

# Concurrency Theory

## Trace equivalence

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl für Informatik 2  
Software Modeling and Verification Group

<http://www-i2.informatik.rwth-aachen.de/i2/ct13>

December 4, 2013



## Overview

1 Introduction

2 Preliminaries

3 Requirements on behavioural equivalences

4 Trace equivalence

5 Other forms of trace equivalence

6 Summary

## Overview

1 Introduction

2 Preliminaries

3 Requirements on behavioural equivalences

4 Trace equivalence

5 Other forms of trace equivalence

6 Summary

In using process algebra like CCS, an important approach is to model the specification and implementation as CCS processes, *Spec* and *Impl*, say.

This gives rise to the natural question: when are two CCS processes behaving the same?

As there are many different interpretations of “behaving the same”, different behavioural equivalence have emerged.

## Behavioural equivalence

### Implementation

$$CM = \overline{coin}.\overline{coffee}.CM$$

$$CS = \overline{pub}.\overline{coin}.coffee.CS$$

$$Uni = (CM \parallel CS) \setminus \{ coin, coffee \}$$

### Specification

$$Spec = \overline{pub}.Spec$$

### Question

Are the specification  $Spec$  and implementation  $Uni$  behaviourally equivalent?

$$Spec \equiv Uni?$$

## Equivalence relations

### Some reasonable required properties

- **reflexivity**  $P \equiv P$  for every process  $P$
- **symmetry**  $P \equiv Q$  if and only if  $Q \equiv P$
- **transitivity**  $Spec_0 \equiv \dots \equiv Spec_n \equiv Impl$  implies that  $Spec_0 \equiv Impl$ .

### Equivalence

The binary relation  $\equiv \subseteq S \times S$  over the set  $S$  is an **equivalence** if

- it is reflexive:  $s \equiv s$  for every  $s \in S$ ,
- it is symmetric:  $s \equiv t$  implies  $t \equiv s$  for every  $s, t \in S$ ,
- it is transitive:  $s \equiv t$  and  $t \equiv u$  implies  $s \equiv u$  for every  $s, t, u \in S$ .

## Overview

### 1 Introduction

### 2 Preliminaries

### 3 Requirements on behavioural equivalences

### 4 Trace equivalence

### 5 Other forms of trace equivalence

### 6 Summary

## Isomorphism: an example behavioural equivalence

### Isomorphism

The LTSs  $TS_1 = (S_1, Act_1, \rightarrow_1)$  and  $TS_2 = (S_2, Act_2, \rightarrow_2)$  are **isomorphic**, denoted  $TS_1 \equiv_{iso} TS_2$ , if there exists a bijection  $f : S_1 \rightarrow S_2$  such that

$$s \xrightarrow{\alpha} t \quad \text{if and only if} \quad f(s) \xrightarrow{\alpha} f(t).$$

It follows immediately that  $\equiv_{iso}$  is an equivalence. Why?

It follows  $P + Q \equiv_{iso} Q + P$ . The same applies to  $P \parallel Q$  and  $Q \parallel P$ , as well as  $P + \text{nil}$  and  $P$ . Also  $(P + Q) + R \equiv_{iso} P + (Q + R)$ , and similar for  $\parallel$ .

### Caveat

But: isomorphism is not very distinctive, e.g.,  $X = a.X$  and  $Y = a.a.Y$  are distinguished, although both can (only) execute infinitely many  $a$ -actions and thus should be considered **equivalent**.

# Isomorphism

## Assumption

From now on, we will consider processes modulo isomorphism, i.e., we do not distinguish isomorphic CCS processes.

This means that  $P + Q$  and  $Q + P$  will not be distinguished. The same applies to  $P||Q$  and  $Q||P$ , as well as  $P + \text{nil}$  and  $P$ . But also  $(P + Q) + R$  and  $P + (Q + R)$ , as well as  $(P||Q)||R$  and  $P||(Q||R)$  are not distinguished.

## The wish-list for behavioural equivalences

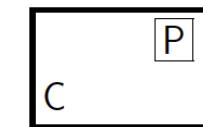
1. **Deadlock preservation:** equivalent processes should have the same deadlock behaviour, i.e., equivalent process can either both deadlock, or both cannot.<sup>1</sup>
2. **Less distinguishable than isomorphism:** an equivalence should distinguish less processes than isomorphism does, i.e.  $\equiv$  should be coarser than isomorphism.
3. **Congruence property:** the equivalence must be substitutive with respect to all CCS operators.
4. **More distinguishable than trace equivalence:** an equivalence should distinguish more processes than trace equivalence does, i.e.  $\equiv$  should be finer than trace equivalence.
5. **Optional: the coarsest possible equivalence:** there should be no less discriminating equivalence satisfying all these requirements.

<sup>1</sup>Later, we enlarge this to a set of properties that can be expressed in a logic.

