

Overview

1 Introduction

2 Nets and markings

3 The true concurrency semantics of Petri nets

4 Distributed runs

5 Summary

Transition occurrence

Enabling and occurrence of a transition

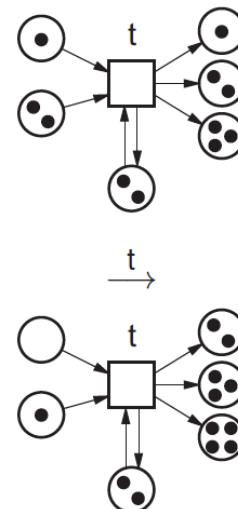
A marking M **enables** a transition t if $M(p) \geq 1$ for each place $p \in \bullet t$.

Transition t can **occur** in marking M if t is enabled at M . Its occurrence leads to marking M' , denoted $M \xrightarrow{t} M'$, defined for place $p \in P$ by:

$$M'(p) = M(p) - F(p, t) + F(t, p).$$

where we represent F by its characteristic function.

$M \xrightarrow{t} M'$ is also called a **step** of the net N .



Nets

Net

A **Petri net** N is a triple (P, T, F) where:

- ▶ P is the countable set of **places**
- ▶ T is the countable set of **transitions** with $P \cap T = \emptyset$
- ▶ $F \subseteq (P \times T) \cup (T \times P)$ are the **arcs**.

Places and transitions are generically called **nodes**.

Marking

A **marking** M of a net $N = (P, T, F)$ is a mapping $M : P \rightarrow \mathbb{N}$.

For net $N = (P, T, F)$ and marking M_0 , the tuple (P, T, F, M_0) is called an **elementary system net**. M_0 is the **initial marking** of N .

Note that the set of places and transitions is countable, not necessarily finite (anymore).

Reachable markings

Step sequence

A sequence of transitions $\sigma = t_1 t_2 \dots t_n$ is an **step sequence** if there exist markings M_1 through M_n such that:

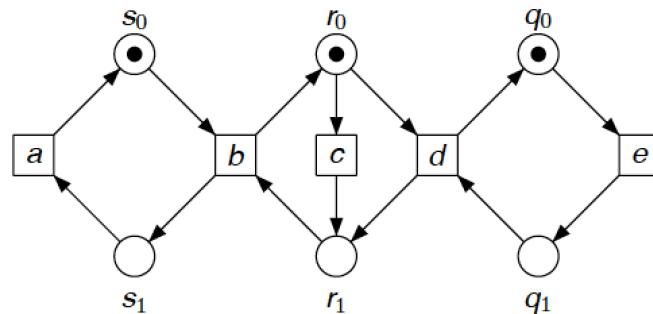
$$M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} \dots \xrightarrow{t_{n-1}} M_{n-1} \xrightarrow{t_n} M_n$$

Marking M_n is reached by the occurrence of σ , denoted $M_0 \xrightarrow{\sigma} M_n$.

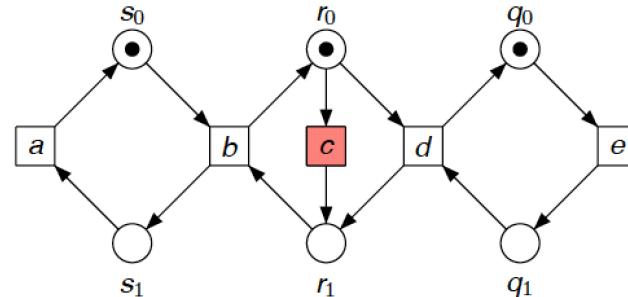
M is a **reachable marking** if there exists a step sequence σ with $M_0 \xrightarrow{\sigma} M$.

The **marking graph** of N has nodes the reachable markings of N and as edges the reachable steps of N .

