

Concurrency Theory

Lecture 9: Extensions of CCS: Value Passing and Mobility

Joost-Pieter Katoen Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

`{katoen, noll}@cs.rwth-aachen.de`

`http://www-i2.informatik.rwth-aachen.de/i2/ct13/`

Winter Semester 2013/14

- 1 Syntax of Value-Passing CCS
- 2 Semantics of Value-Passing CCS
- 3 Translation of Value-Passing into Pure CCS
- 4 Modelling Mobile Concurrent Systems
- 5 Another Example: Mobile Clients

- **So far:** pure CCS

- communication = mere synchronisation
- no (explicit) exchange of data

- **But:** processes usually **do** pass around data

⇒ value-passing CCS

- Introduced in Robin Milner: *Communication and Concurrency*, Prentice-Hall, 1989
- Assumption (for simplicity): only **integers** as data type

Example 9.1 (One-place buffer with data (cf. Example 2.5))

One-place buffer that outputs successor of stored value:

$$\begin{aligned} B &= \text{in}(x).B'(x) \\ B'(x) &= \text{out}(x+1).B \end{aligned}$$

Definition 9.2 (Syntax of value-passing CCS)

- Let A, \bar{A}, Pid (ranked) as in Definition 2.1.
- Let e and b respectively stand for integer and Boolean expressions, built from integer variables x, y, \dots
- The set Prc^+ of **value-passing process expressions** is defined by:

$P ::=$	nil	(inaction)
	$a(x).P$	(input prefixing)
	$\bar{a}(e).P$	(output prefixing)
	$\tau.P$	(τ prefixing)
	$P_1 + P_2$	(choice)
	$P_1 \parallel P_2$	(parallel composition)
	$P \setminus L$	(restriction)
	$P[f]$	(relabelling)
	$\text{if } b \text{ then } P$	(conditional)
	$C(e_1, \dots, e_n)$	(process call)

where $a \in A$, $L \subseteq A$, $C \in Pid$ (of rank $n \in \mathbb{N}$), and $f : A \rightarrow A$.

Definition 9.2 (Syntax of value-passing CCS; continued)

A **value-passing process definition** is an equation system of the form

$$(C_i(x_1, \dots, x_{n_i}) = P_i \mid 1 \leq i \leq k)$$

where

- $k \geq 1$,
- $C_i \in Pid$ of rank n_i (pairwise distinct),
- $P_i \in Prc^+$ (with process identifiers from $\{C_1, \dots, C_k\}$), and
- all occurrences of a integer variable y in each P_i are **bound**, i.e.,
 $y \in \{x_1, \dots, x_{n_i}\}$ or y is in the scope of an input prefix of the form
 $a(y)$ (to ensure well-definedness of values).

Example 9.3

- ① $C(x) = \bar{a}(x + 1).b(y).C(y)$ is allowed
- ② $C(x) = \bar{a}(x + 1).\bar{a}(y + 1).\text{nil}$ is disallowed as y is not bound

- 1 Syntax of Value-Passing CCS
- 2 Semantics of Value-Passing CCS
- 3 Translation of Value-Passing into Pure CCS
- 4 Modelling Mobile Concurrent Systems
- 5 Another Example: Mobile Clients

Semantics of Value-Passing CCS I

Definition 9.4 (Semantics of value-passing CCS)

A value-passing process definition $(C_i(x_1, \dots, x_n) = P_i \mid 1 \leq i \leq k)$ determines the LTS $(Prc^+, Act, \rightarrow)$ with $Act := (A \cup \bar{A}) \times \mathbb{Z} \cup \{\tau\}$ whose transitions can be inferred from the following rules ($P, P', Q, Q' \in Prc^+$, $a \in A$, x_i integer variables, e_i/b integer/Boolean expressions, $z \in \mathbb{Z}$, $\alpha \in Act$, $\lambda \in (A \cup \bar{A}) \times \mathbb{Z}$):

(In)	$\frac{}{a(x).P \xrightarrow{a(z)} P[z/x]}$	(Out)	$\frac{(z \text{ value of } e)}{\bar{a}(e).P \xrightarrow{\bar{a}(z)} P}$	(Tau)	$\frac{}{\tau.P \xrightarrow{\tau} P}$
(Sum ₁)	$\frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'}$	(Sum ₂)	$\frac{Q \xrightarrow{\alpha} Q'}{P + Q \xrightarrow{\alpha} Q'}$		
(Par ₁)	$\frac{P \xrightarrow{\alpha} P'}{P \parallel Q \xrightarrow{\alpha} P' \parallel Q}$	(Par ₂)	$\frac{Q \xrightarrow{\alpha} Q'}{P \parallel Q \xrightarrow{\alpha} P \parallel Q'}$	(Com)	$\frac{P \xrightarrow{\lambda} P' \quad Q \xrightarrow{\bar{\lambda}} Q'}{P \parallel Q \xrightarrow{\tau} P' \parallel Q'}$
(Rel)	$\frac{P \xrightarrow{\alpha} P'}{P[f] \xrightarrow{f(\alpha)} P'[f]}$	(Res)	$\frac{P \xrightarrow{\alpha} P' \quad (\alpha \notin (L \cup \bar{L}) \times \mathbb{Z})}{P \setminus L \xrightarrow{\alpha} P' \setminus L}$		
(If)	$\frac{P \xrightarrow{\alpha} P' \quad (b \text{ true})}{\text{if } b \text{ then } P \xrightarrow{\alpha} P'}$		$P[z_1/x_1, \dots, z_n/x_n] \xrightarrow{\alpha} P'$		
(Call)			$(C(x_1, \dots, x_n) = P, z_i \text{ value of } e_i)$		$C(e_1, \dots, e_n) \xrightarrow{\alpha} P'$