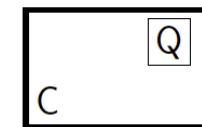
# Overview

- 1 Introduction
- 2 Preliminaries
- 3 Requirements on behavioural equivalences
- 4 Trace equivalence
- 5 Other forms of trace equivalence
- 6 Summary

## What is a congruence?



$C(P)$



$C(Q)$

## Context

A **context** is a CCS process fragment with a “hole” in it. (Examples on board.)

Relation  $\equiv$  is a **congruence** whenever  $P \equiv Q$  implies  $C(P) \equiv C(Q)$  for every context  $C$ .

## The importance of a congruence

Relation  $\equiv$  is a **congruence** whenever  $P \equiv Q$  implies  $C(P) \equiv C(Q)$  for every context  $C$ .

### Example

Let  $a \equiv b$  for  $a, b \in \mathbb{Z}$  whenever  $a \bmod k = b \bmod k$ , for some  $k \in \mathbb{N}$ . Equivalence relation  $\equiv$  is a congruence for addition and multiplication.

Important **motivations** of requiring  $\equiv$  to be a congruence on processes:

1. Replacing an abstract model  $Spec$  by a more detailed one  $Impl$ .
2. Replacing a large (concrete) model  $Impl$  by a smaller (more abstract) model  $Spec$ .
3. Congruences admit a quotient structure with equivalence classes as elements.

## Deadlocks

### Deadlock

Let  $P, Q \in Prc$  and  $w \in Act^*$  such that  $P \xrightarrow{w} Q$  and  $Q \rightarrow \perp$ . Then  $Q$  is called a **w-deadlock** of  $P$ .

$P = a.b.nil + a.nil$  has an  $a$ -deadlock, whereas  $Q = a.b.nil$  has not.

Such properties are important, as it can be crucial that a certain communication is **eventually possible**.

### Deadlock sensitivity

Relation  $\equiv \subseteq Prc \times Prc$  is **deadlock sensitive** whenever:

$P \equiv Q$  implies  $(\forall w. P \text{ has a } w\text{-deadlock} \text{ iff } Q \text{ has a } w\text{-deadlock})$ .

## CCS congruence

### CCS congruence

An equivalence relation  $\equiv \subseteq Prc \times Prc$  is a **CCS congruence** if it is preserved by all CCS constructs, i.e., if  $P, Q \in Prc$  with  $P \equiv Q$  then:

$$\begin{array}{lll} \alpha.P & \equiv & \alpha.Q & \text{for every } \alpha \in Act \\ P + R & \equiv & Q + R & \text{for every } R \in Prc \\ P||R & \equiv & Q||R & \text{for every } R \in Prc \\ P\backslash L & \equiv & Q\backslash L & \text{for every } L \subseteq A \\ P[f] & \equiv & Q[f] & \text{for every } f : Act \rightarrow Act^1 \end{array}$$

<sup>1</sup> satisfying  $f(\tau) = \tau$  and  $f(\bar{a}) = \overline{f(a)}$ , i.e.,  $f$  is a renaming function.

Thus, a congruence for all CCS constructs is substitutive for all possible CCS-contexts.

## Overview

1 Introduction

2 Preliminaries

3 Requirements on behavioural equivalences

4 Trace equivalence

5 Other forms of trace equivalence

6 Summary

## Trace equivalence

### Trace language

The **trace language** of  $P \in Prc$  is defined by:

$$Tr(P) = \{ w \in Act^* \mid \exists P' \in Prc. P \xrightarrow{w} P' \}.$$

### Trace equivalence

$P, Q \in Prc$  are called **trace equivalent** iff  $Tr(P) = Tr(Q)$ .

Trace equivalence is evidently an equivalence relation and is less discriminative than isomorphism.

## Two coffee machines

Consider the coffee machines  $CTM$  and its variant  $CTM'$ :

$$CTM = \text{coin.} (\overline{\text{coffee.}} CTM + \overline{\text{tea.}} CTM)$$

$$CTM' = \text{coin.} \overline{\text{coffee.}} CTM' + \text{coin.} \overline{\text{tea.}} CTM'.$$

Note the difference between the two processes.

It follows:  $Tr(CTM) = Tr(CTM')$ .

Are we satisfied? No! As  $CTM$  and  $CTM'$  differ in the context:

$$C(\cdot) = (\underbrace{\cdot \parallel CA}_{\text{hole}}) \setminus \{ \text{coin, coffee, tea} \} \text{ with } CA = \overline{\text{coin.}} \text{coffee.} CA.$$

Why?  $C(CTM')$  may yield a deadlock, but  $C(CTM)$  does not.

## Trace equivalence is a congruence

### Theorem

Trace equivalence is a CCS congruence.

