

Concurrency Theory

Strong bisimulation

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://www-i2.informatik.rwth-aachen.de/i2/ct13>

December 05, 2013

Overview

1 Introduction

2 Bisimulation

3 Bisimulation and trace equivalence

4 Congruence and deadlock sensitivity

5 Epilogue

Overview

1 Introduction

2 Bisimulation

3 Bisimulation and trace equivalence

4 Congruence and deadlock sensitivity

5 Epilogue

Summary so far

► Trace equivalence is a possible behavioural equivalence, is a congruence, but does **not** preserve deadlocks.

► Main problem:

$$\alpha.(P + Q) \equiv \alpha.P + \alpha.Q,$$

whereas their deadlock behaviour in a context differs.

► Solution: consider finer behavioural equivalences such that:

$$\alpha.(P + Q) \not\equiv \alpha.P + \alpha.Q$$

► Our (serious) attempt today: Milner's **strong bisimulation**.

Overview

1 Introduction

2 Bisimulation

3 Bisimulation and trace equivalence

4 Congruence and deadlock sensitivity

5 Epilogue

Robin Milner (1934-2010)

Rationale

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the **branching structure** of processes into account.

This is achieved by an equivalence that is defined according to the scheme:

Bisimulation scheme

$P, Q \in Prc$ are equivalent iff, for every action α , every α -successor of P is equivalent to some α -successor of Q , and vice versa.

Three versions will be considered in these lecture series:

1. **Strong** bisimulation: ignore the special function of τ -actions
2. **Weak** bisimulation: treat τ -actions as invisible
3. **Simulation** relations: unidirectional versions of bisimulation

Strong bisimulation

Strong bisimulation

[Park, 1981, Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a **strong bisimulation** whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$:

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$,
2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

Strong bisimilarity

The processes P and Q are **strongly bisimilar**, denoted $P \sim Q$, iff there is a strong bisimulation \mathcal{R} with $(P, Q) \in \mathcal{R}$. Thus,

$$\sim = \bigcup \{ \mathcal{R} \mid \mathcal{R} \text{ is a strong bisimulation} \}.$$

Relation \sim is called a **strong bisimulation equivalence** or **strong bisimilarity**.

Strong bisimulation

$$\begin{array}{ccc}
 P & \xrightarrow{\alpha} & P' \\
 \mathcal{R} & & \text{can be completed to} \\
 Q & & Q \xrightarrow{\alpha} Q'
 \end{array}$$

and

$$\begin{array}{ccc}
 P & & P \xrightarrow{\alpha} P' \\
 \mathcal{R} & & \text{can be completed to} \\
 Q \xrightarrow{\alpha} Q' & & Q \xrightarrow{\alpha} Q'
 \end{array}$$

Example

A first example

Claim: $P \sim Q$ where:

$$\begin{aligned}
 P &= a.P_1 + a.P_2 \\
 P_1 &= b.P_2 \\
 P_2 &= b.P_2 \\
 Q &= a.Q_1 \\
 Q_1 &= b.Q_1
 \end{aligned}$$

Proof: $\mathcal{R} = \{(P, Q), (P_1, Q_1), (P_2, Q_1)\}$ is a strong bisimulation.

Relating a finite to an infinite-state process

Claim: $P_0 \sim Q$ where:

$$\begin{aligned}
 P_i &= a.P_{i+1} \text{ for } i \in \mathbb{N} \\
 Q &= a.Q
 \end{aligned}$$

Proof: $\mathcal{R} = \{(P_i, Q) \mid i \in \mathbb{N}\}$ is a strong bisimulation.

Properties of strong bisimilarity

Properties of \sim

1. \sim is an equivalence relation (reflexive, symmetric, transitive).
2. \sim is the largest strong bisimulation.
3. $s \sim t$ if and only if for every $\alpha \in \text{Act}$:
 - 3.1 if $s \xrightarrow{\alpha} s'$ then there is a transition $t \xrightarrow{\alpha} t'$ with $s' \sim t'$
 - 3.2 if $t \xrightarrow{\alpha} t'$ then there is a transition $s \xrightarrow{\alpha} s'$ with $s' \sim t'$.

