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HML and strong bisimilarity Aims of this lecture

Summary so far

I Weak and strong bisimilarity are based on mutually mimicking of
processes.

I They possess the required properties of behavioural equivalences.1

I In particular, ∼ and ≈c are deadlock sensitive.
I Hennessy-Milner logic is a logic for expressing properties of processes.

Aim of this lecture

1. Study the connection between strong bisimilar processes and HML.

1For weak bisimilarity the notion of observation congruence was needed.
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HML and strong bisimilarity Introduction

Verifying correctness of reactive systems
Equivalence checking approach

Impl ≡ Spec

I ≡ is an abstract equivalence, e.g. ∼ or ≈c

I Spec is often expressed in the same language as Impl, e.g., CCS
I Spec provides the full specification of the intended behaviour.

Model checking approach

Impl |= Property

I |= is the satisfaction relation
I Property is a particular feature, often expressed via a logic, e.g., HML
I Property is a partial specification of the intended behaviour
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HML and strong bisimilarity Hennessy-Milner logic

HML syntax
Syntax of HML formulae [Hennessy & Milner, 1985]

F ,G ::= true | false | F ∧ G | F ∨ G | 〈a〉F | [a]F
where a is an action.

Intuitive interpretation

I true, all processes satisfy this property
I false, no process satisfies this property
I ∧, ∨ logical conjunction and disjunction
I 〈a〉F , there is at least one a-successor that satisfies F
I [a]F , all a-successors have to satisfy F .

Note that negation is not an elementary operation in HML.
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HML semantics

HML semantics
Let P ∈ Prc, F .G HML-formulae, and a an action. Then:

P |= true for each P ∈ Prc
P |= false for no P ∈ Prc

P |= F ∧ G iff P |= F and P |= G
P |= F ∨ G iff P |= F or P |= G
P |= 〈a〉F iff P a−→P ′ for some P ′ ∈ Prc with P ′ |= F
P |= [a]F iff P ′ |= F for all P ′ ∈ Prc with P a−→P ′.

We write P 6|= F whenever P does not satisfy F , i.e., not (P |= F ).
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HML and strong bisimilarity Hennessy-Milner logic

Examples

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 10/26

HML and strong bisimilarity Hennessy-Milner logic

Negation
Complement of an HML-formula

truec = false
falsec = true

(F ∧ G)c = F c ∨ Gc

(F ∨ G)c = F c ∧ Gc

(〈a〉F )c = [a]F c

([a]F )c = 〈a〉F c

Theorem
For any P ∈ Prc and HML-formula F :
1. P |= F implies P 6|= F c

2. P |= F c implies P 6|= F c .

Proof.
By structural induction on F . Rather straightforward.
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Strong bisimulation

Strong bisimulation [Park, 1981, Milner, 1989]

A binary relation R ⊆ Prc× Prc is a strong bisimulation whenever for
every (P,Q) ∈ R, and α ∈ Act:
1. if P α−−→P ′ then there exists Q′ ∈ Prc s.t. Q α−−→Q′ and (P ′,Q′) ∈ R
2. if Q α−−→Q′ then there exists P ′ ∈ Prc s.t. P α−−→P ′ and (P ′,Q′) ∈ R.

Strong bisimilarity
The processes P and Q are strongly bisimilar, denoted P ∼ Q, iff there is
a strong bisimulation R with (P,Q) ∈ R. Thus,

∼ =
⋃
{R | R is a strong bisimulation }.

Relation ∼ is called strong bisimilarity.
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Image-finite transition system
Image-finite process
A process P is image-finite iff the set {P ′ ∈ Prc | P α−−→P ′ } is finite for
every action α (possibly α = τ). A labeled transition system is
image-finite if so is each of its states.

Examples
The process Arep = a.nil ||Arep is not image-finite. By induction on n,
one can prove that for each n ∈ IN:

Arep
a−→ a.nil || · · · || a.nil︸ ︷︷ ︸

n times

|| nil ||Arep

Also the process Aω =
∑

i>0 ai with a0 = nil and ai+1 = a.ai is not
image-finite.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 14/26

HML and strong bisimilarity Correspondence HML and strong bisimilarity

Relationship HML and trace equivalence

Recall from Lecture 4:

HML and trace equivalence
If P,Q ∈ Prc satisfy the same HML-formulae, i.e., for every HML-formula
F it holds P |= F iff Q |= F , then Tr(P) = Tr(Q). The converse does not
hold.
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Relationship HML and strong bisimilarity
Hennessy-Milner theorem
Let (Prc,Act, { a−→ | a ∈ Act }) be an image-finite LTS and P,Q ∈ Prc.
Then:

P ∼ Q
if and only if

for every HML-formula F : (P |= F iff Q |= F ) .

