Trace equivalence

Concurrency Theory

Trace equivalence

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://www-1i2.informatik.rwth-aachen.de/i2/ct13

December 4, 2013

RWTH.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 1/27
Trace equivalence Introduction

Overview

© Introduction

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 3/27

Trace equivalence

Overview

© Introduction

© Preliminaries

© Requirements on behavioural equivalences
@ Trace equivalence

© Other forms of trace equivalence

@ Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 2/27
Trace equivalence Introduction

|
In using process algebra like CCS, an important approach is to model the
specification and implementation as CCS processes, Spec and Impl, say.

This gives rise to the natural question: when are two CCS processes
behaving the same?

As there are many different interpretations of “behaving the same”,
different behavioural equivalence have emerged.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 4/27

http://www-i2.informatik.rwth-aachen.de/i2/ct13

Trace equivalence Introduction

Behavioural equivalence

Implementation
CM = coin.coffee.CM

CS = pub.coin.coffee.CS
Uni = (CM|| CS) \{ coin, coffee }

Specification

Spec = pub.Spec

Question
Are the specification Spec and implementation Uni behaviourally

equivalent?
Spec = Uni?

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 5/27

Preliminaries

Trace equivalence

Equivalence relations

Some reasonable required properties

» reflexivity P = P for every process P
> symmetry P = Q if and only if Q = P
> transitivity Specyg = ... = Spec, = Impl implies that Specy = Impl.

Equivalence

The binary relation =C S x S over the set S is an equivalence if
> it is reflexive: s = s for every s € S,
> it is symmetric: s = t implies t = s for every s, t € S,
> it is transitive: s =t and t = u implies s = u for every s, t,u, € S.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory

7/27

Trace equivalence Preliminaries

Overview

© Preliminaries

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 6/27

Preliminaries

Trace equivalence

Isomorphism: an example behavioural equivalence

The LTSs TS; = (51, Acti, —1) and TS, = (S2, Acta, —2) are isomorphic,
denoted TS; =jso TSy, if there exists a bijection f : S; — S, such that

st if and only if f(s) %2 f(t).

It follows immediately that =;s, is an equivalence. Why?

It follows P + Q =js0 Q + P. The same applies to P||Q and Q||P, as well
as P+nil and P. Also (P + Q)+ R =jso P+ (Q + R), and similar for ||.

Caveat

But: isomorphism is not very distinctive, e.g., X=a.X and Y= a.a.Y are
distinguished, although both can (only) execute infinitely many a-actions and
thus should be considered equivalent.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 8/27

Isomorphism

From now on, we will consider processes modulo isomorphism, i.e., we do
not distinguish isomorphic CCS processes.

|
This means that P+ Q and Q + P will not be distinguished. The same
applies to P||Q and Q||P, as well as P + nil and P. But also (P+ Q)+ R
and P+ (Q+ R), as well as (P||Q)||R and P||(Q||R) are not distinguished.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 9/27
Trace equivalence Requirements on behavioural equivalences

The wish-list for behavioural equivalences

1. Deadlock preservation: equivalent processes should have the same
deadlock behaviour, i.e., equivalent process can either both deadlock,
or both cannot.!

2. Less distinguishable than isomorphism: an equivalence should
distinguish less processes than isomorphism does, i.e. = should be
coarser than isomorphism.

3. Congruence property: the equivalence must be substitutive with
respect to all CCS operators.

4. More distinguishable than trace equivalence: an equivalence should
distinguish more processes than trace equivalence does, i.e. = should
be finer than trace equivalence.

5. Optional: the coarsest possible equivalence: there should be no less
discriminating equivalence satisfying all these requirements.

!Later, we enlarge this to a set of properties that can be expressed in a logic.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 11/27

Trace equivalence Requirements on behavioural equivalences

Overview

© Requirements on behavioural equivalences

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 10/27
Trace equivalence Requirements on behavioural equivalences

What is a congruence?

P Ql

c(P) c(Q)

A context is a CCS process fragment with a “hole” in it. (Examples on
board.)

|
Relation = is a congruence whenever P = Q implies C(P) = C(Q) for
every context C.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 12/27

Trace equivalence Requirements on behavioural equivalences

The importance of a congruence

Relation = is a congruence whenever P = Q implies C(P) = C(Q) for
every context C.

Example

Let a = b for a, b € Z whenever a mod k = b mod k, for some k € N.
Equivalence relation = is a congruence for addition and multiplication.

Important motivations of requiring = to be a congruence on processes:
1. Replacing an abstract model Spec by a more detailed one Impl.

2. Replacing a large (concrete) model Imp/ by a smaller (more abstract)
model Spec.

3. Congruences admit a quotient structure with equivalence classes as
elements.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 13/27

Trace equivalence Requirements on behavioural equivalences

Deadlocks

Deadlock

Let P, Q € Prc and w € Act™ such that P~ Q and @ —~ Then Q is
called a w-deadlock of P.

P = a.b.nil 4+ a.nil has an a-deadlock, whereas @ = a.b.nil has not.

Such properties are important, as it can be crucial that a certain
communication is eventually possible.

Deadlock sensitivity

Relation = C Prc x Prc is deadlock sensitive whenever:

P = Q implies (VYw. P has a w-deadlock iff Q has a w-deadlock).

