

Concurrency Theory

Interleaving Semantics of Petri Nets

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://www-i2.informatik.rwth-aachen.de/i2/ct13>

January 8, 2014

Overview

1 Introduction

2 Basic net concepts

3 The interleaving semantics of Petri nets

4 Sequential runs

5 Summary

Overview

1 Introduction

2 Basic net concepts

3 The interleaving semantics of Petri nets

4 Sequential runs

5 Summary

Carl Adam Petri (1926-2010)

The original work¹ does not contain a single (graphical) Petri net!

¹Petri's PhD dissertation, 1962.

Semantics: executions and traces

Models in the 60s: lambda calculus, finite automata, Turing machines, ...

States: current configurations of the machine

One or more initial states

Possibly some distinguished final states

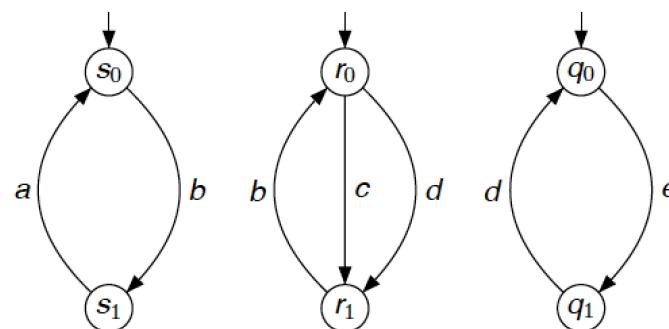
Transitions: moves between configurations

Lambda calculus	$(\lambda x.xx)(\lambda y.y)$	\longrightarrow	$(\lambda y.y)(\lambda z.z)$
Turing machine	0010 q_1 011	\longrightarrow	001 q_2 01011
Finite automaton	q_1	\xrightarrow{a}	q_2
Pushdown automaton	(q_1, XYZ)	\xrightarrow{a}	$(q_2, XYXYZ)$

Executions: alternating sequences of states and transitions

Petri net

A graphical representation of interacting finite automata:



Petri's question

C.A. Petri points out a discrepancy between how **Theoretical Physics** and **Theoretical Computer Science** described systems in 1962:

Theoretical Physics describes systems as a collection of interacting particles (subsystems), without a notion of global clock or simultaneity

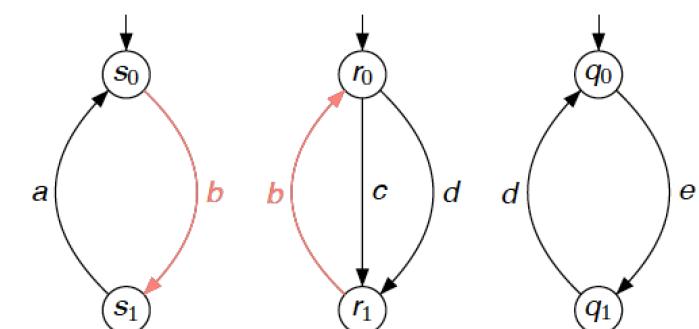
Theoretical Computer Science describes systems as sequential virtual machines going through a temporally ordered sequence of global states

Petri's question:

Which kind of abstract machine should be used to describe the **physical implementation** of a Turing machine?

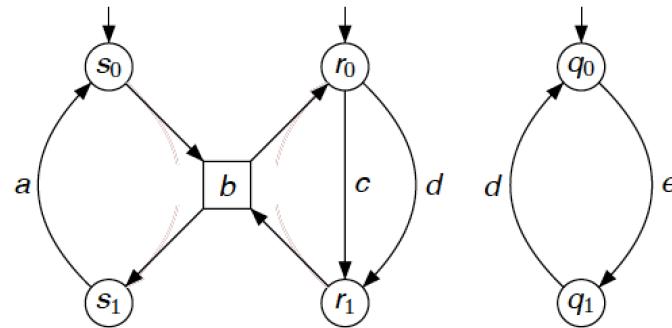
Petri net

A graphical representation of interacting finite automata:



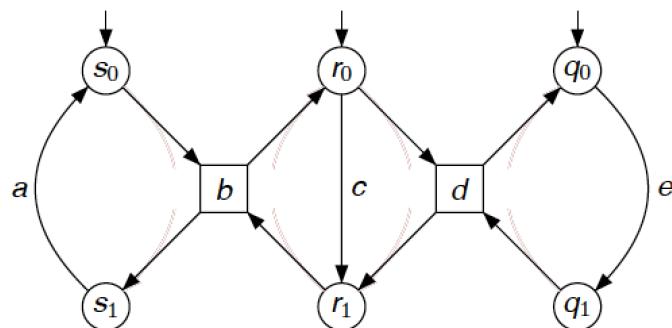
Petri net

A graphical representation of interacting finite automata:



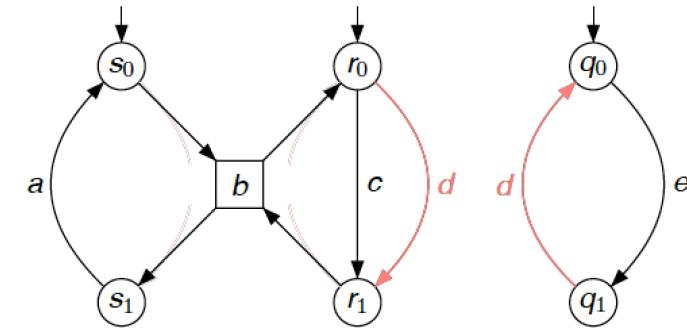
Petri net

A graphical representation of interacting finite automata:



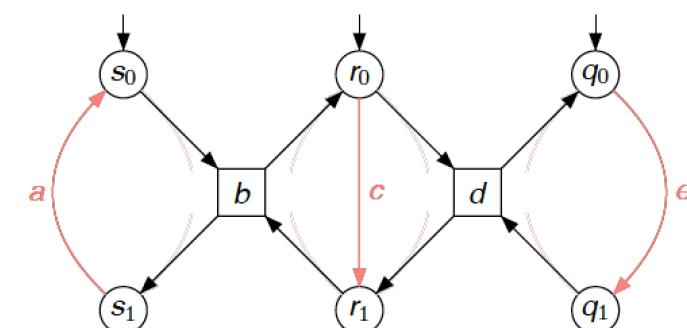
Petri net

A graphical representation of interacting finite automata:



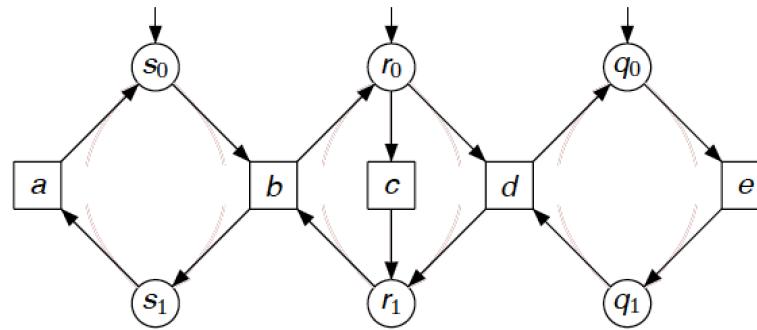
Petri net

A graphical representation of interacting finite automata:



Petri net

A graphical representation of interacting finite automata:



Overview

1 Introduction

2 Basic net concepts

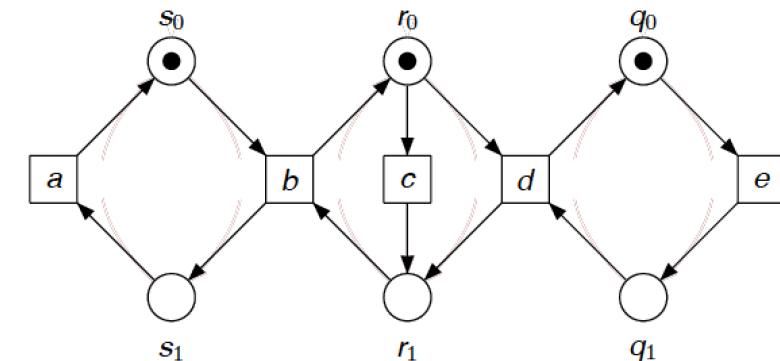
3 The interleaving semantics of Petri nets

4 Sequential runs

5 Summary

Petri net

A graphical representation of interacting finite automata:



Components of a net

A **Petri net** is a structure with two kinds of elements: **places** and **transitions**. They are connected by **arcs**.

