

Concurrency Theory

Strong bisimulation

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://www-i2.informatik.rwth-aachen.de/i2/ct13>

December 12, 2013

Overview

1 Introduction

2 Strong bisimilarity as a game

3 Simulation equivalence

4 Bisimulation as a fixed point

5 Summary

Overview

1 Introduction

2 Strong bisimilarity as a game

3 Simulation equivalence

4 Bisimulation as a fixed point

5 Summary

Summary so far

1. Strong bisimulation is based on mutual mimicking each other
2. Strong bisimilarity \sim :
 - 2.1 is the largest strong bisimulation
 - 2.2 is an equivalence
 - 2.3 is a congruence (for CCS)
 - 2.4 is strictly finer than trace equivalence
 - 2.5 is deadlock sensitive

Aims of this lecture

1. Using games to show non-bisimilarity of two processes
2. Strong simulation: one-way bisimulation
3. Using fixed points to compute \sim

Strong bisimulation

Strong bisimulation

[Park, 1981, Milner, 1989]

A binary relation $\mathcal{R} \subseteq Prc \times Prc$ is a **strong bisimulation** whenever for every $(P, Q) \in \mathcal{R}$, and $\alpha \in Act$:

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$
2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in Prc$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

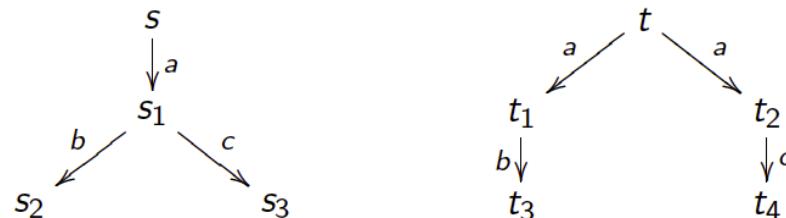
Strong bisimilarity

The processes P and Q are **strongly bisimilar**, denoted $P \sim Q$, iff there is a strong bisimulation \mathcal{R} with $(P, Q) \in \mathcal{R}$. Thus,

$$\sim = \bigcup \{ \mathcal{R} \mid \mathcal{R} \text{ is a strong bisimulation} \}.$$

Relation \sim is called a **strong bisimulation equivalence** or **strong bisimilarity**.

How to show non-bisimilarity?



To prove that $s \not\sim t$

- ▶ Enumerate **all binary relations** and show that none of them containing (s, t) is a strong bisimulation. This is expensive, as there are 2^{k^2} binary relations on Prc with $|Prc| = k$.
- ▶ Make certain **observations** which will enable to disqualify many bisimulation candidates in one step.
- ▶ Use **game characterization** of strong bisimilarity.

Overview

1 Introduction

2 Strong bisimilarity as a game

3 Simulation equivalence

4 Bisimulation as a fixed point

5 Summary

Strong bisimulation game

Let (Prc, Act, \rightarrow) be an LTS and $s, t \in Prc$. Aim: does $s \sim t$?

We define a game with two players: an “**attacker**” and “**defender**”.

- ▶ The game is played in **rounds** and configurations of the game are pairs of states from $Prc \times Prc$.
- ▶ In each round exactly one configuration is called **current**.
- ▶ Initially, the configuration (s, t) is the current one.

Intuition

The defender wants to show that $s \sim t$ while the attacker aims to show the opposite.

Rules of the bisimulation game

Game rules

In each round the current configuration (s, t) is changed as follows:

1. the attacker chooses one of the processes in the current configuration, say t , and makes an $\xrightarrow{\alpha}$ -move for some $\alpha \in \text{Act}$ to t' , say, and
2. the defender must respond by making an $\xrightarrow{\alpha}$ -move in the other process s of the current configuration under the same action α , yielding $s \xrightarrow{\alpha} s'$.

The new pair of processes (s', t') becomes the current configuration.

The game continues with another round.

Game results

1. If one player cannot move, the other player wins.
2. If the game can be played *ad infinitum*, the defender wins.

Example

A first example

Use the game characterization to show $P \sim Q$ where:

$$\begin{aligned} P &= a.P_1 + a.P_2 \\ P_1 &= b.P_2 \\ P_2 &= b.P_2 \\ Q &= a.Q_1 \\ Q_1 &= b.Q_1. \end{aligned}$$

Game characterization of bisimulation

Theorem

[Stirling, 1995], [Thomas, 1993]

1. $s \sim t$ iff the defender has a **universal** winning strategy from configuration (s, t) .
2. $s \not\sim t$ iff the attacker has a **universal** winning strategy from configuration (s, t) .

(By means of a universal winning strategy, a player can always win, regardless of how the other player selects her moves.)

Proof.