### Proof.

By structural induction over the syntax of CCS processes. For  $+$  this goes as follows. Let  $P, Q \in Prc$  with  $Tr(P) = Tr(Q)$ . Then for  $R \in Prc$  it holds:

$$Tr(P + R) = Tr(P) \cup Tr(R) = Tr(Q) \cup Tr(R) = Tr(Q + R).$$

Thus,  $P + R$  and  $Q + R$  are trace equivalent. As  $P + R$  and  $R + P$  are isomorphic, and we consider processes modulo isomorphism, this concludes the proof for  $+$ . For the other CCS constructs, the proof goes along similar lines. Exercise: do the proof for  $||$ . □

## Checking trace equivalence

### Traces by automata

For finite  $P$ , the trace language  $Tr(P)$  of process  $P$  is “accepted” by the finite-state automaton obtained from the LTS of  $P$  with initial state  $P$  and making all states accepting (final).

### Theorem

Checking trace equivalence of two finite processes is PSPACE-complete.

### Proof.

Checking whether  $Tr(P) = Tr(Q)$ , for finite  $P$  and  $Q$ , thus boils down to check whether their non-deterministic automata accept the same language. As this problem in automata theory is PSPACE-complete, it follows that checking  $Tr(P) = Tr(Q)$  is PSPACE-complete. □

## Trace equivalence: summarizing

1. Trace equivalence equates processes that have the same traces, i.e., action sequences.
2. Trace equivalence is a CCS congruence
3. Trace equivalence trivially implies trace equivalence
4. Trace equivalence is **not** deadlock sensitive.
5. Checking trace equivalence is PSPACE-complete

## Overview

1 Introduction

2 Preliminaries

3 Requirements on behavioural equivalences

4 Trace equivalence

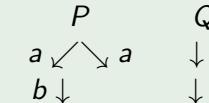
5 Other forms of trace equivalence

6 Summary

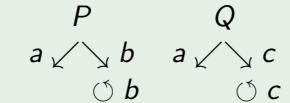
## Traces and deadlocks

### Remark

Traces and deadlocks are independent in the following sense:



same traces  
different deadlocks



different traces  
same deadlocks

**But:** processes with **finite trace sets** and identical deadlocks are trace equivalent (since every trace is a prefix of some deadlock).

## Completed trace equivalence

### Completed trace

A **completed trace** of  $P \in Prc$  is a sequence  $w \in Act^*$  such that:

$$P \xrightarrow{w} Q \quad \text{and} \quad Q \xrightarrow{\cdot} \cdot$$

for some  $Q \in Prc$ .

The completed traces of process  $P$  may be seen as capturing its deadlock behaviour, as they are precisely the action sequences that could lead to a process from which no transition is possible (i.e., is a deadlock).

### Exercise

Check that  $C(CTM)$  and  $C(CTM')$  have the same completed traces.

### Exercise

Check whether completed trace equivalence is a congruence for restriction.

## Variations of trace equivalence

### Ready trace equivalence

[Baeten et al.]

A sequence  $A_0\alpha_1A_1\alpha_1\dots\alpha_nA_n$  with  $A_i \subseteq Act$  and  $\alpha_i \in Act$  ( $i \in \mathbb{N}$ ) is a **ready trace** of process  $P$  if  $P = P_0 \xrightarrow{\alpha_0} P_1 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_n} P_n$  such that  $A_i = \{\alpha \in Act \mid P_i \xrightarrow{\alpha} \}$ . Processes  $P$  and  $Q$  are **ready-trace equivalent** if they have exactly the same set of ready traces.

### Failure trace equivalence

[Reed and Roscoe]

A sequence  $A_0\alpha_1A_1\alpha_1\dots\alpha_nA_n$  with  $A_i \subseteq Act$  and  $\alpha_i \in Act$  ( $i \in \mathbb{N}$ ) is a **failure trace** of process  $P$  if  $P = P_0 \xrightarrow{\alpha_0} P_1 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_n} P_n$  such that  $A_i \cap \{\alpha \in Act \mid P_i \xrightarrow{\alpha} \} = \emptyset$ . Processes  $P$  and  $Q$  are **failure-trace equivalent** if they have exactly the same set of failure traces.

$\alpha.P + \alpha.Q$  and  $\alpha.P + \alpha.Q + \alpha.(P + Q)$  are failure trace equivalent for every  $P, Q \in Prc$  and  $\alpha \in Act$ .

## Summary

### 1. Behavioural equivalences should be:

- 1.1 deadlock sensitive
- 1.2 a congruence (for CCS)
- 1.3 more discriminative than trace equivalence

### 2. Trace equivalence

- 2.1 equates processes that have the same traces, i.e., action sequences.
- 2.2 is a CCS congruence
- 2.3 is **not** deadlock sensitive.
- 2.4 checking trace equivalence is PSPACE-complete

### 3. Variations: completed, ready, and failure traces.

## Overview

1 Introduction

2 Preliminaries

3 Requirements on behavioural equivalences

4 Trace equivalence

5 Other forms of trace equivalence

6 Summary