A **place** is represented by a circle or ellipse. A place p always models a passive component: p can store, accumulate or show things.

A **transition** is represented by a square or rectangle. A transition t always models an active component: t can produce things, consume, transport or change them.

Places and transitions are connected to each other by directed **arcs**. Graphically, an arc is represented by an arrow. An arc models an abstract, sometimes only notional relation between components. Arcs run from places to transitions or vice versa.

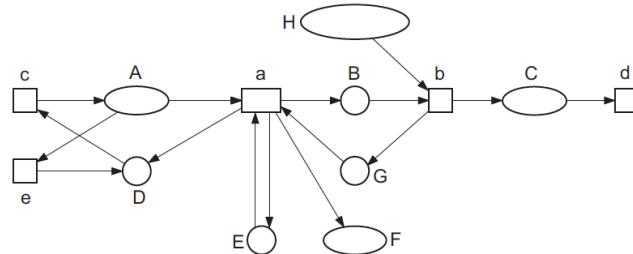
Nets

Net

A **Petri net** N is a triple (P, T, F) where:

- P is the finite set of **places**
- T is the finite set of **transitions** with $P \cap T = \emptyset$
- $F \subseteq (P \times T) \cup (T \times P)$ are the **arcs**²

Places and transitions are generically called **nodes**.



² F is also called the **flow** relation.

Markings

Marking

A **marking** M of a net $N = (P, T, F)$ is a mapping $M : P \rightarrow \mathbb{N}$.

For net $N = (P, T, F)$ and marking M_0 , the tuple (P, T, F, M_0) is called an **elementary system net**. M_0 is the **initial marking** of N .

Intuition

Note: a marking is a multiset. It defines a distribution of **tokens** across places. Tokens are depicted as black dots.

The pre- and post-sets

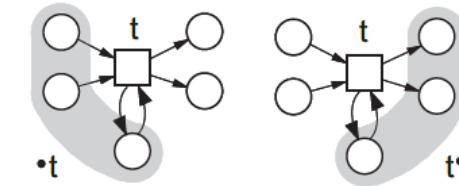
Pre- and post-sets

Let node $x \in P \cup T$.

The **pre-set** of x is defined by: $\bullet x = \{ y \mid (y, x) \in F \}$.

The **post-set** of x is defined by: $x^\bullet = \{ y \mid (x, y) \in F \}$.

Two nodes $x, y \in N$ form a **loop** if $x \in \bullet y$ and $y \in \bullet x$.



Transition firing

Enabling and occurrence of a transition

Let (P, T, F) be an elementary system net. A marking M **enables** a transition t if $M(p) \geq 1$ for each place $p \in \bullet t$.

Transition t can **occur** in marking M if t is enabled at M . Its occurrence leads to marking M' , denoted $M \xrightarrow{t} M'$, defined for place $p \in P$ by:

$$M'(p) = M(p) - F(p, t) + F(t, p).$$

where we represent F by its characteristic function.

Intuition

Transition t is enabled whenever every $p \in \bullet t$ holds at least one token. On t 's occurrence, one token is removed from each place in $\bullet t$, and one token is put in each place in t^\bullet :

$$M'(p) = \begin{cases} M(p) - 1 & \text{if } p \in \bullet t \text{ and } p \notin t^\bullet \\ M(p) + 1 & \text{if } p \in t^\bullet \text{ and } p \notin \bullet t \\ M(p) & \text{otherwise} \end{cases}$$

Transition occurrence

Enabling and occurrence of a transition

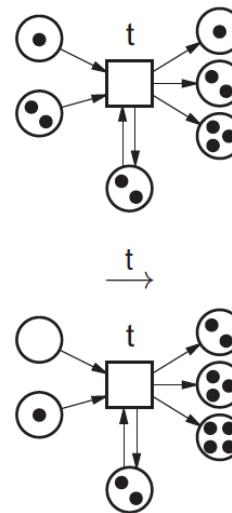
A marking M enables a transition t if $M(p) \geq 1$ for each place $p \in t$.

Transition t can occur in marking M if t is enabled at M . Its occurrence leads to marking M' , denoted $M \xrightarrow{t} M'$, defined for place $p \in P$ by:

$$M'(p) = M(p) - F(p, t) + F(t, p).$$

where we represent F by its characteristic function.