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 15/27

Trace equivalence Requirements on behavioural equivalences

CCS congruence

CCS congruence

An equivalence relation = C Prc x Prcis a CCS congruence if it is
preserved by all CCS constructs, i.e., if P, @ € Prc with P = Q then:

a.P = aQ for every a € Act
P+R = Q+R for every R € Prc
PIIR = Q|IR for every R € Prc
P\L = Q\L for every LC A
P[f] = QIf] for every f : Act — Act!

! satisfying f(7) = 7 and f(3) = f(a), i.e., f is a renaming function.

Thus, a congruence for all CCS constructs is substitutive for all possible
CCS-contexts.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 14/27

Trace equivalence Trace equivalence

Overview

@ Trace equivalence

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 16/27

Trace equivalence Trace equivalence

Trace equivalence

Trace language

The trace language of P € Prc is defined by:

Tf(P) = {WEACt*|E|PIEPrC_Pl>PI}.

Trace equivalence

P, Q € Prc are called trace equivalent iff TH{P) = TH Q).

Trace equivalence is evidently an equivalence relation and is less discriminative
than isomorphism.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 17/27
Trace equivalence Trace equivalence

Two coffee machines
Consider the coffee machines CTM and its variant CTM"

CTM = coin. (coffee.CTM+@.CTM)

CTM’ = coin.coffee. CTM’ 4+ coin.tea.CTM'.

Note the difference between the two processes.

It follows: THCTM) = T CTM).

Are we satisfied? No! As CTM and CTM’ differ in the context:

C() = (VHCA)\{ coin, coffee, tea } with CA = coin.coffee.CA.

hole

Why? C(CTM’) may yield a deadlock, but C(CTM) does not.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 19/27

Trace equivalence Trace equivalence

Trace equivalence is a congruence

Theorem

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes. For + this goes
as follows. Let P, Q € Prc with TH{P) = TH{(Q). Then for R € Prc it holds:

TP+ R)=THP)UTHR) = TH{Q)U THR) = TH{Q + R).

Thus, P+ R and Q + R are trace equivalent. As P+ R and R + P are
isomorphic, and we consider processes modulo isomorphism, this concludes
the proof for 4. For the other CCS constructs, the proof goes along

similar lines. Exercise: do the proof for ||. O
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 18/27

Checking trace equivalence

Traces by automata

For finite P, the trace language Tr(P) of process P is “accepted” by the
finite-state automaton obtained from the LTS of P with initial state P and
making all states accepting (final).

Checking trace equivalence of two finite processes is PSPACE-complete.

Proof.

Checking whether Tr(P) = TH{Q), for finite P and Q, thus boils down to
check whether their non-deterministic automata accept the same
language. As this problem in automata theory is PSPACE-complete, it
follows that checking Tr(P) = Tr(Q) is PSPACE-complete. O

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 20/27

Trace equivalence Trace equivalence

Trace equivalence: summarizing

1. Trace equivalence equates processes that have the same traces, i.e.,
action sequences.

2. Trace equivalence is a CCS congruence

3. Trace equivalence trivially implies trace equivalence

4. Trace equivalence is not deadlock sensitive.

5. Checking trace equivalence is PSPACE-complete
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 21/27
Trace equivalence Other forms of trace equivalence
Overview

© Other forms of trace equivalence

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 23/27

Trace equivalence Trace equivalence

Traces and deadlocks

Traces and deadlocks are independent in the following sense:

P Q P Q
a,/\,a la a,/ b a, N\ c
bl I b Ob Oc

same traces different traces

different deadlocks same deadlocks

But: processes with finite trace sets and identical deadlocks are trace
equivalent (since every trace is a prefix of some deadlock).

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 22/27
Trace equivalence Other forms of trace equivalence

Completed trace equivalence

Completed trace

A completed trace of P € Prcis a sequence w € Act® such that:

P*Q and Q—F
for some Q € Prc.

The completed traces of process P may be seen as capturing its deadlock
behaviour, as they are precisely the action sequences that could lead to a
process from which no transition is possible (i.e., is a deadlock).

Exercise

Check that C(CTM) and C(CTM’) have the same completed traces.

Exercise

Check whether completed trace equivalence is a congruence for restriction.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 24/27

Variations of trace equivalence

Ready trace equivalence [Baeten et al.]

A sequence Apa1Aiag ... apnA, with A; C Act and «; € Act (i € IN) is a
ready trace of process P if P = Py -2y P; -1 % P such that

Ai ={a € Act| P }. Processes P and Q are ready-trace equivalent if
they have exactly the same set of ready traces.

Failure trace equivalence [Reed and Roscoe]

A sequence Apa1Arag ... anA, with A; C Act and «; € Act (i € IN) is a
failure trace of process P if P = Py 2% Py -%y .. 213 P such that
Ai N {a € Act| Pi— } = &. Processes P and Q are failure-trace
equivalent if they have exactly the same set of failure traces.

|
a.P+a.Q and a.P 4+ a.Q + a.(P + Q) are failure trace equivalent for
every P, Q € Prc and « € Act.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 25/27
Trace equivalence Summary

Summary

1. Behavioural equivalences should be:
1.1 deadlock sensitive
1.2 a congruence (for CCS)
1.3 more discriminative than trace equivalence
2. Trace equivalence
2.1 equates processes that have the same traces, i.e., action sequences.
2.2 is a CCS congruence

2.3 is not deadlock sensitive.
2.4 checking trace equivalence is PSPACE-complete

3. Variations: completed, ready, and failure traces.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 27/27

Overview

@ Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 26/27

	Introduction
	Preliminaries
	Requirements on behavioural equivalences
	Trace equivalence
	Other forms of trace equivalence
	Summary