The true concurrency semantics of Petri nets



The true concurrency semantics of Petri nets

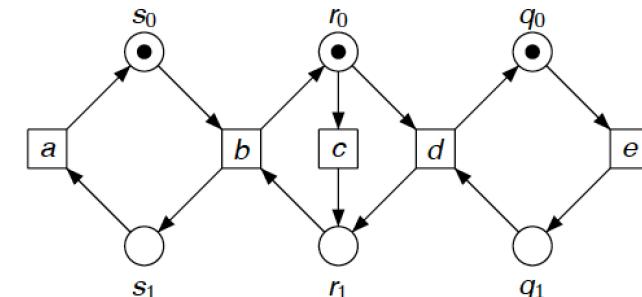


s_0

r_0

q_0

The true concurrency semantics of Petri nets

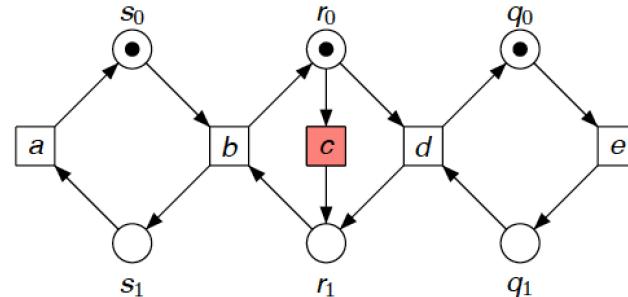
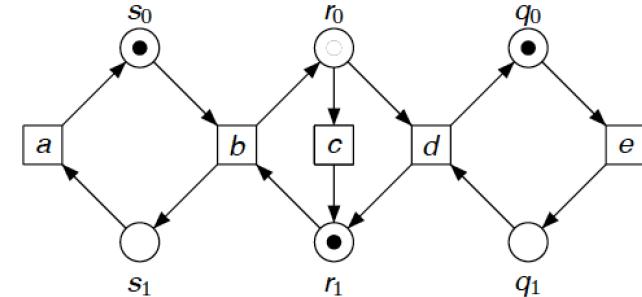


s_0

r_0

q_0

The true concurrency semantics of Petri nets

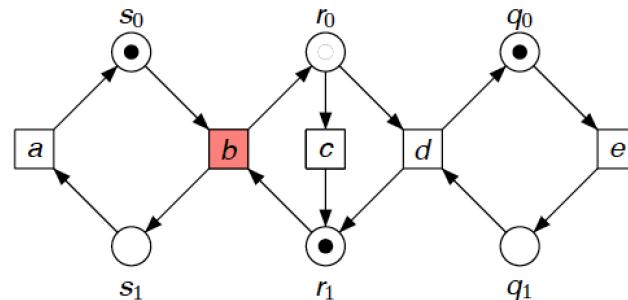
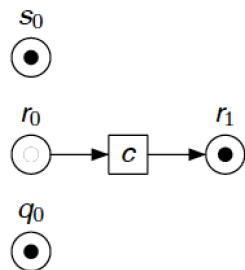
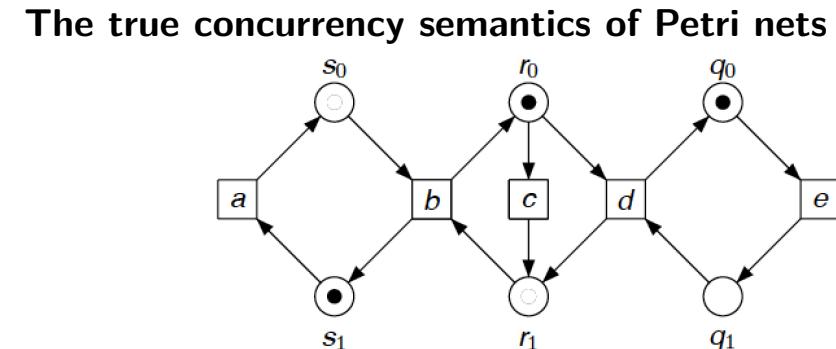
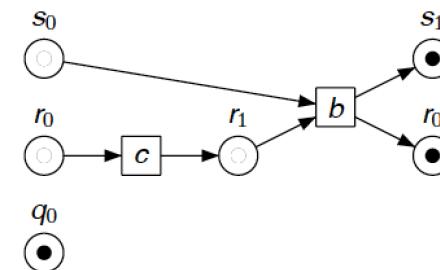


