
Trace equivalence

Concurrency Theory
Trace equivalence

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://www-i2.informatik.rwth-aachen.de/i2/ct13

December 4, 2013

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 1/27

Trace equivalence

Overview

1 Introduction

2 Preliminaries

3 Requirements on behavioural equivalences

4 Trace equivalence

5 Other forms of trace equivalence

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 2/27

Trace equivalence Introduction

Overview

1 Introduction

2 Preliminaries

3 Requirements on behavioural equivalences

4 Trace equivalence

5 Other forms of trace equivalence

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 3/27

Trace equivalence Introduction

In using process algebra like CCS, an important approach is to model the
specification and implementation as CCS processes, Spec and Impl, say.

This gives rise to the natural question: when are two CCS processes
behaving the same?

As there are many different interpretations of “behaving the same”,
different behavioural equivalence have emerged.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 4/27

http://www-i2.informatik.rwth-aachen.de/i2/ct13

Trace equivalence Introduction

Behavioural equivalence

Implementation
CM = coin.coffee.CM
CS = pub.coin.coffee.CS
Uni = (CM ||CS) \{ coin, coffee }

Specification
Spec = pub.Spec

Question
Are the specification Spec and implementation Uni behaviourally
equivalent?

Spec ≡ Uni?

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 5/27

Trace equivalence Preliminaries

Overview

1 Introduction

2 Preliminaries

3 Requirements on behavioural equivalences

4 Trace equivalence

5 Other forms of trace equivalence

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 6/27

Trace equivalence Preliminaries

Equivalence relations

Some reasonable required properties

I reflexivity P ≡ P for every process P
I symmetry P ≡ Q if and only if Q ≡ P
I transitivity Spec0 ≡ . . . ≡ Specn ≡ Impl implies that Spec0 ≡ Impl.

Equivalence
The binary relation ≡⊆ S × S over the set S is an equivalence if
I it is reflexive: s ≡ s for every s ∈ S,
I it is symmetric: s ≡ t implies t ≡ s for every s, t ∈ S,
I it is transitive: s ≡ t and t ≡ u implies s ≡ u for every s, t, u,∈ S.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 7/27

Trace equivalence Preliminaries

Isomorphism: an example behavioural equivalence
Isomorphism
The LTSs TS1 = (S1,Act1,→1) and TS2 = (S2,Act2,→2) are isomorphic,
denoted TS1 ≡iso TS2, if there exists a bijection f : S1 → S2 such that

s α−−→1 t if and only if f (s) α−−→2 f (t).

It follows immediately that ≡iso is an equivalence. Why?

It follows P + Q ≡iso Q + P. The same applies to P||Q and Q||P, as well
as P + nil and P. Also (P + Q) + R ≡iso P + (Q + R), and similar for ||.

Caveat
But: isomorphism is not very distinctive, e.g., X = a.X and Y = a.a.Y are
distinguished, although both can (only) execute infinitely many a-actions and
thus should be considered equivalent.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 8/27

Trace equivalence Preliminaries

Isomorphism

Assumption
From now on, we will consider processes modulo isomorphism, i.e., we do
not distinguish isomorphic CCS processes.

This means that P + Q and Q + P will not be distinguished. The same
applies to P||Q and Q||P, as well as P + nil and P. But also (P +Q) + R
and P+(Q+R), as well as (P||Q)||R and P||(Q||R) are not distinguished.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 9/27

Trace equivalence Requirements on behavioural equivalences

Overview

1 Introduction

2 Preliminaries

3 Requirements on behavioural equivalences

4 Trace equivalence

5 Other forms of trace equivalence

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 10/27

Trace equivalence Requirements on behavioural equivalences

The wish-list for behavioural equivalences

1. Deadlock preservation: equivalent processes should have the same
deadlock behaviour, i.e., equivalent process can either both deadlock,
or both cannot.1

2. Less distinguishable than isomorphism: an equivalence should
distinguish less processes than isomorphism does, i.e. ≡ should be
coarser than isomorphism.

3. Congruence property: the equivalence must be substitutive with
respect to all CCS operators.

4. More distinguishable than trace equivalence: an equivalence should
distinguish more processes than trace equivalence does, i.e. ≡ should
be finer than trace equivalence.