$M \xrightarrow{t} M'$ is also called a step of the net N .



The interleaving semantics of Petri nets

An execution semantics

State: marking (distribution of tokens over the net)

Transitions: $M \xrightarrow{t} M'$

Sequential runs: $M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} M_2 \xrightarrow{t_3} \dots$

Overview

1 Introduction

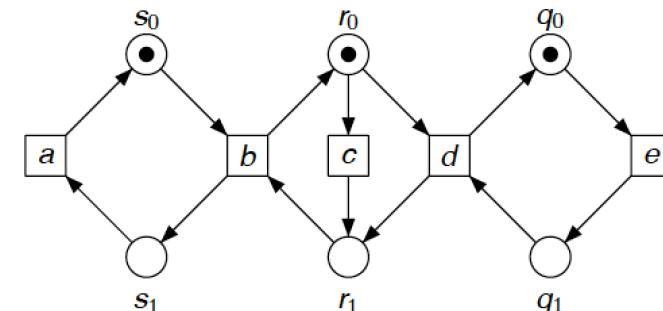
2 Basic net concepts

3 The interleaving semantics of Petri nets

4 Sequential runs

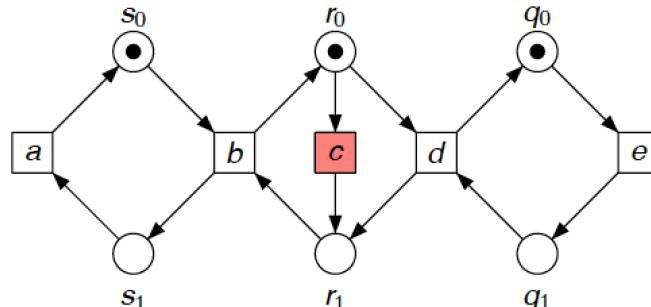
5 Summary

The interleaving semantics of Petri nets



$$\begin{bmatrix} s_1 \\ r_1 \\ q_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

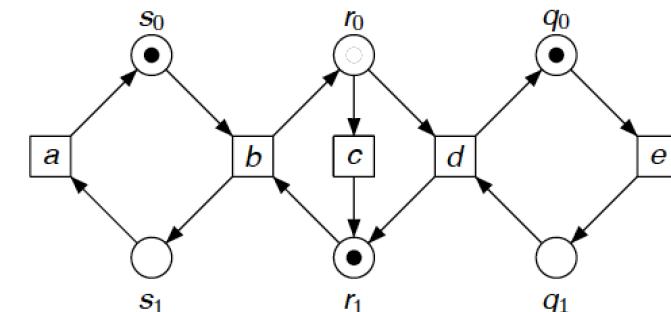
The interleaving semantics of Petri nets



$$\begin{matrix} s_1 \\ r_1 \\ q_1 \end{matrix} \xrightarrow{c} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

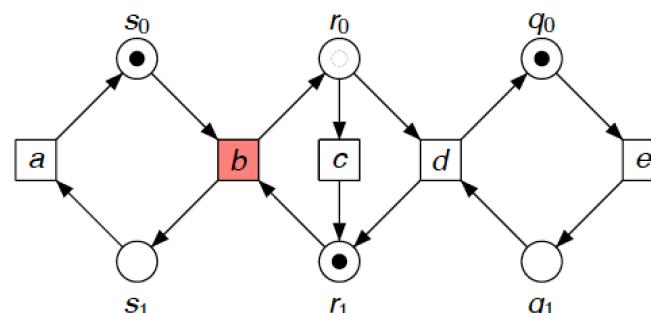
As the marking for s_0 is the complement of s_1 , the marking for s_0 is omitted. The same applies to the places r_0 and q_0 .