s_0

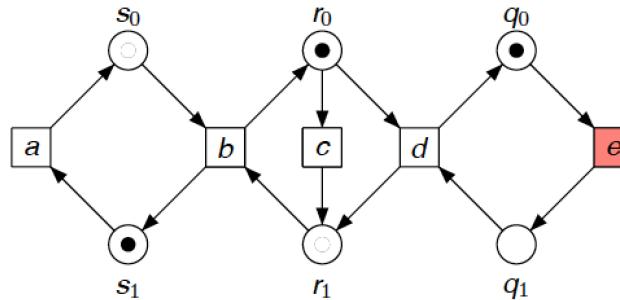
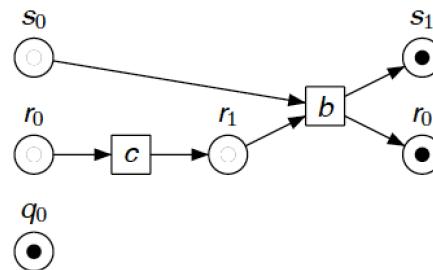
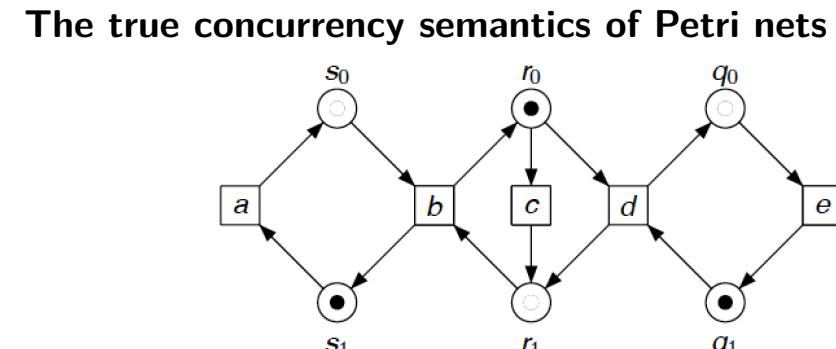
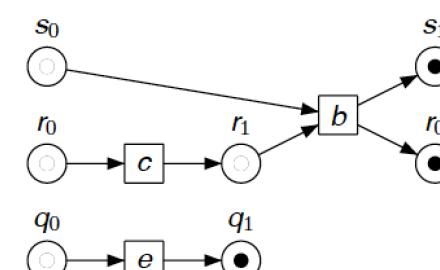
r_0

q_0

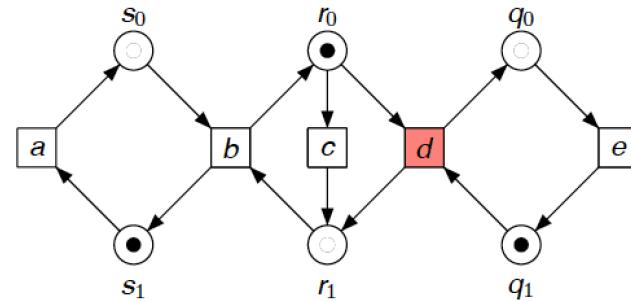
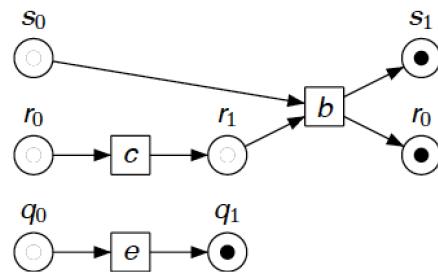
The true concurrency semantics of Petri nets



