ∈ Prc is given by

n̂il := nil τ̂.P := τ.P̂

â(x).P :=
∑

z∈Z az .P̂[z/x ] â(e).P := az .P̂
(z value of e)

P̂1 + P2 := P̂1 + P̂2 P̂1 ‖ P2 := P̂1 ‖ P̂2

P̂ \ L := P̂ \ {az | a ∈ L, z ∈ Z} P̂[f ] := P̂[f̂ ]

(f̂ (az) := f (a)z)

̂if b then P :=

{
P̂ if b true

nil otherwise
̂C (e1, . . . , en) := Cz1,...,zn

Moreover, each defining equation C (x1, . . . , xn) = P of a process identifier
is translated into the indexed collection of process definitions(

Cz1,...,zn = ̂P[z1/x1, . . . , zn/xn] | v1, . . . , vn ∈ Z
)

Concurrency Theory Winter Semester 2013/14 9.11



Translation of Value-Passing into Pure CCS III

Example 9.7 (cf. Example 9.5)

B = in(x).B ′(x)
B ′(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x − 1).B)

(on the board)

Theorem 9.8 (Correctness of translation)

For all P,P ′ ∈ Prc+ and α ∈ Act,

P
α−→ P ′ ⇐⇒ P̂

α̂−→ P̂ ′

where â(z) := az , â(z) := az , and τ̂ := τ .

Proof.

by induction on the structure of P (omitted)

Concurrency Theory Winter Semester 2013/14 9.12



Outline

1 Syntax of Value-Passing CCS

2 Semantics of Value-Passing CCS

3 Translation of Value-Passing into Pure CCS

4 Modelling Mobile Concurrent Systems

5 Another Example: Mobile Clients

Concurrency Theory Winter Semester 2013/14 9.13



Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,Q ∈ Prc want to communicate, then both must syntactically refer to
the same action name

=⇒ every potential communication partner known beforehand,
no dynamic passing of communication links

=⇒ lack of mobility

Goal: develop calculus in the spirit of CCS which supports mobility

=⇒ π-Calculus

Concurrency Theory Winter Semester 2013/14 9.14



Mobility in Concurrent Systems II

Example 9.9 (Dynamic access to resources)

Server S controls access to printer P

Client C wishes to use P

In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-Calculus:

initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S ′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C ′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S ′ ‖ a〈d〉.C ′ ‖ a(e).P ′
τ−→ S ′ ‖ C ′ ‖ P ′[d/e]

a: link to P

b: link between S and C

c : “placeholder” for a

d : data to be printed

e: “placeholder” for d

Concurrency Theory Winter Semester 2013/14 9.15



Mobility in Concurrent Systems III

Example 9.9 (Dynamic access to resources; continued)

Different rôles of action name a:

in interaction between S and C :
object transferred from S to C
in interaction between C and P:
name of communication link

Intuitively, names represent access rights:

a: for P
b: for S
d : for data to be printed

If a is only way to access P
=⇒ P “moves” from S to C

Concurrency Theory Winter Semester 2013/14 9.16



Outline

1 Syntax of Value-Passing CCS

2 Semantics of Value-Passing CCS

3 Translation of Value-Passing into Pure CCS

4 Modelling Mobile Concurrent Systems

5 Another Example: Mobile Clients

Concurrency Theory Winter Semester 2013/14 9.17



Mobile Clients I

Example 9.10 (Hand-over protocol)

Scenario:

client devices moving around (phones, PCs, sensors, ...)

each radio-connected to some base station

stations wired to central control

some event (e.g., signal fading) may cause a client to be switched to
another station

essential: specification of switching process (“hand-over protocol”)

Simplest case: two stations, one client

Client

Station Idle

Control

talk1

switch1

gain1

lose1

gain2

lose2

Concurrency Theory Winter Semester 2013/14 9.18



Mobile Clients II

Example 9.10 (Hand-over protocol; continued)

Every station is in one of two modes: Station (active; four links) or Idle
(inactive; two links)

Client can talk via Station, and at any time Control can request
Station/Idle to lose/gain Client:

Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch〈t, s〉.Idle(gain, lose)

Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)

If Control decides Station to lose Client, it issues a new pair of channels to
be shared by Client and Idle:

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

Client can either talk or, if requested, switch to a new pair of channels:

Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)

Concurrency Theory Winter Semester 2013/14 9.19



Mobile Clients III

Example 9.10 (Hand-over protocol; continued)

As usual, the whole system is a restricted composition of processes:

System1 = new L (Client1 ‖ Station1 ‖ Idle2 ‖ Control1)

where
Client i := Client(talk i , switchi )

Stationi := Station(talk i , switchi , gaini , lose i )
Idle i := Idle(gaini , lose i )

L := (talk i , switchi , gaini , lose i | i ∈ {1, 2})

After having formally defined the π-Calculus we will see that this protocol is
correct, i.e., that the hand-over does indeed occur:

System1 −→∗ System2

where

System2 = new L (Client2 ‖ Idle1 ‖ Station2 ‖ Control2)

Concurrency Theory Winter Semester 2013/14 9.20


	Syntax of Value-Passing CCS
	Semantics of Value-Passing CCS
	Translation of Value-Passing into Pure CCS
	Modelling Mobile Concurrent Systems
	Another Example: Mobile Clients