Proof.
On the board.

Showing P 6∼ Q thus amounts to finding a single HML-formula F with
P |= F and Q 6|= F .
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Example

It follows s 6∼ t and s 6∼ v and t 6∼ v . Distinguishing HML-formulas for:
I s and t is: F = 〈a〉 〈b〉 [b] false as t |= F and s 6|= F
I s and v is: F = 〈a〉 〈b〉 [a] false as v |= F and s 6|= F
I t and v is: F = 〈a〉 〈b〉 (〈a〉 true ∧ 〈b〉 true) as v |= F and t 6|= F .
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Counterexample for non image-finite processes
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HML and strong bisimilarity Characteristic properties

Characteristic properties

The Hennessy-Milner theorem asserts that for image-finite processes,
strong bisimilarity and HML-equivalence coincide.

As a next step, we show that for finite transition systems, the equivalence
classes under ∼ can be characterised with a single formula in HML
extended with recursion.

For finite process P, this HML-formula XP is called P’s characteristic
property.
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The need for recursion

The need for recursion
There is no recursion-free HML-formula Fp that can characterize the
process P defined by X = a.X up to strong bisimilarity.

Proof.
By contraposition. Let HML-formula Fp with [[Fp ]] = {Q | P ∼ Q }. In
particular, P |= Fp and Q |= Fp implies P ∼ Q for each Q. We will show
that this cannot hold for any formula Fp. Let P0,P1,P2, . . . be defined by
P0 = nil and Pi+1 = a.Pi . Pi can execute i a-actions in a row and then
terminates. Nothing else. Obviously P 6∼ Pi for every i . Claim: for every
HML-formula F it holds P |= F iff Pk |= F where k is the modal depth2 of
F . This can be proven by induction on the structure of F . Thus, P ∼ Pk .
Contradiction.

2The maximal number of nested occurrences of modal operators in F .
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HML with recursion

Syntax of recursive HML formulae [Hennessy & Milner, 1985]

Let X = {X1, . . . ,Xn } be a set of variables. The syntax of HML over X
is defined by the grammar:

F ,G ::= Xi | true | false | F ∧ G | F ∨ G | 〈a〉F | [a]F

where 0 < i 6 n and a is an action. A mutually recursive equation system
has the form

(Xi = FXi | 0 < i 6 n)

where FXi is a HML-formula over X for every 0 < i 6 n.

We skip the details of the semantics; see Lecture 7 for the details.
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HML and strong bisimilarity Characteristic properties

Characteristic formula

Consider the finite LTS ({P1, . . . ,Pn },Act, −→ ) and let
X = {XP1 , . . . ,XPn , . . . } contain (at least) k variables.
Intuitively, XP is the syntactic symbol for the characteristic formula of
process P.
A characteristic formula for P has to describe which actions P can
perform, which actions it cannot perform and what happens after
performing an action.

Example
A coffee machine (again) on the black board.
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HML and strong bisimilarity Characteristic properties

Characteristic property

Characteristic property [Ingolfsdottir et. al, 1987]

For finite process P ∈ Prc, let recursive HML-formula XP be defined by:

XP
max
=

∧
a,P′.P a−→P′

〈a〉XP′ ∧
∧
a
[a]

 ∨
a,P′.P a−→P′

XP′


Then: Q |= XP iff P ∼ Q for every Q ∈ Prc.
The formula XP is called the characteristic property of P.

Proof.
Outside the scope of this lecture.
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HML and strong bisimilarity Summary

Summary

1. Strong bisimilarity and HML-equivalence coincide for image-finite
processes.

2. This result does not hold for processes that are not image-finite.

3. Any two strong bisimilar processes satisfy the same HML formulas.

4. For finite processes a recursive HML-formula does exist that precisely
characterises the strong bisimilar processes.
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