

# Concurrency Theory

## True Concurrency Semantics of Petri Nets (II)

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl für Informatik 2  
Software Modeling and Verification Group

<http://www-i2.informatik.rwth-aachen.de/i2/ct13>

January 22, 2014



# Overview

- 1 Introduction
- 2 Distributed runs
- 3 Branching processes
- 4 The true concurrency semantics of a net
- 5 McMillan's finite prefix
- 6 Summary

## Overview

- 1 Introduction
- 2 Distributed runs
- 3 Branching processes
- 4 The true concurrency semantics of a net
- 5 McMillan's finite prefix
- 6 Summary

## Introduction

- ▶ **Interleaving semantics** of Petri nets = set of **sequential** runs
  - ▶ a sequential run is a **total ordering** of transition occurrences
- ▶ The set of all sequential runs can be represented by a marking graph
- ▶ **Partial-order semantics** of Petri nets = set of **distributed** runs
  - ▶ a distributed run is an acyclic (**causal**) net which contains no choices
  - ▶ a distributed run is a **partial ordering** of transition occurrences
- ▶ Today: the set of all distributed runs can be represented by a specific **branching process**, the **unfolding**

## Branching process: preamble

- ▶ A **branching process** represents a set of distributed runs
- ▶ It explicitly represents **each possible** resolution of each choice<sup>1</sup>
- ▶ It is an acyclic (**occurrence**) net containing choices.
- ▶ It is a **partial ordering with conflicts** of transition occurrences.
- ▶ The true concurrency semantics of a net is a specific branching process, called **unfolding**.
- ▶ A net unfolding is the true concurrency counterpart of a marking graph.
- ▶ It is the **unique maximal** branching process in a **complete lattice**.
- ▶ The reachable markings of a 1-bounded net are covered by a **finite prefix** of this maximal branching process.

<sup>1</sup>In net jargon, a choice is called a **conflict**.

## Elementary system nets

### Net

An elementary net system  $N$  is a tuple  $(P, T, F, M_0)$  where:

- ▶  $P$  is a countable set of **places**
- ▶  $T$  is a countable set of **transitions** with  $P \cap T = \emptyset$
- ▶  $F \subseteq (P \times T) \cup (T \times P)$  are the **arcs** satisfying:

$$\forall t \in T. \bullet t \text{ and } t^\bullet \text{ are finite and non-empty}$$

- ▶  $M_0 : P \rightarrow \mathbb{N}$  is the **initial marking**.

Places and transitions are generically called **nodes**.

**Assumption:** (possibly) infinite elementary nets are 1-bounded. Thus any marking can be viewed as a subset of places.

## Overview

### 1 Introduction

### 2 Distributed runs

### 3 Branching processes

### 4 The true concurrency semantics of a net

### 5 McMillan's finite prefix

### 6 Summary

## Causal nets

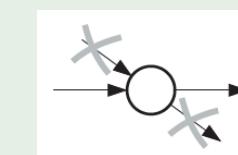
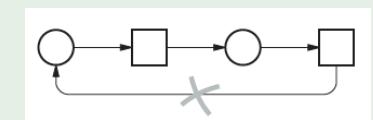
A **causal** net constitutes the basis for a “distributed” run.

It is a (possibly infinite) net which satisfies:

1. It has no place branches: at most one arc ends or starts in a place
2. It is acyclic
3. Each sequences of arcs (flows) has a unique first element
4. The initial marking contains all places without incoming arcs.

### Intuition

No place branches, no sequence of arcs forms a loop, and each sequence of arcs has a first node.



## Causal nets

A **causal** net constitutes the basis for a distributed run.

It is a possibly infinite net which satisfies:

1. Has no place branches: at most one arc ends or starts in a place
2. Is acyclic
3. Each sequences of arcs (flows) has a first element
4. The initial marking contains all places without incoming arcs

### Causal net

A (possibly infinite) net  $K = (Q, V, G, M_0)$  is called a **causal** net iff:

1. for each  $q \in Q$ ,  $|\bullet q| \leq 1$  and  $|q^\bullet| \leq 1$
2. the transitive closure (called **causal order**)  $G^+$  of  $G$  is irreflexive
3. for each node  $x \in Q \cup V$ , the set  $\{y \mid (y, x) \in G^+\}$  is finite
4.  $M_0$  equals the minimal set of places in  $K$  under  $G^+$ , i.e.,

$$M_0 = {}^\circ K = \{q \in Q \mid {}^\bullet q = \emptyset\}.$$

## What is a distributed run?

### Distributed run

A **distributed run** of a one-bounded elementary net system  $N$  is:

1. a **labeled** causal net  $K$
2. in which each transition  $t$  (with  $\bullet t$  and  $t^\bullet$ ) is an **action** of  $N$ .