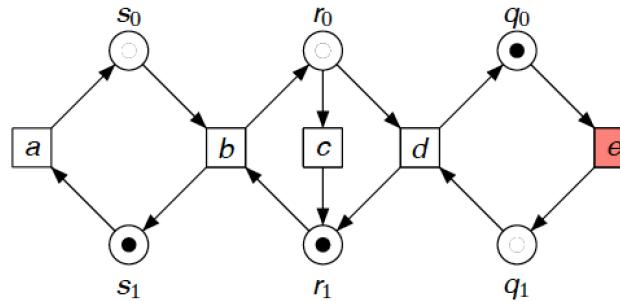
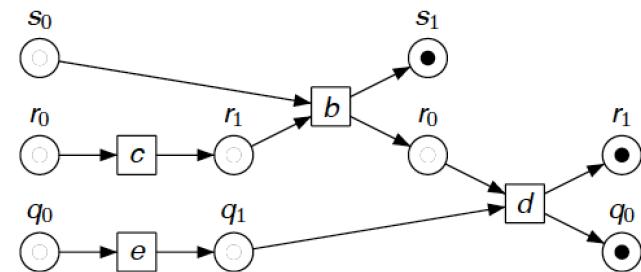
The true concurrency semantics of Petri nets



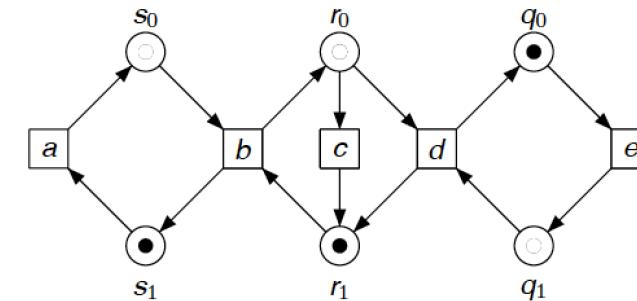
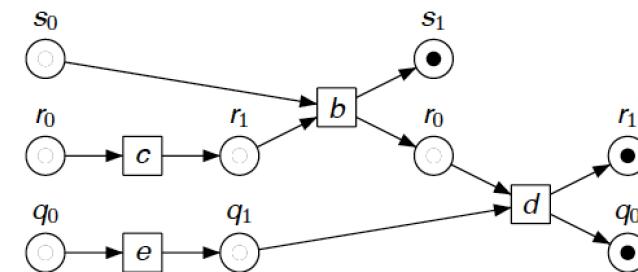
The true concurrency semantics of Petri nets



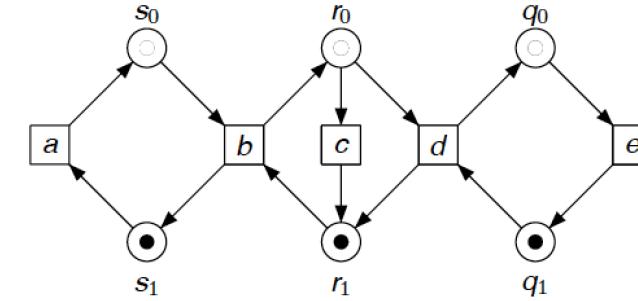
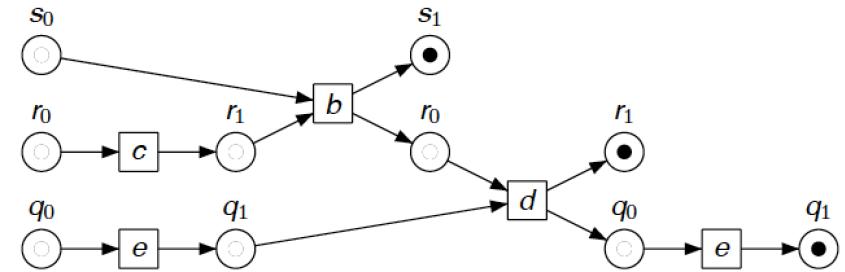
The true concurrency semantics of Petri nets