Proof.

On the board. □

Overview

1 Introduction

2 Bisimulation

3 Bisimulation and trace equivalence

4 Congruence and deadlock sensitivity

5 Epilogue

Bisimulation on paths

Whenever we have:

$$\begin{array}{ccccccc} s_0 & \xrightarrow{\alpha_1} & s_1 & \xrightarrow{\alpha_2} & s_2 & \xrightarrow{\alpha_3} & s_3 & \xrightarrow{\alpha_4} & s_4 \dots \dots \\ & & \mathcal{R} & & & & & & \\ & & t_0 & & & & & & \end{array}$$

this can be completed to

$$\begin{array}{ccccccc} s_0 & \xrightarrow{\alpha_1} & s_1 & \xrightarrow{\alpha_2} & s_2 & \xrightarrow{\alpha_3} & s_3 & \xrightarrow{\alpha_4} & s_4 \dots \dots \\ \mathcal{R} & & \mathcal{R} & & \mathcal{R} & & \mathcal{R} & & \mathcal{R} \\ t_0 & \xrightarrow{\alpha_1} & t_1 & \xrightarrow{\alpha_2} & t_2 & \xrightarrow{\alpha_3} & t_3 & \xrightarrow{\alpha_4} & t_4 \dots \dots \end{array}$$

proof: by induction on the length of a path

Deterministic transition systems

Determinism

$P \in Prc$ is **deterministic** whenever for every of its states s it holds:

$$(s \xrightarrow{\alpha} t \text{ and } s \xrightarrow{\alpha} u) \text{ implies } t = u.$$

Determinism implies \sim and trace equivalence coincide

[Park]

For deterministic P and Q : $P \sim Q$ iff $Tr(P) = Tr(Q)$.

Proof.

Left as an exercise. In fact, for deterministic processes, trace equivalence, complete trace, failure trace, and ready trace equivalence all coincide. \square

Strong bisimulation versus trace equivalence

Theorem

$P \sim Q$ implies that P and Q are trace equivalent. The reverse does not hold.

Proof.

The implication from left-to-right follows from the previous slide.

Consider the other direction.

Take $P = a.P_1$ with $P_1 = b.\text{nil} + c.\text{nil}$ and $Q = a.b.\text{nil} + a.c.\text{nil}$.

Then: $Tr(P) = \{ \epsilon, a, ab, ac \} = Tr(Q)$.

Thus, P and Q are trace equivalent.

But: $P \not\sim Q$, as there is no state in Q that is bisimilar to P_1 .

Why? There is no state in Q can perform either b or cs . \square

Overview

1 Introduction

2 Bisimulation

3 Bisimulation and trace equivalence

4 Congruence and deadlock sensitivity

5 Epilogue

Congruence

CCS congruence

Strong bisimilarity \sim is a CCS congruence. Let $P, Q \in Prc$ be CCS processes. Assume $P \sim Q$. Then:

$$\begin{array}{ll} \alpha.P \sim \alpha.Q & \text{for every action } \alpha \\ P + R \sim Q + R & \text{for every process } R \\ P||R \sim Q||R & \text{for every process } R \\ P\backslash L \sim Q\backslash L & \text{for every set } L \subseteq A \\ P[f] \sim Q[f] & \text{for every relabelling } f. \end{array}$$

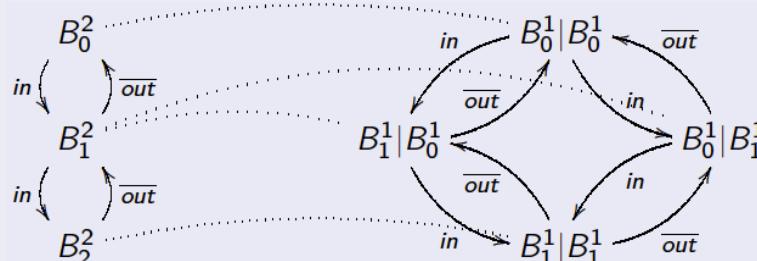
Proof.

