Replaying Play-In Play-Out:

Synthesis of Design Models from Scenarios by Learning

Benedikt Bollig! Joost-Pieter Katoen?
Carsten Kern? Martin Leucker?

s’ RWTHAACHEY 2

Laboratoire Spécification = Lehrstuhl fiir Informatik 2 Institut fiir Informatik
et Vérification

TACAS 2007, March 28"

Outline

@ Introduction

9 Angluin’s Learning Approach
9 Learning Design Models

@ Dedicated Tool: Smyle

© Conclusion

Introduction

Presentation outline

@ Introduction

Introduction
[le]

Motivation

@ initial phase: requirement elicitation

@ contradicting or incomplete system description
@ common description language: sequence diagrams

Introduction
[le]

Motivation

Design
(complete)

@ initial phase: requirement elicitation

@ contradicting or incomplete system description
@ common description language: sequence diagrams

@ goal: conforming design model

Introduction
[le]

Motivation

—
G . s

@ initial phase: requirement elicitation

@ contradicting or incomplete system description
@ common description language: sequence diagrams

@ goal: conforming design model

Introduction
[le]

Motivation

Desi
4,[(C?)Sr;g;e te) Implementation]—— e

@ initial phase: requirement elicitation

@ contradicting or incomplete system description

¢ common description language: sequence diagrams
@ goal: conforming design model
@ closing gap between

@ requirement specification (usually incomplete) and
@ design model (complete description of system)

Introduction
[le]

Motivation

Desi
—{ (C?)Sr;g;e te) Implementation]—— e

@ initial phase: requirement elicitation

@ contradicting or incomplete system description

¢ common description language: sequence diagrams
@ goal: conforming design model
@ closing gap between

@ requirement specification (usually incomplete) and
@ design model (complete description of system)

@ similar to Harel’s play-in, play-out approach

Introduction
oe

User

Interaction

MSCs

DFA

Synthesis (MPA)

Tool

Ar:

Az

112(req)

271(req) [|21 (ack)

112(req) 172(zck;*\ 271(req)

Our Approach

@ use learning algorithms to synthesize models for
communication protocols

@ Input: set of Message Sequence Charts
o standardized: ITU Z.120

o included in UML as sequence diagrams
@ Output: MPA fulfilling the specification

@ model is close to implementation

Introduction
e0

Message Sequence Chart

An MSC M = (P, E, {<p}per; <msg, ()
@ P: finite set of processes

o E: finite set of events (E = |J Ep)
peEP

o [:E— Act ={plq(req), p?q(ack),...}

o for p € P: <,C E, x E, is a total order on
E
P

@ <49 relates sending and receiving events

*
° <= <<mng Uper <p)

Introduction
e0

Message Sequence Chart

An MSC M = <P, E, {Sp}pE'Py <m5g7l>

@ P: finite set of processes
o E: finite set of events (E = |J Ep)
peEP
o [:E— Act ={plq(req), p?q(ack),...}
o for p € P: <,C E, x E, is a total order on
Ey
@ <49 relates sending and receiving events
*

° <= <<mng Uper <p)

A set of MSCs is called an MSC language)

A linearization of an MSC is a total ordering of E subsuming <]

Introduction
(o]]

MSCs and Linearizations

Some linearizations

° 112(req) 2!1(ack) 172(ack) 271(req) 271(req)
° 211 (ack) 112(req) 172(ack) 271(req) 271(req)
e 2!1(ack) 271(req) 1!2(req) 2?71(req) 172(ack)
° ...

An MSC M is uniquely determined by its linearizations Lin(M)J

Introduction
e0

Message Passing Automata

@ a set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels
@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

[® = req Ar: Ay
req ack 2 ack

D:\:\:D 1o | 112(req) 271(req)| |2'1(ack)
req ack

buffer head -

re AN
! CLTT T 2 fuegea)| 1726ack) . |221(req)
I I

Introduction
e0

Message Passing Automata

@ a set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

| 2] ® = Au: Ay:

2!1(ack)

D:\:\:D 1o | 112(req) 271(req)

buffer head Te-s

[T T 2o frzea)| J1726ack)

271(req)

Introduction
e0

Message Passing Automata

@ a set of finite-state automata (processes) with
¢ common global initial state
o set of global final states
@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

® = Ay As:

req |
2!1(ack)

EI:\:\:D 1o | 112(req) 271(req)

buffer head Te-s

[T T 2o frzea)| J1726ack)