The interleaving semantics of Petri nets



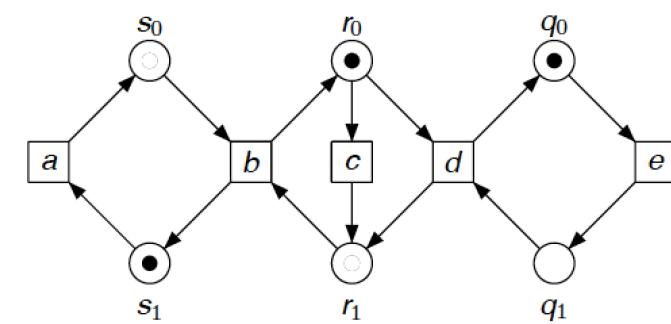
$$\begin{matrix} s_1 \\ r_1 \\ q_1 \end{matrix} \xrightarrow{c} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The interleaving semantics of Petri nets



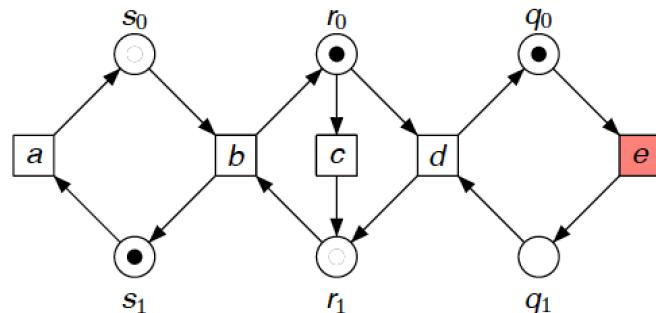
$$\begin{matrix} s_1 \\ r_1 \\ q_1 \end{matrix} \xrightarrow{c} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The interleaving semantics of Petri nets



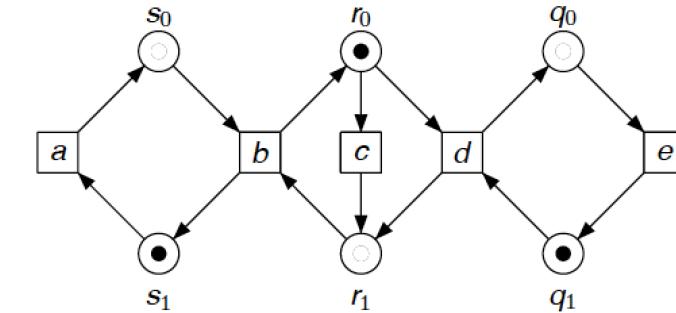
$$\begin{matrix} s_1 \\ r_1 \\ q_1 \end{matrix} \xrightarrow{c} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

The interleaving semantics of Petri nets



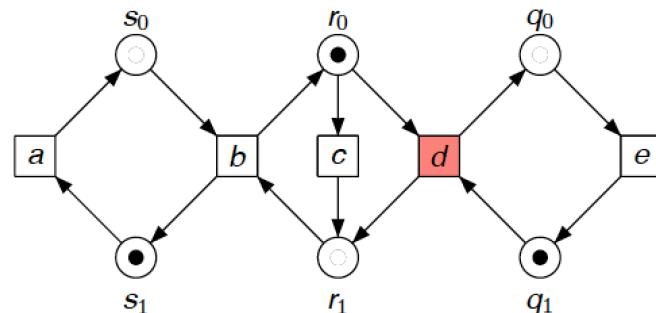
$$\begin{matrix} s_1 \\ r_1 \\ q_1 \end{matrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{c} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

The interleaving semantics of Petri nets



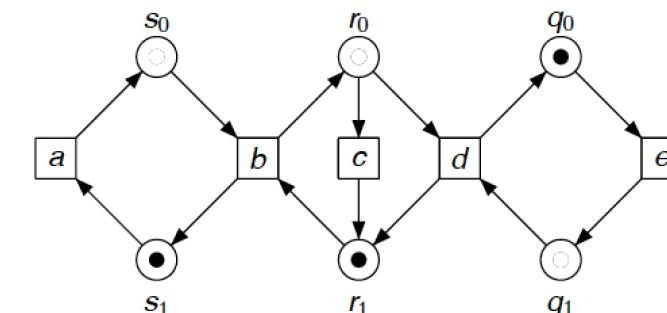
$$\begin{matrix} s_1 \\ r_1 \\ q_1 \end{matrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{c} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{e} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