5. Optional: the coarsest possible equivalence: there should be no less
discriminating equivalence satisfying all these requirements.

1Later, we enlarge this to a set of properties that can be expressed in a logic.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 11/27

Trace equivalence Requirements on behavioural equivalences

What is a congruence?

Context
A context is a CCS process fragment with a “hole” in it. (Examples on
board.)

Relation ≡ is a congruence whenever P ≡ Q implies C(P) ≡ C(Q) for
every context C .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 12/27

Trace equivalence Requirements on behavioural equivalences

The importance of a congruence

Relation ≡ is a congruence whenever P ≡ Q implies C(P) ≡ C(Q) for
every context C .

Example
Let a ≡ b for a, b ∈ Z whenever a mod k = b mod k, for some k ∈ N.
Equivalence relation ≡ is a congruence for addition and multiplication.

Important motivations of requiring ≡ to be a congruence on processes:
1. Replacing an abstract model Spec by a more detailed one Impl.
2. Replacing a large (concrete) model Impl by a smaller (more abstract)

model Spec.
3. Congruences admit a quotient structure with equivalence classes as

elements.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 13/27

Trace equivalence Requirements on behavioural equivalences

CCS congruence

CCS congruence
An equivalence relation ≡ ⊆ Prc× Prc is a CCS congruence if it is
preserved by all CCS constructs, i.e., if P,Q ∈ Prc with P ≡ Q then:

α.P ≡ α.Q for every α ∈ Act
P + R ≡ Q + R for every R ∈ Prc
P||R ≡ Q||R for every R ∈ Prc
P\L ≡ Q\L for every L ⊆ A
P[f] ≡ Q[f] for every f : Act→ Act1

1 satisfying f (τ) = τ and f (a) = f (a), i.e., f is a renaming function.

Thus, a congruence for all CCS constructs is substitutive for all possible
CCS-contexts.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 14/27

Trace equivalence Requirements on behavioural equivalences

Deadlocks
Deadlock
Let P,Q ∈ Prc and w ∈ Act∗ such that P w−−→Q and Q−−→/ . Then Q is
called a w -deadlock of P.

P = a.b.nil+ a.nil has an a-deadlock, whereas Q = a.b.nil has not.
Such properties are important, as it can be crucial that a certain
communication is eventually possible.

Deadlock sensitivity
Relation ≡⊆ Prc× Prc is deadlock sensitive whenever:

P ≡ Q implies (∀w .P has a w -deadlock iff Q has a w -deadlock) .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 15/27

Trace equivalence Trace equivalence

Overview

1 Introduction

2 Preliminaries

3 Requirements on behavioural equivalences

4 Trace equivalence

5 Other forms of trace equivalence

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 16/27

Trace equivalence Trace equivalence

Trace equivalence

Trace language
The trace language of P ∈ Prc is defined by:

Tr(P) = {w ∈ Act∗ | ∃P ′ ∈ Prc.P w−−→P ′ }.

Trace equivalence
P,Q ∈ Prc are called trace equivalent iff Tr(P) = Tr(Q).

Trace equivalence is evidently an equivalence relation and is less discriminative
than isomorphism.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 17/27

Trace equivalence Trace equivalence

Trace equivalence is a congruence

Theorem
Trace equivalence is a CCS congruence.

Proof.
By structural induction over the syntax of CCS processes. For + this goes
as follows. Let P,Q ∈ Prc with Tr(P) = Tr(Q). Then for R ∈ Prc it holds:

Tr(P + R) = Tr(P) ∪ Tr(R) = Tr(Q) ∪ Tr(R) = Tr(Q + R).

Thus, P + R and Q + R are trace equivalent. As P + R and R + P are
isomorphic, and we consider processes modulo isomorphism, this concludes
the proof for +. For the other CCS constructs, the proof goes along
similar lines. Exercise: do the proof for ||.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 18/27

Trace equivalence Trace equivalence

Two coffee machines
Consider the coffee machines CTM and its variant CTM’:

CTM = coin.
(
coffee.CTM+ tea.CTM

)
CTM’ = coin.coffee.CTM’+ coin.tea.CTM’.

Note the difference between the two processes.

It follows: Tr(CTM) = Tr(CTM’).

Are we satisfied? No! As CTM and CTM’ differ in the context:

C(·) = (·︸︷︷︸
hole
||CA)\{ coin, coffee, tea } with CA = coin.coffee.CA.