Left as an exercise. □

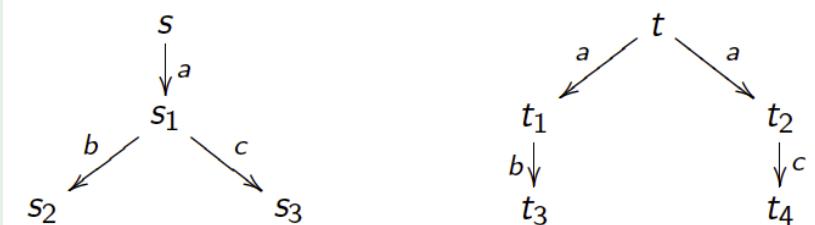
A bisimulation game can be used to prove bisimilarity as well as non-bisimilarity.¹ It often provides elegant arguments for $s \not\sim t$.

¹In the next lectures, we will present yet another method to check this.

Example

Another example

Use the game characterization to show that $s \not\sim t$ where:



Overview

1 Introduction

2 Strong bisimilarity as a game

3 Simulation equivalence

4 Bisimulation as a fixed point

5 Summary

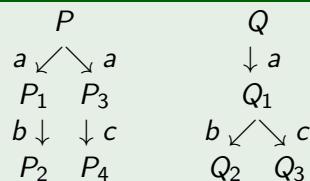
Simulation: example

Strong simulation

Relation $\mathcal{R} \subseteq Prc \times Prc$ is a **strong simulation** if, whenever $(P, Q) \in \mathcal{R}$ and $P \xrightarrow{\alpha} P'$, there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$.

Q **strongly simulates** P , denoted $P \sqsubseteq Q$, if there exists a strong simulation \mathcal{R} such that $(P, Q) \in \mathcal{R}$.

Example



Q strongly simulates P ,
but not vice versa

This yields that: $a.b.nil + a.c.nil \sqsubseteq a.(b.nil + c.nil)$
 $a.(b.nil + c.nil) \not\sqsubseteq a.b.nil + a.c.nil$.

Strong simulation

Observation: sometimes, the concept of strong bisimulation is **too strong** (example: extending a system by new features).

Strong simulation

Relation $\mathcal{R} \subseteq Prc \times Prc$ is a **strong simulation** if, whenever $(P, Q) \in \mathcal{R}$ and $P \xrightarrow{\alpha} P'$, there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$.

Q **strongly simulates** P , denoted $P \sqsubseteq Q$, if there exists a strong simulation \mathcal{R} such that $(P, Q) \in \mathcal{R}$.

Thus: if Q strongly simulates P , then whatever transition P takes, Q can match it which retains all of P 's options. But: P does not need to be able to match each transition of Q !

Strong simulation and bisimilarity

Proposition

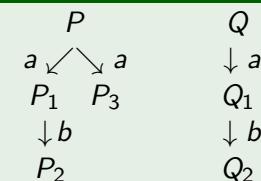
If $P \sim Q$, then $Q \sqsubseteq P$ and $P \sqsubseteq Q$.

Proof.

A strong bisimulation $\mathcal{R} \subseteq Prc \times Prc$ for $P \sim Q$ is a strong simulation for both directions. \square

Caveat: the converse does generally not hold!

Example



$P \sqsubseteq Q$ and $Q \sqsubseteq P$,
but $P \not\sim Q$

Ready simulation

If $P \sqsubseteq Q$ and P has a deadlock, Q does not necessarily have a deadlock.

Ready simulation

Relation $\mathcal{R} \subseteq Prc \times Prc$ is a **ready simulation** if, whenever $(P, Q) \in \mathcal{R}$ and $\alpha \in Act$:

1. if $P \xrightarrow{\alpha} P'$, then there exists $Q' \in Prc$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$, and
2. if $Q \xrightarrow{\alpha} \cdot$, then $P \xrightarrow{\alpha} \cdot$.

Q **ready simulates** P , denoted $P \sqsubseteq_{rs} Q$, if there exists a ready simulation \mathcal{R} such that $(P, Q) \in \mathcal{R}$.

In addition to the requirement for \sqsubseteq , ready simulation requires that if Q does not deadlock on α , then P neither does.