The interleaving semantics of Petri nets



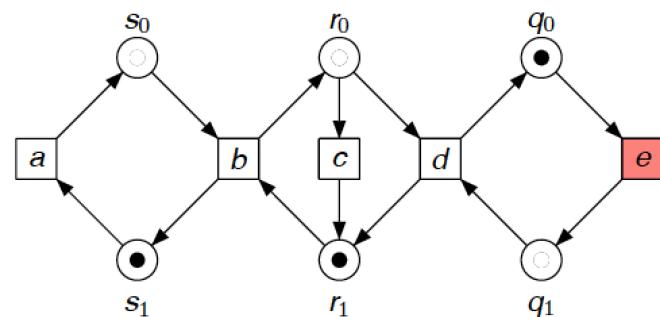
$$\begin{matrix} s_1 \\ r_1 \\ q_1 \end{matrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{c} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{e} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

The interleaving semantics of Petri nets



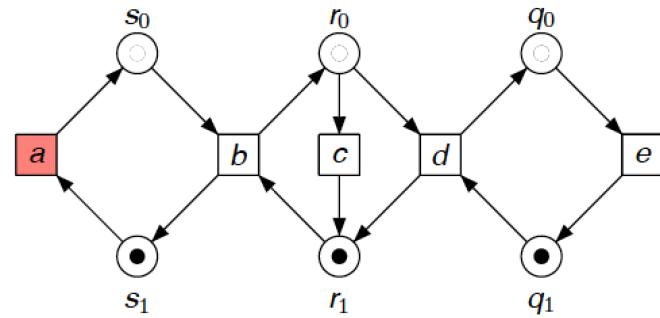
$$\begin{matrix} s_1 \\ r_1 \\ q_1 \end{matrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{c} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{e} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \xrightarrow{d} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

The interleaving semantics of Petri nets



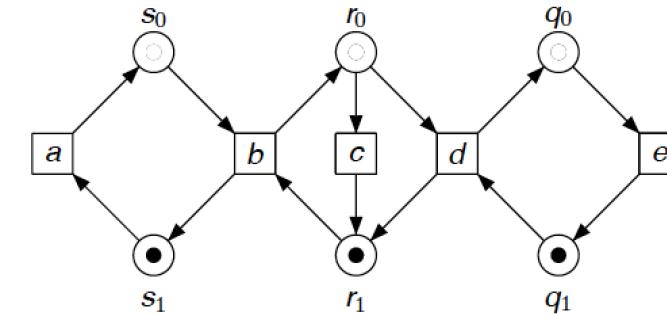
$$\begin{array}{l} s_1 \\ r_1 \\ q_1 \end{array} \xrightarrow{c} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{e} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \xrightarrow{d} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

The interleaving semantics of Petri nets



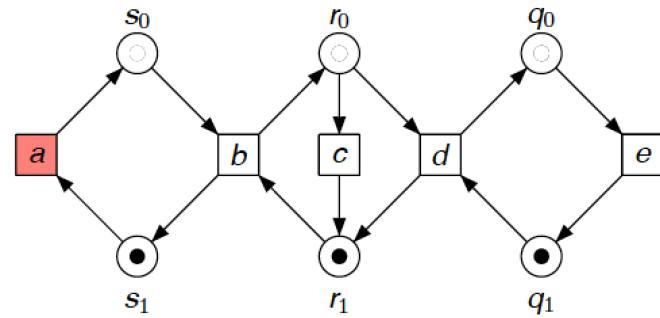
$$\begin{array}{l} s_1 \\ r_1 \\ q_1 \end{array} \xrightarrow{c} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{e} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \xrightarrow{d} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{e} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

The interleaving semantics of Petri nets

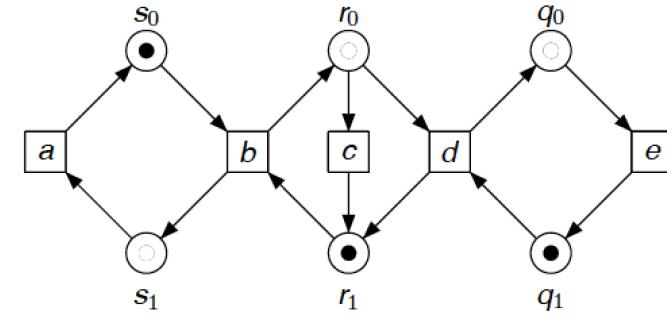


$$\begin{array}{l} s_1 \\ r_1 \\ q_1 \end{array} \xrightarrow{c} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{e} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \xrightarrow{d} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{e} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