Remarks:

- The binding restriction ensures that all integer and Boolean expressions have a **defined value**
- $P[z_1/x_1, \dots, z_n/x_n]$ denotes the **substitution** of each free (i.e., unbound) occurrence of x_i by z_i ($1 \leq i \leq n$)
- **Relabelling** functions are extended to actions by letting $f(a(z)) := f(a)(z)$ and $f(\bar{a}(z)) := \bar{f(a)}(z)$ (and $f(\tau) := \tau$)
- The **two-armed conditional**

$$\text{if } b \text{ then } P \text{ else } Q$$

can be defined as

$$(\text{if } b \text{ then } P) + (\text{if } \neg b \text{ then } Q)$$

Example 9.5

One-place buffer that outputs non-negative predecessor of stored value:

$$B = \text{in}(x).B'(x)$$

$$B'(x) = (\text{if } x = 0 \text{ then } \overline{\text{out}}(0).B) + (\text{if } x > 0 \text{ then } \overline{\text{out}}(x-1).B)$$

(on the board)

- **To show:** value-passing process definitions can be represented in pure CCS
- **Idea:** each parametrised construct ($a(x)$, $\bar{a}(e)$, $C(e_1, \dots, e_n)$) corresponds to a **family** of constructs in pure CCS, one for each possible integer value
- Requires extension of pure CCS by **infinite** choices (" $\sum \dots$ "), restrictions, and process definitions

Translation of Value-Passing into Pure CCS II

Definition 9.6 (Translation of value-passing into pure CCS)

For each $P \in \text{Prc}^+$ without free integer variables, its **translated form** $\widehat{P} \in \text{Prc}$ is given by

$$\widehat{\text{nil}} := \text{nil}$$
$$\widehat{a(x).P} := \sum_{z \in \mathbb{Z}} a_z \cdot \widehat{P[z/x]}$$

$$\widehat{P_1 + P_2} := \widehat{P_1} + \widehat{P_2}$$
$$\widehat{P \setminus L} := \widehat{P} \setminus \{a_z \mid a \in L, z \in \mathbb{Z}\}$$

$$\text{if } \widehat{b} \text{ then } P := \begin{cases} \widehat{P} & \text{if } b \text{ true} \\ \text{nil} & \text{otherwise} \end{cases}$$

$$\widehat{\tau.P} := \tau \cdot \widehat{P}$$
$$\widehat{\overline{a}(e).P} := \overline{a_z} \cdot \widehat{P} \quad (z \text{ value of } e)$$
$$\widehat{P_1 \parallel P_2} := \widehat{P_1} \parallel \widehat{P_2}$$
$$\widehat{P[f]} := \widehat{P}[\widehat{f}] \quad (\widehat{f}(a_z) := f(a)_z)$$

$$C(\widehat{e_1, \dots, e_n}) := C_{z_1, \dots, z_n}$$

Moreover, each defining equation $C(x_1, \dots, x_n) = P$ of a process identifier is translated into the indexed collection of process definitions

$$\left(C_{z_1, \dots, z_n} = P[z_1/x_1, \dots, z_n/x_n] \mid v_1, \dots, v_n \in \mathbb{Z} \right)$$

Example 9.7 (cf. Example 9.5)

$$\begin{aligned} B &= \text{in}(x).B'(x) \\ B'(x) &= (\text{if } x = 0 \text{ then } \overline{\text{out}}(0).B) + (\text{if } x > 0 \text{ then } \overline{\text{out}}(x - 1).B) \end{aligned}$$

(on the board)

Theorem 9.8 (Correctness of translation)

For all $P, P' \in \text{Prc}^+$ and $\alpha \in \text{Act}$,

$$P \xrightarrow{\alpha} P' \iff \widehat{P} \xrightarrow{\widehat{\alpha}} \widehat{P'}$$

where $\widehat{a(z)} := a_z$, $\widehat{\bar{a}(z)} := \bar{a}_z$, and $\widehat{\tau} := \tau$.