271(req)

Introduction
e0

Message Passing Automata

@ a set of finite-state automata (processes) with
¢ common global initial state
o set of global final states
@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

® = Ay As:

2!1(ack)

req ack
/| OLTT L] +-e| 2w 2100

buffer head Te-s

LT T T 2ot frztea)| J1726ack)

271(req)

Introduction
e0

Message Passing Automata

@ a set of finite-state automata (processes) with
¢ common global initial state
o set of global final states
@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

[® o A Ag:
req | ack 2 ack

/ EIE\:\:D 1o | 112(req) 271(req)| |2'1(ack)
e~ buffer head ---

271(req)

LT T T 2ot frztea)| J1726ack)

Introduction
e0

Message Passing Automata

@ a set of finite-state automata (processes) with
¢ common global initial state
o set of global final states
@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

1 2] ® = Ar: Ay:

req ack :
OIO[[T 12| M) 2n(ea)
req
buffer head S

[T T 2o frzea)| J1726ack)

2!1(ack)

271(req)

Introduction
e0

Message Passing Automata

@ a set of finite-state automata (processes) with
¢ common global initial state
o set of global final states
@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

1 2] ® = Ar: Ay:

req ack
e[] :-»| 12| 2710w
req
buffer head -
i

req \\
[T T 2o frzea)| J1726ack)

2!1(ack)

271(req)

Introduction
e0

Message Passing Automata

@ a set of finite-state automata (processes) with
¢ common global initial state
o set of global final states
@ communication between automata through (reliable) FIFO
channels
@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

1 2] ® = Ar: Ay:

req

ack -
EIE\:\:D 1o | 112(req) 271(req)
e buffer head -
—

req \\
[T T 2o frzea)| J1726ack)

2!1(ack)

271(req)

Introduction
e0

Message Passing Automata

@ a set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

[® & Ar: Asp:
req ack £ ack

EIE\:\:D 1o | 112(req) 271(req)| |2'1(ack)
req /ack R
re N
M L T T T 2r|uaea)| |172ack) . |271(req)
I I

RWTH

Introduction
e0

Message Passing Automata

@ a set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels
@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

| 2] ® = Au: Ay:
req ack

2!1(ack)

OIO[[T 12| M) 2n(ea)
req ack
buffer head -~
\/

req
LTI 2o igrea)| 172(ack)

271(req)

Introduction
e0

Message Passing Automata

@ a set of finite-state automata (processes) with

¢ common global initial state
o set of global final states
@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

[® = req Ar: Ay
req ack 2 ack

EI:\:\:D 1o | 112(req) 271(req)| |2'1(ack)
req ack

buffer head -

re AN
> CLTT T 2 fuegea)| 1726ack) . |221(req)
I I

Introduction
e0

Message Passing Automata

@ a set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels
@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

[® = req Ar: Ay
req ack 2 ack

D:\:\:D 1o | 112(req) 271(req)| |2'1(ack)
req ack

buffer head -

re AN
! CLTT T 2 fuegea)| 1726ack) . |221(req)
I I

Introduction
oce

Current State

o goal: learning MPA
@ given: learning DFA [Angluin]

Angluin’s Learning Approach

Presentation outline

9 Angluin’s Learning Approach

Angluin’s Learning Approach
e0

Angluin’s algorithm

@ learning regular language L(A) C ¥* in terms of a minimal

DFA A

Angluin’s Learning Approach
e0

Angluin’s algorithm

@ learning regular language L(A) C ¥* in terms of a minimal
DFA A

@ components:
e Learner:

@ initially knows nothing about A
@ tries to learn A
@ proposes hypothetical automaton H

Angluin’s Learning Approach
e0

Angluin’s algorithm

@ learning regular language L(A) C ¥* in terms of a minimal
DFA A

@ components:
e Learner:

@ initially knows nothing about A
@ tries to learn A
@ proposes hypothetical automaton H

o Teacher:
@ knows A

@ answers membership queries of Learner (w € L(A))

Angluin’s Learning Approach
e0

Angluin’s algorithm

@ learning regular language L(A) C ¥* in terms of a minimal
DFA A

@ components:
e Learner:
@ initially knows nothing about A
@ tries to learn A
@ proposes hypothetical automaton H
o Teacher:
o knows A
@ answers membership queries of Learner (w é L(.A))
e Oracle:

@ knows A
@ answers equivalence queries of Learner (L(H) = L(A))

Angluin’s Learning Approach

(o] J

Angluin’s algorithm

Teacher

yes/no answer

Learner

yes or
counter example

@ query complexity: polynomial J

Learning Design Models

Presentation outline

9 Learning Design Models

Learning Design Models
9000000000000

o learning MPA from examples (MSCs)

Learning Design Models
9000000000000

o learning MPA from examples (MSCs)

Approach

o extending Angluin’s algorithm

@ Input: linearizations of MSCs

e positive scenarios are included in the language to learn
e negative scenarios must not be contained

@ positive and negative scenarios form system behavior

Learning Design Models
9000000000000

o learning MPA from examples (MSCs)

Approach

o extending Angluin’s algorithm
@ Input: linearizations of MSCs

e positive scenarios are included in the language to learn
e negative scenarios must not be contained

@ positive and negative scenarios form system behavior

@ correspondence between MPA and regular word languages
needed

Learning Design Models
0000000000000

Defining a Learning Setup

(MPA, MSC, ~)
t

obj elem

|
(minDFA, D, =)

(MPA,MSC, ~) (3, D, =, obj, elem)

ed

~dlosed

Learning Design Models

0O0@0000000000

Defining a Learning Setup

(MPA, MSC, ~) (5. D, =, obj, elem)

(MPA, MSC, ~)
1

obj elem

(minDFA, D, =)

@ membership queries for equiv. words need to be answered
equivalently

Learning Design Models
00e0000000000

Defining a Learning Setup

@ membership queries for equiv. words need to be answered
equivalently

@ having found a hypothesis DFA H:
Q if L(H) £ D, compute counterexample w € L(H) \ D

Learning Design Models
00e0000000000

Defining a Learning Setup

@ membership queries for equiv. words need to be answered
equivalently

@ having found a hypothesis DFA H:

Q if L(H) £ D, compute counterexample w € L(H) \ D

Q else if L(H) C D but L(H) not ~-closed:
— compute w ~ w', w € L(H), w' ¢ L(H) and
— perform membership queries for [w]~

Learning Design Models
000@000000000

Teacher

yes/no answer

Learner

yes or
counter example

(given as MSC)

Learning Design Models
000@000000000

Learner

ves or
| counter example
I (given as MSC)

computer user

Learning Design Models
0000@00000000

Classes of MSCs

M is VB-bounded if

all linearizations of M do not exceed buffer .
bound B

M is 3B-bounded (B € IN) if e

events of M can be scheduled s.t. B is not
exceeded _— -

] -
Definition: Inference relation ; f f }_

@ process sets of M7 and M are distinct

.]
@ Ms is inferred from two MSCs M, My H H

Learning Design Models
00000@0000000

Results

Learnable classes of MPA:
@ V-bounded MPA

@ JB-bounded MPA (for all B € IN)
@ V-bounded safe product MPA

Not learnable
@ V-bounded product MPA
RWTH

Learning Design Models
0000008000000
Example

Ay As: A Ag: A A
!(req) Yreq) C Y D)------- ?(req)
?(ack) 2(req)| |1(ack) (req) ?(req)
(B[| ?(ack) 1(ack) \(req) [| ?(ack)
777777777 (g
not dB-bounded V-bounded not V-bounded
no product MPA product MPA J1-bounded
not safe safe product MPA
safe

Learning Design Models
0000000e00000

Learning Message-Passing Automata

@ for any d-regular MSC language £ one can compute an
MPA A, st. L(A) =L

o for any V-regular MSC language £ one can compute a
deterministic MPA A, s.t. L(A) =L

The V-regular safe product MSC languages are exactly the
languages accepted by V-bounded safe product MPA

@ J/V-regular is treated with ~

@ V-regular safe product is handled by =~, F

Learning Design Models

00000000 e0000

universally-bounded MPA

A universally-bounded MPA

@ Example of a universally-bounded MPA and V3-bounded
MSC
112(req) 271(req)| | 2!1(ack)

112(req) [|172(ack) < |271(req)