Overview

1 Introduction

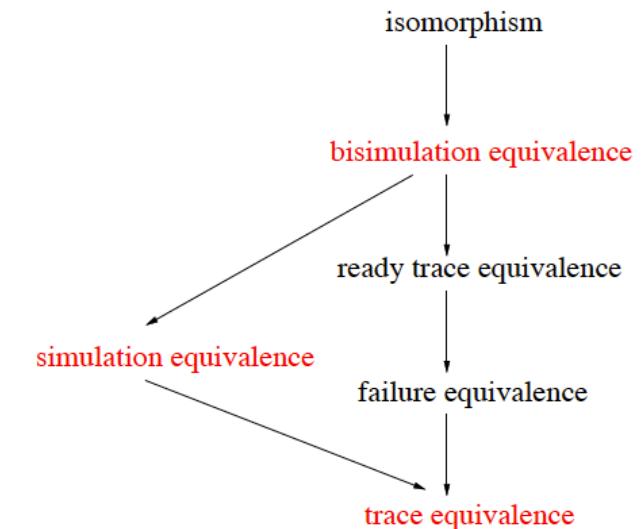
2 Strong bisimilarity as a game

3 Simulation equivalence

4 Bisimulation as a fixed point

5 Summary

Overview of some behavioural equivalences



Strong bisimilarity

Recall: \sim implies trace equivalence, and checking trace equivalence is PSPACE-complete.

What about checking \sim between two processes?

Strong bisimilarity

$$\sim = \bigcup \{ \mathcal{R} \mid \mathcal{R} \text{ is a strong bisimulation} \}.$$

Note that $(2^{Prc \times Prc}, \sqsubseteq)$ is a complete lattice² with \bigcup and \bigcap as least upper bound and greatest lower bound. We will show that \sim can be characterized as a fixed point of a monotonic function on this lattice.

²Recall: a complete lattice is a partial order s.t. all its sets have a glb and a lub.

Fixed point characterization of \sim

Function on relations

Let $\mathcal{R} \subseteq \text{Prc} \times \text{Prc}$. Let $\mathcal{F} : 2^{\text{Prc} \times \text{Prc}} \rightarrow 2^{\text{Prc} \times \text{Prc}}$ be defined as follows:
 $(P, Q) \in \mathcal{F}(\mathcal{R})$ for all $P, Q \in \text{Prc}$ iff:

1. if $P \xrightarrow{\alpha} P'$ then there exists $Q' \in \text{Prc}$ s.t. $Q \xrightarrow{\alpha} Q'$ and $(P', Q') \in \mathcal{R}$
2. if $Q \xrightarrow{\alpha} Q'$ then there exists $P' \in \text{Prc}$ s.t. $P \xrightarrow{\alpha} P'$ and $(P', Q') \in \mathcal{R}$.

Intuition

$\mathcal{F}(\mathcal{R})$ contains all pairs of processes from which, in one round of the bisimulation game, the defender can ensure that the players reach a current configuration that is contained in \mathcal{R} .

Proposition

\mathcal{R} is a strong bisimulation iff $\mathcal{R} \subseteq \mathcal{F}(\mathcal{R})$, and thus:

$$\sim = \bigcup \{ \mathcal{R} \in \text{Prc} \times \text{Prc} \mid \mathcal{R} \subseteq \mathcal{F}(\mathcal{R}) \}.$$

Naive algorithm for checking \sim

The fixed point characterisation suggests a polynomial-time algorithm.

Let P, Q be finite-state processes. Aim is to check whether $P \sim Q$.

1. Start with $\sim = (S_P \cup S_Q) \times (S_P \cup S_Q)$
2. If there is $(s, t) \in \sim$ with $s \xrightarrow{\alpha} s'$ and there is no $t' \in S_Q$ with $t \xrightarrow{\alpha} t'$ and $(s', t') \in \sim$, then
 $\sim := \sim \setminus \{(s, t)\}$
3. More efficient schemes do exist, but are not topic of this lecture

Complexity

[Balcázar et al., 1992]

Deciding strong bisimilarity between finite LTSs is P-complete.

Computation of \sim

Proposition

\mathcal{R} is a bisimulation iff $\mathcal{R} \subseteq \mathcal{F}(\mathcal{R})$, and thus:

$$\sim = \bigcup \{ \mathcal{R} \in \text{Prc} \times \text{Prc} \mid \mathcal{R} \subseteq \mathcal{F}(\mathcal{R}) \}.$$

Theorem

For finite-state process P with state space S , \sim can be computed by:

$$\begin{aligned} \sim &= \bigcap_{i=0}^{\infty} \sim_i \quad \text{where } \sim_i \text{ is defined by} \\ \sim_0 &= S \times S \\ \sim_{i+1} &= \mathcal{F}(\sim_i). \end{aligned}$$

Proof.

Using the facts that \mathcal{F} is monotonic on $(2^{\text{Prc} \times \text{Prc}}, \subseteq)$ and Taski's fixed point theorem. \square

Overview

1 Introduction

2 Strong bisimilarity as a game

3 Simulation equivalence

4 Bisimulation as a fixed point

5 Summary

Summary

1. Checking (non-)bisimilarity can be done using a two-player game
2. Strong simulation is a one-way strong bisimulation
3. Strong simulation equivalence is strictly coarser than \sim
4. Ready simulation takes deadlocks into account
5. Strong bisimilarity can be characterised as a fixed point
6. This yields a polynomial-time procedure for determining \sim .