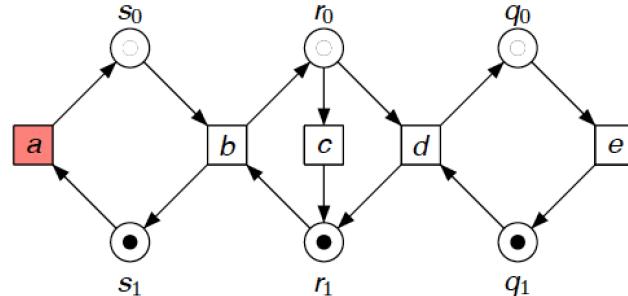
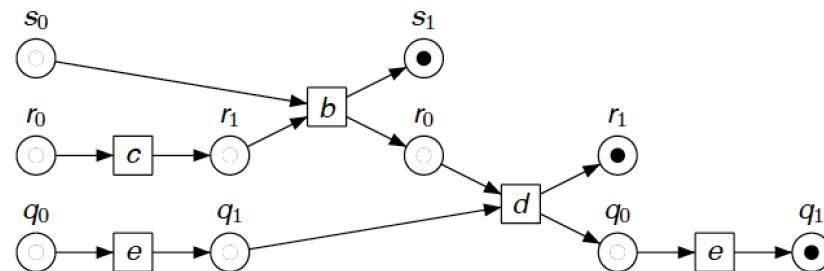
The true concurrency semantics of Petri nets



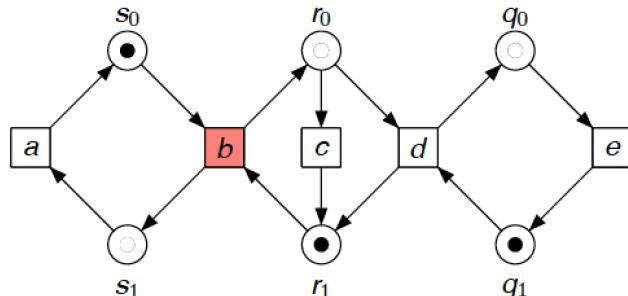
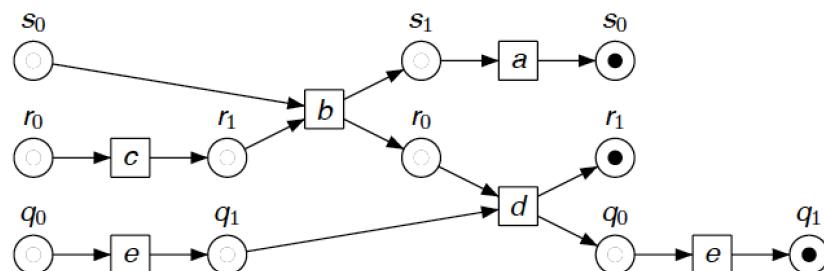
The true concurrency semantics of Petri nets



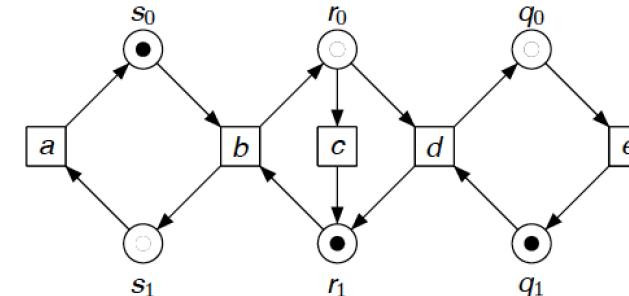
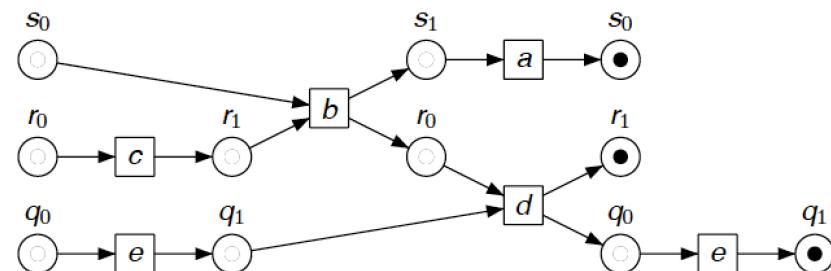
The true concurrency semantics of Petri nets