The interleaving semantics of Petri nets

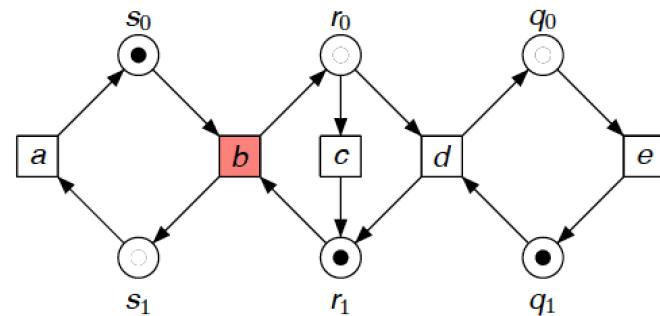


The interleaving semantics of Petri nets



$$\begin{array}{l} s_1 \\ r_1 \\ q_1 \end{array} \xrightarrow{c} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{e} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \xrightarrow{d} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \xrightarrow{e} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

The interleaving semantics of Petri nets



$$\begin{array}{l}
 s_1 \quad \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right] \xrightarrow{c} \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right] \xrightarrow{b} \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right] \dots \xrightarrow{e} \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] \xrightarrow{a} \left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right] \\
 r_1 \\
 q_1
 \end{array}$$

Reachable markings

Step sequence

A sequence of transitions $\sigma = t_1 t_2 \dots t_n$ is an **step sequence** if there exist markings M_1 through M_n such that:

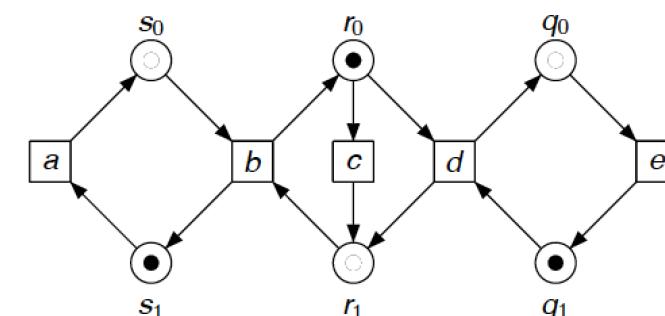
$$M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} \dots \xrightarrow{t_{n-1}} M_{n-1} \xrightarrow{t_n} M_n$$

Marking M_n is reached by the occurrence of σ , denoted $M_0 \xrightarrow{\sigma} M_n$.

M is a **reachable marking** if there exists a step sequence σ with $M_0 \xrightarrow{\sigma} M$.

The **marking graph** of N has nodes the reachable markings of N and as edges the reachable steps of N .

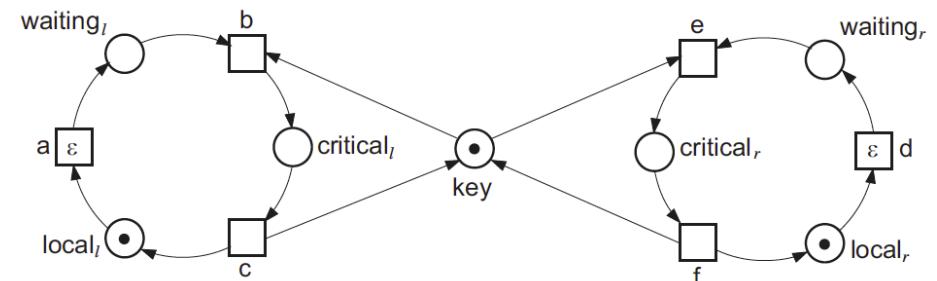
The interleaving semantics of Petri nets



$$\begin{array}{l}
 s_1 \quad \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right] \xrightarrow{c} \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right] \xrightarrow{b} \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right] \dots \xrightarrow{a} \left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right] \xrightarrow{b} \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right] \\
 r_1 \\
 q_1
 \end{array}$$