Proof.

by induction on the structure of P (omitted)

- 1 Syntax of Value-Passing CCS
- 2 Semantics of Value-Passing CCS
- 3 Translation of Value-Passing into Pure CCS
- 4 Modelling Mobile Concurrent Systems
- 5 Another Example: Mobile Clients

Observation: CCS imposes a **static communication structure**: if $P, Q \in \text{Prc}$ want to communicate, then both must syntactically refer to the same action name

- ⇒ every potential communication partner known beforehand, no dynamic passing of communication links
- ⇒ lack of **mobility**

Goal: develop calculus in the spirit of CCS which supports mobility

- ⇒ π -Calculus

Example 9.9 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P
- In CCS: P and C must share some action name a
 $\implies C$ could access P without being granted it by S
- In π -Calculus:
 - initially only S has access to P (using link a)
 - using another link b , C can request access to P
- Formally:

$$\begin{array}{c} \overbrace{b(a).S'}^S \parallel \overbrace{b(c).\overline{a}(d).C'}^C \parallel \overbrace{a(e).P'}^P \\ \xrightarrow{\tau} S' \parallel \overline{a}(d).C' \parallel a(e).P' \\ \xrightarrow{\tau} S' \parallel C' \parallel P'[d/e] \end{array}$$

- a : link to P
- b : link between S and C
- c : “placeholder” for a
- d : data to be printed
- e : “placeholder” for d

Example 9.9 (Dynamic access to resources; continued)

- Different rôles of action name a :
 - in interaction between S and C :
 $\text{object transferred}$ from S to C
 - in interaction between C and P :
name of $\text{communication link}$
- Intuitively, names represent access rights :
 - a : for P
 - b : for S
 - d : for data to be printed
- If a is only way to access P
 $\implies P$ “moves” from S to C

- 1 Syntax of Value-Passing CCS
- 2 Semantics of Value-Passing CCS
- 3 Translation of Value-Passing into Pure CCS
- 4 Modelling Mobile Concurrent Systems
- 5 Another Example: Mobile Clients

Example 9.10 (Hand-over protocol)

Scenario:

- client devices moving around (phones, PCs, sensors, ...)
- each radio-connected to some **base station**
- stations wired to **central control**
- some event (e.g., signal fading) may cause a client to be **switched** to another station
- essential: specification of switching process ("hand-over protocol")

Simplest case: two stations, one client

Example 9.10 (Hand-over protocol; continued)

- Every station is in one of two **modes**: *Station* (active; four links) or *Idle* (inactive; two links)
- *Client* can **talk** via *Station*, and at any time *Control* can request *Station/Idle* to **lose/gain Client**:

$$\begin{aligned} \text{Station}(\text{talk}, \text{switch}, \text{gain}, \text{lose}) &= \text{talk}.\text{Station}(\text{talk}, \text{switch}, \text{gain}, \text{lose}) + \\ &\quad \text{lose}(t, s).\overline{\text{switch}}(t, s).\text{Idle}(\text{gain}, \text{lose}) \\ \text{Idle}(\text{gain}, \text{lose}) &= \text{gain}(t, s).\text{Station}(t, s, \text{gain}, \text{lose}) \end{aligned}$$

- If *Control* decides *Station* to lose *Client*, it issues a **new pair of channels** to be shared by *Client* and *Idle*:

$$\begin{aligned} \text{Control}_1 &= \overline{\text{lose}}_1 \langle \text{talk}_2, \text{switch}_2 \rangle . \overline{\text{gain}}_2 \langle \text{talk}_2, \text{switch}_2 \rangle . \text{Control}_2 \\ \text{Control}_2 &= \overline{\text{lose}}_2 \langle \text{talk}_1, \text{switch}_1 \rangle . \text{gain}_1 \langle \text{talk}_1, \text{switch}_1 \rangle . \text{Control}_1 \end{aligned}$$

- *Client* can either **talk** or, if requested, **switch** to a new pair of channels:

$$\text{Client}(\text{talk}, \text{switch}) = \overline{\text{talk}}.\text{Client}(\text{talk}, \text{switch}) + \text{switch}(t, s).\text{Client}(t, s)$$

Example 9.10 (Hand-over protocol; continued)

- As usual, the whole system is a **restricted composition** of processes:

$$\text{System}_1 = \text{new } L (\text{Client}_1 \parallel \text{Station}_1 \parallel \text{Idle}_2 \parallel \text{Control}_1)$$

where

$$\begin{aligned}\text{Client}_i &:= \text{Client}(\text{talk}_i, \text{switch}_i) \\ \text{Station}_i &:= \text{Station}(\text{talk}_i, \text{switch}_i, \text{gain}_i, \text{lose}_i) \\ \text{Idle}_i &:= \text{Idle}(\text{gain}_i, \text{lose}_i) \\ L &:= (\text{talk}_i, \text{switch}_i, \text{gain}_i, \text{lose}_i \mid i \in \{1, 2\})\end{aligned}$$

- After having formally defined the π -Calculus we will see that this protocol is **correct**, i.e., that the hand-over does indeed occur:

$$\text{System}_1 \longrightarrow^* \text{System}_2$$

where

$$\text{System}_2 = \text{new } L (\text{Client}_2 \parallel \text{Idle}_1 \parallel \text{Station}_2 \parallel \text{Control}_2)$$