Why? C(CTM’) may yield a deadlock, but C(CTM) does not.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 19/27

Trace equivalence Trace equivalence

Checking trace equivalence

Traces by automata
For finite P, the trace language Tr(P) of process P is “accepted” by the
finite-state automaton obtained from the LTS of P with initial state P and
making all states accepting (final).

Theorem
Checking trace equivalence of two finite processes is PSPACE-complete.

Proof.
Checking whether Tr(P) = Tr(Q), for finite P and Q, thus boils down to
check whether their non-deterministic automata accept the same
language. As this problem in automata theory is PSPACE-complete, it
follows that checking Tr(P) = Tr(Q) is PSPACE-complete.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 20/27

Trace equivalence Trace equivalence

Trace equivalence: summarizing

1. Trace equivalence equates processes that have the same traces, i.e.,
action sequences.

2. Trace equivalence is a CCS congruence
3. Trace equivalence trivially implies trace equivalence
4. Trace equivalence is not deadlock sensitive.
5. Checking trace equivalence is PSPACE-complete

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 21/27

Trace equivalence Trace equivalence

Traces and deadlocks

Remark
Traces and deadlocks are independent in the following sense:

P Q P Q
a↙↘ a ↓ a a ↙↘ b a ↙↘ c
b ↓ ↓ b 	 b 	 c

same traces different traces
different deadlocks same deadlocks

But: processes with finite trace sets and identical deadlocks are trace
equivalent (since every trace is a prefix of some deadlock).

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 22/27

Trace equivalence Other forms of trace equivalence

Overview

1 Introduction

2 Preliminaries

3 Requirements on behavioural equivalences

4 Trace equivalence

5 Other forms of trace equivalence

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 23/27

Trace equivalence Other forms of trace equivalence

Completed trace equivalence
Completed trace
A completed trace of P ∈ Prc is a sequence w ∈ Act∗ such that:

P w−−→Q and Q−−→/

for some Q ∈ Prc.

The completed traces of process P may be seen as capturing its deadlock
behaviour, as they are precisely the action sequences that could lead to a
process from which no transition is possible (i.e., is a deadlock).

Exercise
Check that C(CTM) and C(CTM’) have the same completed traces.

Exercise
Check whether completed trace equivalence is a congruence for restriction.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 24/27

Trace equivalence Other forms of trace equivalence

Variations of trace equivalence
Ready trace equivalence [Baeten et al.]

A sequence A0α1A1α1 . . . αnAn with Ai ⊆ Act and αi ∈ Act (i ∈ IN) is a
ready trace of process P if P = P0

α0−−→P1
α1−−→ . . . αn−−→Pn such that

Ai = {α ∈ Act | Pi
α−−→ }. Processes P and Q are ready-trace equivalent if

they have exactly the same set of ready traces.

Failure trace equivalence [Reed and Roscoe]

A sequence A0α1A1α1 . . . αnAn with Ai ⊆ Act and αi ∈ Act (i ∈ IN) is a
failure trace of process P if P = P0

α0−−→P1
α1−−→ . . . αn−−→Pn such that

Ai ∩ {α ∈ Act | Pi
α−−→ } = ∅. Processes P and Q are failure-trace

equivalent if they have exactly the same set of failure traces.

α.P + α.Q and α.P + α.Q + α.(P + Q) are failure trace equivalent for
every P,Q ∈ Prc and α ∈ Act.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 25/27

Trace equivalence Summary

Overview

1 Introduction

2 Preliminaries

3 Requirements on behavioural equivalences

4 Trace equivalence

5 Other forms of trace equivalence

6 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 26/27

Trace equivalence Summary

Summary

1. Behavioural equivalences should be:
1.1 deadlock sensitive
1.2 a congruence (for CCS)
1.3 more discriminative than trace equivalence

2. Trace equivalence
2.1 equates processes that have the same traces, i.e., action sequences.
2.2 is a CCS congruence
2.3 is not deadlock sensitive.
2.4 checking trace equivalence is PSPACE-complete

3. Variations: completed, ready, and failure traces.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 27/27

	Introduction
	Preliminaries
	Requirements on behavioural equivalences
	Trace equivalence
	Other forms of trace equivalence
	Summary