A distributed run  $K$  of  $N$  is **complete** iff (the marking)  ${}^\circ K$  represents the initial marking of  $N$  and (the marking)  $K^\circ$  does not enable any transition.

Examples on the black board.

Today: a characterization of distributed runs using homomorphisms.

## Properties of causal nets

### Boundedness of causal nets

Every causal net is one-bounded, i.e., in every marking every place will hold at most one token.

### Absence of superfluous places and transitions

Every causal net has a step sequence that visits all places and fires every transition.

## Net homomorphisms

### Homomorphism

A **homomorphism** from  $N_1 = (P_1, T_1, F_1, M_{0,1})$  to  $N_2 = (P_2, T_2, F_2, M_{0,2})$  is a mapping  $h : P_1 \cup T_1 \rightarrow P_2 \cup T_2$  such that:<sup>2</sup>

1.  $h(P_1) \subseteq P_2$  and  $h(T_1) \subseteq T_2$ , and
2.  $\forall t \in T_1$ , the restriction of  $h$  to  $\bullet t$  is a bijection between  $\bullet t$  (in  $N_1$ ) and  $\bullet h(t)$  (in  $N_2$ ), and similarly for  $t^\bullet$  and  $h(t)^\bullet$ , and
3. the restriction of  $h$  to  $M_{0,1}$  is a bijection between  $M_{0,1}$  and  $M_{0,2}$ .<sup>3</sup>

### Intuition

A homomorphism is a mapping between nets that preserves the nature of nodes and the environment of nodes. A homomorphism from  $N_1$  to  $N_2$  means that  $N_1$  can be folded onto a part of  $N_2$ , or in other words, that  $N_1$  can be obtained by partially **unfolding** a part of  $N_2$ .

<sup>2</sup>Here  $h(X)$  for set  $X$  of nodes is defined by  $h(X) = \bigcup_{x \in X} h(x)$ .

<sup>3</sup>Due to the 1-boundedness, a marking  $M$  is a subset of the set  $P$  of places.

## Distributed run

### Distributed run

[Best and Fernandez, 1988]

A **distributed run** of an elementary net system  $N$  is a pair  $(K, h)$  where  $K$  is a causal net and  $h$  is a homomorphism from  $K$  to  $N$ .<sup>4</sup>

### Intuition

A distributed run  $(K, h)$  of  $N$  may be viewed as a net  $K$  of which the places and transitions are labeled by places and transitions of  $N$ , such that the labeling  $h$  forms a net homomorphism from  $K$  to  $N$ .<sup>5</sup>

<sup>4</sup>Best and Fernandez called this a process of a net.

<sup>5</sup>In the previous lecture, the labeling  $h$  was explicitly given as  $\ell$ .

## Overview

1 Introduction

2 Distributed runs

3 Branching processes

4 The true concurrency semantics of a net

5 McMillan's finite prefix

6 Summary

## Examples

## Occurrence net

A distributed run is based on a **causal** net. A branching process on an **occurrence** net. Main difference: the presence of conflicts (choices).

### Conflict

Let  $N = (P, T, F, M)$  be a net. Nodes  $x_1$  and  $x_2$  are in **conflict**, denoted  $x_1 \# x_2$ , if there exist distinct transitions  $t_1, t_2 \in T$  such that  $\bullet t_1 \cap \bullet t_2 \neq \emptyset$  and  $(t_1, x_1) \in F^*$  and  $(t_2, x_2) \in F^*$ .

Node  $x$  is in **self-conflict** whenever  $x \# x$ .

### Examples

On the black board.

Note that in a causal net  $\# = \emptyset$  as  $\bullet t_1 \cap \bullet t_2 = \emptyset$  for any two distinct transitions  $t_1$  and  $t_2$ .

## Occurrence net

### Occurrence net

A net  $K = (Q, V, G, M)$  is an **occurrence** net iff:

1. for each  $q \in Q$ ,  $|\bullet q| \leq 1$
2. the transitive closure  $G^+$  of  $G$  is irreflexive
3. for each node  $x \in Q \cup V$  we have  $\{y \mid (y, x) \in G^+\}$  is finite
4. no transition  $v \in V$  is in self-conflict
5.  $M_0 = {}^\circ K = \{q \in Q \mid \bullet q = \emptyset\}$ .

### Remark

Since  $\# = \emptyset$  in a causal net, and each causal net fulfills the remaining conditions, every causal net is an occurrence net.