Mutual exclusion

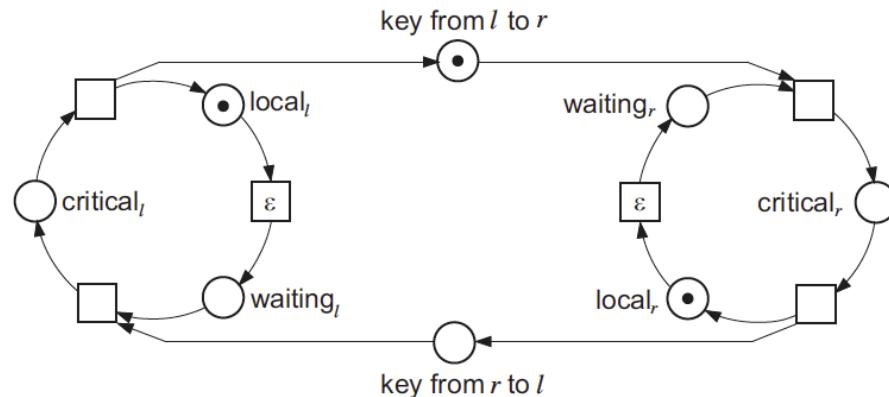
Two processes cycling through the states local, waiting and critical.



Between transitions b and e a conflict can arise infinitely often. No strategy has been modeled to solve this conflict.

Mutual exclusion

A strategy where processes are acquired access in an alternating fashion:



Overview

1 Introduction

2 Basic net concepts

3 The interleaving semantics of Petri nets

4 Sequential runs

5 Summary

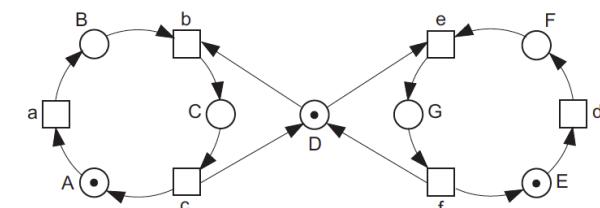
One-bounded elementary system nets

1-bounded elementary net system

An elementary net system N is called **1-bounded** if for each reachable marking M and place p of N :

$$M(p) \leq 1.$$

Markings of 1-bounded elementary net systems can be described as a string of marked places, e.g., ADE . Two steps begin with this marking: $ADE \xrightarrow{a} BDE$ and $ADE \xrightarrow{d} ADF$.



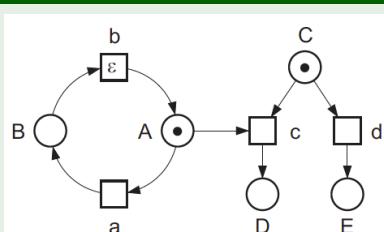
Sequential runs

Sequential run

Let N be an elementary net system. A **sequential run** of N is a sequence

$$M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} \dots$$

of steps of N starting with the initial marking M_0 . A run can be finite or infinite. A finite run $M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} \dots \xrightarrow{t_n} M_n$ is **complete** if M_n does not enable any transition.



Complete sample runs for the example net N (left) are:

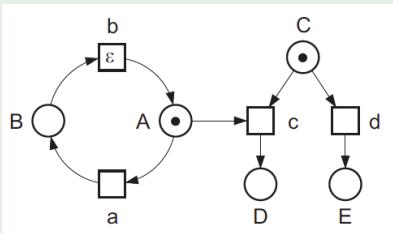
$$AC \xrightarrow{a} BC \xrightarrow{b} AC \xrightarrow{c} D$$

and

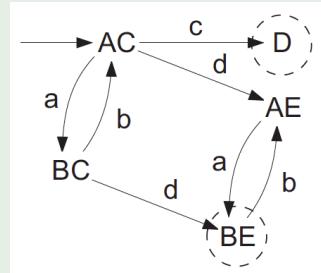
$$AC \xrightarrow{d} AE \xrightarrow{a} BE$$

Marking graph

The **marking graph** of N has as nodes the reachable markings of N and as edges the reachable steps of N .



A sample elementary net system



Its marking graph

Overview

1 Introduction

2 Basic net concepts

3 The interleaving semantics of Petri nets

4 Sequential runs

5 Summary

Summary

- ▶ A Petri net consists of places, transitions and arcs
- ▶ An elementary net is a Petri net plus a marking
- ▶ Firing a single transition in a marking is a step
- ▶ A sequential run is a sequence of steps starting in the initial marking
- ▶ A marking graph has as nodes the reachable markings of the net and as edges its reachable steps.
- ▶ The marking graph is the interleaving semantics of a net.