Provide the proof for $||$ and $\backslash L$ on the board. The proofs for the other CCS operators is left as an exercise. \square

Two buffers

Buffer of capacity one	Buffer of capacity two
$B_0^1 = in.B_1^1$	$B_0^2 = in.B_1^2$
$B_1^1 = \overline{out}.B_0^1$	$B_1^2 = in.B_2^2 + \overline{out}.B_0^2$

$$B_0^2 \sim B_0^1 || B_0^1$$



Deadlock sensitivity of \sim

Deadlock

Let $P, Q \in Prc$ and $w \in Act^*$ such that $P \xrightarrow{w} Q$ and $Q \not\rightarrow$. Then Q is called a w -deadlock of P .

Deadlock sensitive

Relation $\equiv \subseteq Prc \times Prc$ is **deadlock sensitive** whenever:

$$P \equiv Q \text{ implies } (\forall w. P \text{ has a } w\text{-deadlock iff } Q \text{ has a } w\text{-deadlock})$$

Theorem

\sim is deadlock sensitive.

Proof.

On the board. \square

Buffers: a generalisation

An n -place buffer

Let B_i^n stand for a buffer of capacity n holding i items:

$$\begin{array}{ll} B_0^n = in.B_1^n & \\ B_i^n = in.B_{i+1}^n + \overline{out}.B_{i-1}^n & \text{for } 0 < i < n \\ B_n^n = \overline{out}.B_{n-1}^n. & \end{array}$$

This buffer is strongly bisimilar to n parallel buffers of capacity one:

Proposition

For every $n \in \mathbb{N}_{>0}$, we have: $B_0^n \sim \underbrace{B_0^1 || \dots || B_0^1}_{n \text{ times}}$.

Buffers

Proposition

For every $n \in \mathbb{N}_{>0}$, we have: $B_0^n \sim \underbrace{B_0^1 \parallel \cdots \parallel B_0^1}_{n \text{ times}}$.

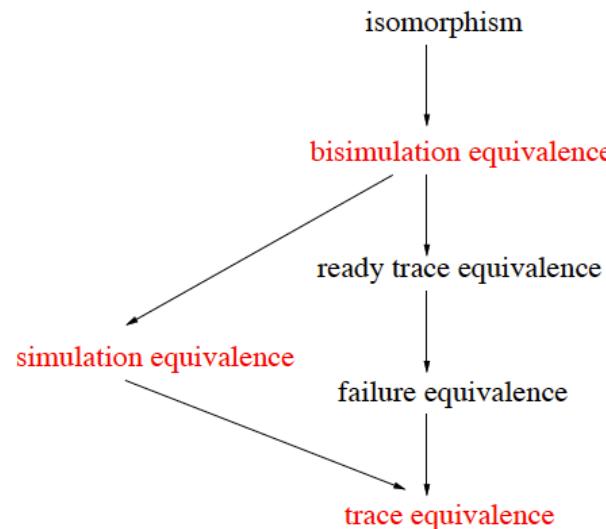
Proof.

Consider the following binary relation where $i_1, i_2, \dots, i_n \in \{0, 1\}$:

$$\mathcal{R} = \left\{ (B_i^n, B_{i_1}^1 \parallel \cdots \parallel B_{i_n}^1 \mid \sum_{j=1}^n i_j = i) \right\}$$

Then: \mathcal{R} is a strong bisimulation and $(B_0^n, \underbrace{B_0^1 \parallel \cdots \parallel B_0^1}_{n \text{ times}}) \in \mathcal{R}$. \square

Overview of some behavioural equivalences



Overview

1 Introduction

2 Bisimulation

3 Bisimulation and trace equivalence

4 Congruence and deadlock sensitivity

5 Epilogue

Summary

1. Strong bisimulation is based on mutual mimicking each other
2. Strong bisimilarity \sim :
 - 2.1 is the largest strong bisimulation
 - 2.2 is an equivalence
 - 2.3 is a congruence (for CCS)
 - 2.4 is strictly finer than trace equivalence
 - 2.5 is deadlock sensitive