## Branching process

### Branching process

[Engelfriet 1991]

A **branching process** of net  $N$  is a pair  $(K, h)$  where  $K = (Q, V, G, M)$  is an occurrence net and  $h$  a net homomorphism from  $K$  to  $N$  such that:

$$\forall v, v' \in Q. (\bullet v = \bullet v' \text{ and } h(v) = h(v') \text{ implies } v = v').$$

Every distributed run is a branching process. The reverse is not true.

### Examples

On the black board.

## Example

## Overview

- 1 Introduction
- 2 Distributed runs
- 3 Branching processes
- 4 The true concurrency semantics of a net
- 5 McMillan's finite prefix
- 6 Summary

## Relating branching processes

### Homomorphisms and isomorphisms between branching processes

Let  $B_1 = (K_1, h_1)$  and  $B_2 = (K_2, h_2)$  be two branching processes of net  $N$ . A **homomorphism** from  $B_1$  to  $B_2$  is a homomorphism  $h$  from  $K_1$  to  $K_2$  such that  $h_2 \circ h = h_1$ .<sup>6</sup>

An **isomorphism** is a **bijective** homomorphism.  $B_1$  and  $B_2$  are **isomorphic** if there is an isomorphism from  $B_1$  to  $B_2$ .

Being isomorphic is an equivalence relation. Its equivalence classes are called **isomorphism classes**.

<sup>6</sup>The composition of two net homomorphisms is a net homomorphism.

## Approximation of branching processes

### Approximation

Let  $B_1$  and  $B_2$  be two branching processes of net  $N$ .  $B_1$  **approximates**  $B_2$ , denoted  $B_1 \sqsubseteq B_2$ , if there exists an injective homomorphism from  $B_1$  to  $B_2$ .

### Lemma

Approximation is preserved by isomorphism: if  $B'_i$  is isomorphic to  $B_i$  (for  $i = 1, 2$ ), then  $B_1 \sqsubseteq B_2$  implies  $B'_1 \sqsubseteq B'_2$ . Thus,  $\sqsubseteq$  can be extended to a partial order on isomorphism classes (of branching processes).

### Proof.

Home exercise. Basically juggling with homomorphisms. □

## Approximation of branching processes

### Approximation

Let  $B_1$  and  $B_2$  be two branching processes of net  $N$ .  $B_1$  **approximates**  $B_2$ , denoted  $B_1 \sqsubseteq B_2$ , if there exists an **injective** homomorphism from  $B_1$  to  $B_2$ .

### Intuition

$B_1$  approximates  $B_2$  whenever every (partial) distributed run in  $B_1$  is also contained in  $B_2$ . In other words,  $B_1$  is isomorphic to an initial part of  $B_2$ . Being an approximation on branching processes is the analogue of being a prefix on sequences.

### Examples

On the black board. Obviously,  $\sqsubseteq$  is a partial order on branching processes.

## Engelfriet's theorem

### Engelfriet's branching process theorem

The set of isomorphism classes of branching processes of net  $N$  is a **complete lattice** with respect to the approximation relation  $\sqsubseteq$ . Formally,  $(\mathbb{B}, \sqsubseteq)$  is a complete partial order, where  $\mathbb{B}$  is the set of isomorphism classes of branching processes.

### Complete lattice

Recall that a complete lattice is a partial order  $(\mathbb{B}, \sqsubseteq)$  such that all subsets of  $\mathbb{B}$  have LUBs and GLBs.

## The true concurrency semantics of a net

### Corollary: the unfolding of a net

Every one-bounded net has a unique maximal (with respect to  $\sqsubseteq$ ) branching process up to isomorphism. This is called the **unfolding** or **true concurrency semantics** of net  $N$ .

We denote by  $B_{\max} = ((P_{\max}, T_{\max}, F_{\max}), h_{\max})$  a representative of the isomorphism class of the maximal branching process of  $N$ .

### Example

On the black board.

## Overview

1 Introduction

2 Distributed runs

3 Branching processes

4 The true concurrency semantics of a net

5 McMillan's finite prefix

6 Summary

## The true concurrency semantics of Petri nets

The **true concurrency** semantics of a Petri net is given by its **unfolding**.

Recall: The **interleaving** semantics of a Petri net is given by its **marking graph**.

## Configurations

### Configurations

Let  $K = (Q, V, G, M_0)$  be an occurrence net,  $\prec = G^+$  and  $\preceq = G^*$ .