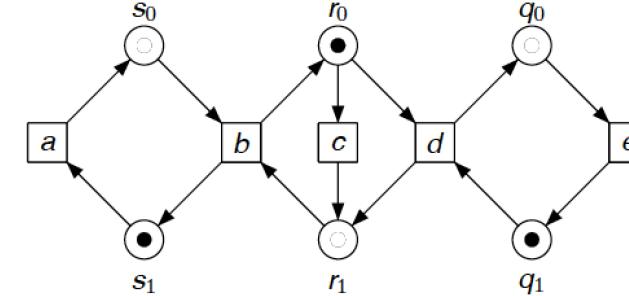
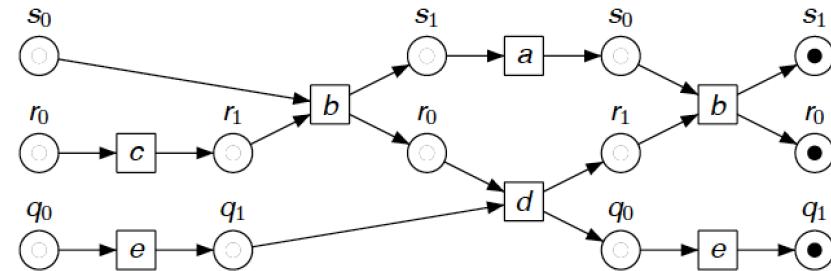
The true concurrency semantics of Petri nets



The true concurrency semantics of Petri nets



The true concurrency semantics of Petri nets



Interleaving versus true concurrency

The interleaving thesis:

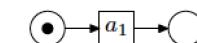
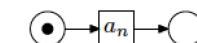
The total order assumption is a reasonable abstraction, adequate for practical purposes, and leading to nice mathematics

The true concurrency thesis:

The total order assumption does not correspond to physical reality and leads to awkward representations of simple phenomena

Interleaving versus true concurrency

In interleaving semantics, a system composed of n independent components



has $n!$ different executions

The automaton accepting them has 2^n states

In true concurrency semantics, it has only one nonsequential execution

Overview

1 Introduction

2 Nets and markings

3 The true concurrency semantics of Petri nets

4 Distributed runs

5 Summary

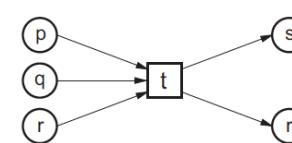
Actions

A distributed run of a net is a partial-order represented as a net whose basic building blocks are **actions**¹, simple nets

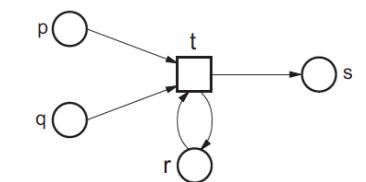
Action

An **action** is a labeled net $A = (Q, \{ v \}, G)$ with $\bullet v \cap v^\bullet = \emptyset$ and $\bullet v \cup v^\bullet = Q$.

Actions are used to represent transition occurrences of elementary net systems. If A represents transition t , then elements of Q are labeled with in- and output places of t and v is labeled t .



represents



¹Not to be confused with the notion of action in transition systems.

Boundedness of causal nets

Lemma

Let $N = (P, T, F, M_0)$ be a causal net. Then every step sequence:

$$M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} \dots \xrightarrow{t_k} M_k$$

of net N satisfies $M_j \cap t_k^\bullet = \emptyset$ for all $j = 0, \dots, k-1$.

Boundedness of causal nets

Every causal net is one-bounded, i.e., in every marking every place will hold at most one token.

Proof.

Follows directly from the fact that the initial marking M_0 is one-bounded, and by the above lemma. \square

Outset and end of a causal net

Outset and end of a causal net

The **outset** and **end** of causal net $K = (Q, V, G, M)$ are defined by:

$${}^\circ K = \{ q \in Q \mid {}^\bullet q = \emptyset \} \quad \text{and} \quad K^\circ = \{ q \in Q \mid q^\bullet = \emptyset \}.$$

Places without an incoming arc form the outset ${}^\circ K$. The places without an outgoing arc form the end K° .