@ ~: language equivalence of V-bounded MPA
@ = : linearization equivalence

@ 0bj : mapping a minimal DFA to a V-bounded MPA

@ elem : mapping a linearization to its corresponding MSC

Learning Design Models
0000000008000

Algorithm for V-bounded MPA

Let H be a minimal DFA (hypothesis) |

The problems and are
constructively decidable

Learning Design Models
0000000008000

Algorithm for V-bounded MPA

Let H be a minimal DFA (hypothesis) |

The problems and are
constructively decidable

@ successively mark the states of H with channel contents
@ sending an event adds a message to the corresponding
channel

e receiving an event removes the message from the channel
head

Learning Design Models
0000000008000

Algorithm for V-bounded MPA

Let H be a minimal DFA (hypothesis) |

The problems and are
constructively decidable

@ successively mark the states of H with channel contents
@ sending an event adds a message to the corresponding
channel

e receiving an event removes the message from the channel
head

g T

@ check diamond property for independent o, T

g

Learning Design Models
0000000008000

Algorithm for V-bounded MPA

Let H be a minimal DFA (hypothesis) |

The problems and are
constructively decidable

@ successively mark the states of H with channel contents
@ sending an event adds a message to the corresponding
channel
e receiving an event removes the message from the channel
head

g T

@ check diamond property for independent o, T

o
o if problems in labeling the states are encountered, a
counter example can be constructed and the learning

algorithm continues

Learning Design Models

0000000008000

Algorithm for V-bounded MPA

Let H be a minimal DFA (hypothesis)

The problems and are
constructively decidable

@ successively mark the states of H with channel contents
@ sending an event adds a message to the corresponding

channel
e receiving an event removes the message from the channel
head
o AT
@ check diamond property /. for independent o, T

o if problems in labeling the states are encountered, a
counter example can be constructed and the learning
algorithm continues

Complexity: linear in the size of H)

Learning Design Models
0000000000800

existentially B-bounded MPA

An existentially B-bounded MPA

o Example of an 3B-bounded MPA (bound B = 1)

o ~: language equivalence of 3B-bounded MPA
@ =~ : linearization equivalence for 3B-bounded MSCs
@ 0bj : mapping a minimal DFA to a 9B-bounded MPA

@ clem : mapping a linearization to its corresponding MSC

Learning Design Models
0000000000080

Algorithm for V-bounded safe product MPA

Let H be a ~-closed minimal DFA

The problem if a regular ~-closed set of MSC linearizations is
recognized by some safe product MPA is constructively

decidable (based on EXPSPACE algorithm by
[Alur, Etessami, Yannakakis])

Learning Design Models
0000000000080

Algorithm for V-bounded safe product MPA

Let H be a ~-closed minimal DFA

The problem if a regular ~-closed set of MSC linearizations is
recognized by some safe product MPA is constructively
decidable (based on EXPSPACE algorithm by

[Alur, Etessami, Yannakakis])

@ construct deterministic MPA by projecting H to Act, for
any p € P (determinizing and minimizing the resulting
components): results in (H|,)pep

@ L(H) is recognized by some safe product MPA <=
(H|p)pep is safe and recognizes L(H)

Learning Design Models
0000000000080

Algorithm for V-bounded safe product MPA

Let H be a ~-closed minimal DFA

The problem if a regular ~-closed set of MSC linearizations is
recognized by some safe product MPA is constructively
decidable (based on EXPSPACE algorithm by

[Alur, Etessami, Yannakakis])

@ construct deterministic MPA by projecting H to Act, for
any p € P (determinizing and minimizing the resulting
components): results in (H|,)pep

@ L(H) is recognized by some safe product MPA <=
(H|p)pep is safe and recognizes L(H)

(Hlp)per

chanmel bound exceeded - deadlocks contained?

- buffer bound exceeded?
?

- L(H) - L((H‘p)pep)

Learning Design Models
000000000000 e

Results

Learnable classes of MPA:
@ V-bounded MPA

@ JB-bounded MPA (for all B € IN)
@ V-bounded safe product MPA

Not learnable
@ V-bounded product MPA
RWTH

Dedicated Tool: Smyle

Presentation outline

@ Dedicated Tool: Smyle

Dedicated Tool: Smyle
[leJele]

Tool Demo

information |
File Edit Properties Layout About B
' [[aakar [~[1s [~ [pain [=]
ba®& 86 > | user queries S0 e 7.4L1E
| membersnip queies 575
BamleNoi 1 | {] Bampie Noz1 |

Learning sifeace

o] 7
s - i Linearization
ul] i
Al 62p(ust] 5
i)
Pﬁw:u)\
show Showe | showrmowse | swowan |
1 ot Yt processed queres
Cneairaior ST
) ST Motoah, BTG REGHTE .