The set  $C \subseteq V$  is a **configuration** of  $K$  whenever:

1.  $x \in C$  implies  $y \in C$ , for all  $y \preceq x$  (downward-closed wrt.  $\preceq$ )
2.  $\forall x, y \in C. \neg(x \# y)$  (conflict-free)

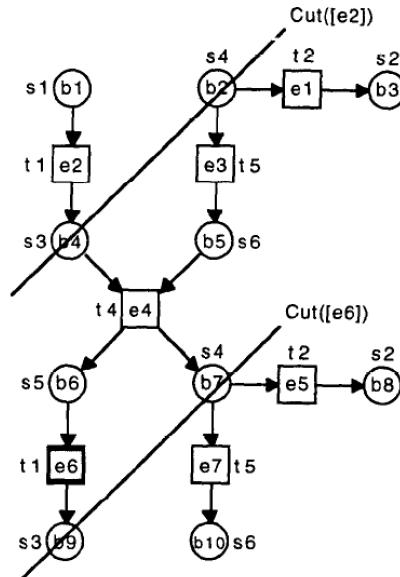
### Intuition and examples

A configuration can be seen as the set of transitions that have occurred so far in a distributed run. Examples on the black board.

### Fact

For configuration  $C$  of  $B_{\max}$  (of net  $N$ ), and  $x_1 \dots x_n$  a **linearisation** of the transitions in  $C$  (respecting  $\preceq$ ), the sequence  $h_{\max}(x_1) \dots h_{\max}(x_n)$  is a **sequential run** of the original net  $N$ .

## Example



## Cuts

### Cuts

Let  $C$  be a finite configuration of a branching process  $B = (K, h)$ . Then:

$$Cut(C) = ({}^\circ K \cup C^\bullet) \setminus {}^\bullet C.$$

If  $B$  is a branching process of  $N$ , then  $h(Cut(C))$  is a **reachable marking** of net  $N$ . We denote  $h(Cut(C))$  by  $M(C)$ , the marking of configuration  $C$ .

### Intuition

Cuts correspond to markings reached by firing all transitions in a given finite configuration.

## Transition causes

### Transition causes

Let  $K = (Q, V, G)$  be an occurrence net and  $v \in V$ . The set  $[v]$  of **causes** of  $v$  is defined by:

$$[v] = \{v' \in V \mid v' \preceq v\}.$$

(Recall that  $\preceq$  denotes  $G^*$ , the reflexive and transitive closure of  $G$ .)

### Example

On the black board

### Facts

1. For each  $v$ ,  $[v]$  is a finite configuration.
2. For every configuration  $C$  of  $K$ , either  $v \notin C$  or  $[v] \subseteq C$ .

## Cut-off event

### Cut-off event

Let  $B_{\max} = ((P_{\max}, T_{\max}, G_{\max}), h_{\max})$ . Transition  $t \in T_{\max}$  is a **cut-off** transition if there exists a transition  $t' \in T_{\max} \cup \{\perp\}$  such that:

$$|[t']| < |[t]| \text{ and } M([t]) = M([t']).$$

### Dummy transition

Remark:  $\perp$  is a dummy transition having no input places and  ${}^{\circ}B_{\max}$  as output places, for which we let  $[\perp] = \emptyset$ . This yields that if  $M([t]) = M_0$ , then  $t$  is a cut-off transition.

### Fact

If  $|[t']| < |[t]|$  and  $M([t]) = M([t'])$ , then the “continuations” of  $B_{\max}$  from  $Cut([t])$  and  $Cut([t'])$  are isomorphic.

## Computing the McMillan prefix

### Algorithm

1. Start with the empty branching process
2. Add transitions one at the time, in order of increasing size of their sets of causes
3. On adding  $t$ , compare  $M([t])$  with  $M([t'])$  for each  $t'$  that was added before  $t$
4. If  $M([t]) = M([t'])$ , then  $t$  is a cut-off transition, and its successors are not explored
5. Terminate when no further transitions can be added.

### Remark

Termination is ensured by the finiteness of the number of reachable markings on  $N$ , as  $N$  is one-bounded.