Completeness of a causal net

Absence of superfluous places and transitions

Let $N = (P, T, F, M_0)$ be a causal net. Then there exists a possibly infinite step sequence

$$M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} \dots \xrightarrow{t_k} M_k \xrightarrow{t_{k+1}} \dots$$

of N such that $P = \bigcup_{k \geq 0} M_k$ and $T = \{ t_k \mid k > 0 \}$.

Proof.

On the black board. \square

A causal net thus contains no superfluous places and transitions, as every place is visited and every transition is fired in the above step sequence.

What is a distributed run?

Distributed run

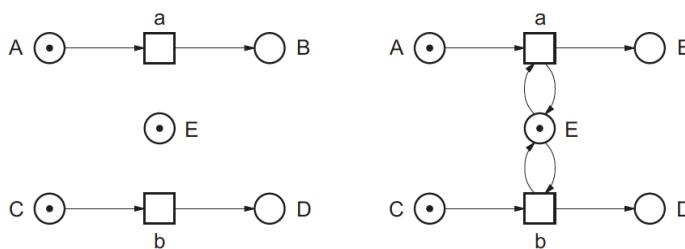
A **distributed run** of a one-bounded elementary net system N is:

1. a **labeled** causal net K
2. in which each transition t (with ${}^\bullet t$ and t^\bullet) is an **action** of N .

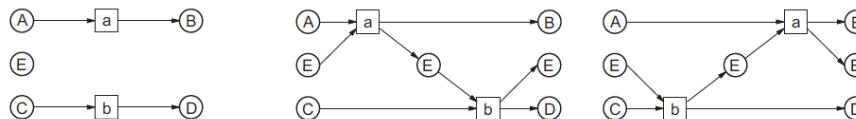
A distributed run K of N is **complete** iff (the marking) ${}^\circ K$ represents the initial state of N and (the marking) K° does not enable any transition.

Causal order

Opposed to sequential runs, distributed runs show the **causal order** of actions.



Nets with identical sequential runs (a occurs before b , or vice versa), but the left net has the left distributed run below, the right net both other ones:



Overview

1 Introduction

2 Nets and markings

3 The true concurrency semantics of Petri nets

4 Distributed runs

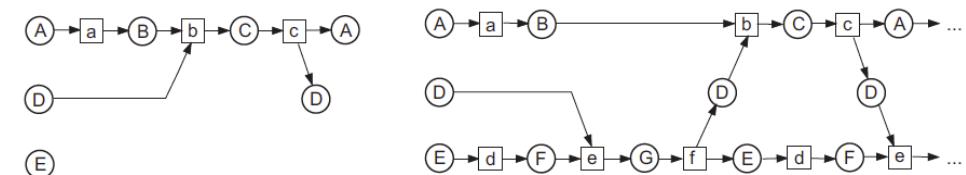
5 Summary

Composition of distributed runs

For $i = 1, 2$, let $K_i = (Q_i, V_i, G_i)$ be causal nets, labeled with ℓ_i . Let $(Q_1 \cup V_1) \cap (Q_2 \cap V_2) = K_1^\circ = {}^\circ K_2$ and for each place $p \in K_1^\circ$ let $\ell_1(p) = \ell_2(p)$. Then the **composition** of K_1 and K_2 , denoted $K_1 \bullet K_2$, is the causal net $(Q_1 \cup Q_2, V_1 \cup V_2, G_1 \cup G_2)$ labeled with ℓ with $\ell(x) = \ell_i(x)$.

Intuition

The composition $K \bullet L$ is formed by identifying the end K° of K with the outset ${}^\circ L$ of L . To do this, K° and ${}^\circ L$ must represent the same marking.



- ▶ A causal net is a possibly infinite net which is:
 - ▶ well-founded, acyclic, and has no place branching, and
 - ▶ whose initial marking are the places without incoming arcs
- ▶ Causal nets are one-bounded, and contain no redundant nodes
- ▶ A distributed run of N is a causal net whose nodes are labeled with nodes from N
- ▶ A distributed run can be obtained by composing causal nets
- ▶ Nets that have the same causal nets are causally equivalent.
- ▶ Distributed run = the “true concurrency” analogue to a sequential run