pla(120), G7p(rea), alp(chal), p7ahall. . NEGATIVE

o o
pww, z\ rirea) alpicr, p/c(mzm \NECATNE
o INEcA

- pirecy aiochai: el NECATIE
plare0), 7o), alp(cha,
). crpt

Getting ney
Getting nel

[INEGATIVE

) 5| [aeq
e piaed [NecaTvE
G [i [“Showrnomsc | showan
(8 T

sEce ot
el="p7 o o
[abel="g/pcc)'] a7 -> g1 label=

abel="qip(chall'T 98 -> g1 abe

48 > q1 Tabel="plagu
Tetei= e 8 - o1 Tabal= ot el="97p(just’; g3 -> q1 label="pigjus
L CHaiN L35 > A1 Dabele sty 3 5 4 e el a9 > 1 T s ot o 5ot

qu(aémqs ~>q1 ‘

Dedicated Tool: Smyle
[e] Jele]

A Negotiation Protocol

» q » q req req
1' p req req chal chal
req req chal chal just just
acc Tef just Just chal chal
acc ref just just
——— — ——— — acc ref
——— — ——— —
—— E—— —— E——

membership queries: 9675
user queries: 60

Dedicated Tool: Smyle
[e]e] o]

Alternating Bit Protocol (after 105 user queries

T p()(6! 7 1)7p 1)

| {[Query histo

il

ol o-tsc
lorea] No-Msc
l INO_MST

Eol

/@ oo o 2

o c
n‘ (0)] INO_MSC.
sowrr | showrr | shwnonsc | showan

‘ot yet processed queries
o Example Type

ity (91C(0), 700), p! cip(a), p7c... NEGATIVE -
. [01(0), r>u(o) uwo) rm(z) t70(0) p7c...[NEGATVE
10 (91C(0), PIC(0), C0(0), PIC(O), CIp(a), P7c... NEGATVE
Eron: - p(0). poc. INEGATIVE
o [NEG,
}MEGAT\\/E
.
(a2 3
E" -
)

2o et

(s 1)

a0
o
\
y
EEN
{1
N
' ;
Q) fre)) "
1
; ;

@), b
p1c(0), ©P(0), CIp(@), PIC(O), PECa), pic
[PIE(0), plc(0), 7p(0), clp(a), ©2p(0), p7c...[NEGATIVE
[B1€(0), PIE(0), 7D(0), cIn(@), C7pi0), prc... NEGATIVE
2) [PI(0), Zp(0), Clp(a@), ple(0), prc(a), pic... NEGATIVE
815(0), pc(0), C7p(0), CIn(a), p7c(a), ... NEGATIVE

301 [01c(0), 70(0), CIp(@), pIC(0), 7p(0), p7e...NEGATVE
[(B1c(0), ZB(0), pIE(O), cIp(a), B7c(a), plc... NEGATIVE

[p1c(0), plc(0), 7R(0), clp@), pc(a), plc... NEGATIVE.
51<(0), 0,) B7C(a), ... NEGATIVE

), pPc. \MECAT\VE

100 ple)

=
3

160) 301 el

-,

[oma)| RWTH

Dedicated Tool: Smyle
[e]e]e])

Implementation of learning approach: Smyle

S(ynthesizing) M(odels) (b)Y L(earning from) E(xamples)
@ written in Java 1.5

@ uses LearnLib library from University of Dortmund
(Lehrstuhl 5, Prof. Dr. Bernhard Steffen)

@ Smyle homepage:
http://smyle.in.tum.de

http://smyle.in.tum.de

Conclusion

Presentation outline

© Conclusion

Conclusion
[le]e}

Related Work

Similar Approaches

® Play-In/Play-Out approach [Harel et al.]
@ use the more expressive language of LSCs
@ more involved treatment of negative scenarios
@ MAS (Minimally Adequate Synthesizer) [Mékinen et al.]
o based on Angluin’s learning approach
@ only synchronous/sequential behavior
@ implementation model is not distributed

Conclusion
(o] le}

Outlook

more efficient partial order treatment

(]

dealing with don’t know answers
discover new/broader classes of learnable MPA

case studies

http://smyle.in.tum.de

Thank you for your attention! J

RWTHAACHEN
UNIVERSITY

	Introduction
	
	
	

	Angluin's Learning Approach
	

	Learning Design Models
	

	Dedicated Tool: Smyle
	

	Conclusion
	