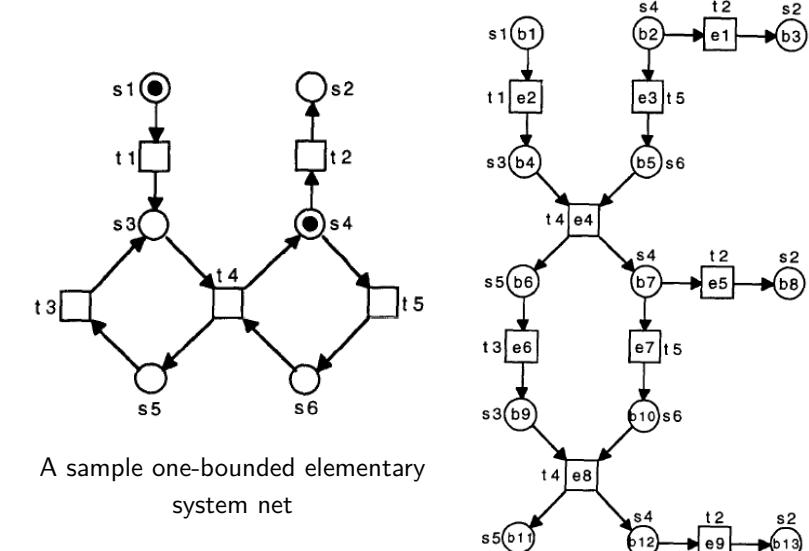
## McMillan prefix

### McMillan prefix

The **McMillan prefix** of one-bounded net  $N$  is the branching process  $B_{\text{fin}}$ , the unique prefix of  $B_{\max}$  having  $T_{\text{fin}}$  as set of transitions satisfying for each  $t \in T_{\max}$ :

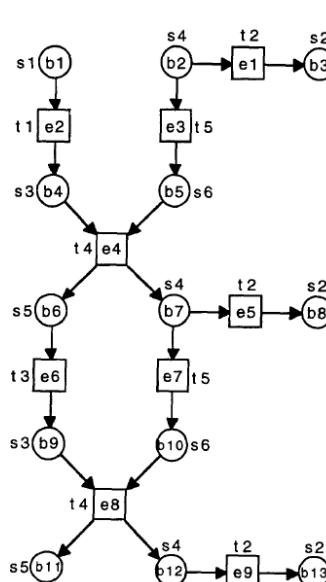
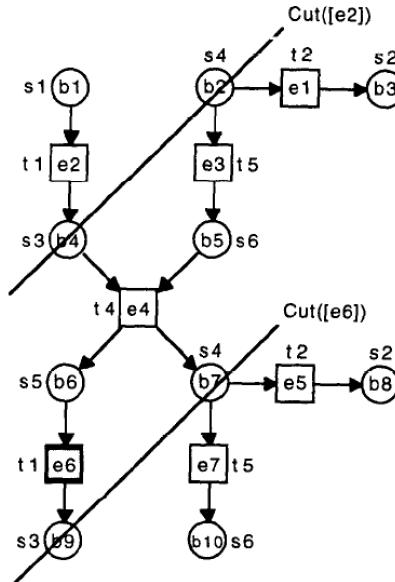
$$t \in T_{\text{fin}} \text{ iff no transition } t' \prec t \text{ is a cut-off transition.}$$

## Example net and one of its branching processes



A sample one-bounded elementary system net

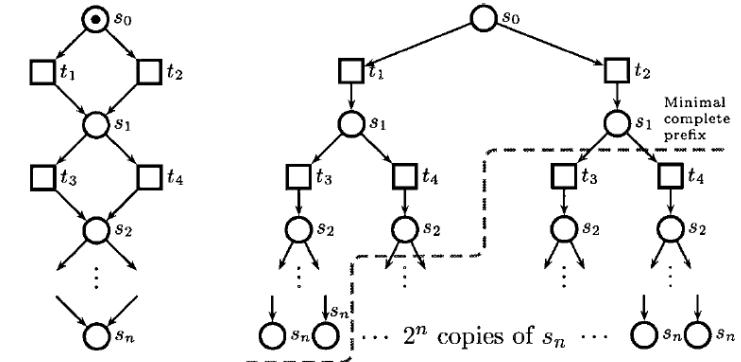
## Its McMillan prefix



## Overview

- 1 Introduction
- 2 Distributed runs
- 3 Branching processes
- 4 The true concurrency semantics of a net
- 5 McMillan's finite prefix
- 6 Summary

## An exponentially-sized McMillan prefix



For every marking  $M$  all the configurations  $[t]$  satisfying  $M([t]) = M$  have the same size, and therefore there exist no cut-off events [Kishinevsky and Taubin]

## Summary

- ▶ A branching process captures several distributed runs of  $N$
- ▶ It is represented by a relaxed notion of causal net, the occurrence net
- ▶ Branching processes are mapped to  $N$  via homomorphisms
- ▶ A homomorphism is a structure-preserving mapping between two nets
- ▶ Approximation (denoted  $\sqsubseteq$ ) is a partial-order on branching processes
- ▶ Isomorphic branching process with  $\sqsubseteq$  are a complete lattice
- ▶ True concurrency semantics of  $N$  = the maximal element (under  $\sqsubseteq$ )
- ▶ For 1-bounded nets, the McMillan prefix covers all reachable markings