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Motivation
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@ initial phase: requirement elicitation

@ contradicting or incomplete system description

¢ common description language: sequence diagrams
@ goal: conforming design model
@ closing gap between

@ requirement specification (usually incomplete) and
@ design model (complete description of system)

@ similar to Harel’s play-in, play-out approach
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User

Interaction

MSCs

DFA

Synthesis (MPA)

Tool

Ar:

Az

112(req)

271(req) [ |21 (ack)

112(req) 172(zck;\\*\ 271(req)

Our Approach

@ use learning algorithms to synthesize models for
communication protocols

@ Input: set of Message Sequence Charts
o standardized: ITU Z.120

o included in UML as sequence diagrams
@ Output: MPA fulfilling the specification

@ model is close to implementation
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Message Sequence Chart

An MSC M = (P, E, {<p}per; <msg, ()
@ P: finite set of processes

o E: finite set of events (E = |J Ep)
peEP

o [:E— Act ={plq(req), p?q(ack),...}

o for p € P: <,C E, x E, is a total order on
E
P

@ <49 relates sending and receiving events

*
° <= <<mng Uper <p)




Introduction
e0

Message Sequence Chart

An MSC M = <P, E, {Sp}pE'Py <m5g7l>

@ P: finite set of processes
o E: finite set of events (E = |J Ep)
peEP
o [:E— Act ={plq(req), p?q(ack),...}
o for p € P: <,C E, x E, is a total order on
Ey
@ <49 relates sending and receiving events
*

° <= <<mng Uper <p)

A set of MSCs is called an MSC language )

A linearization of an MSC is a total ordering of E subsuming <]
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MSCs and Linearizations

Some linearizations

° 112(req) 2!1(ack) 172(ack) 271(req) 271(req)
° 211 (ack) 112(req) 172(ack) 271(req) 271(req)
e 2!1(ack) 271(req) 1!2(req) 2?71(req) 172(ack)
° ...

An MSC M is uniquely determined by its linearizations Lin(M )J
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Message Passing Automata

@ a set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels
@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

[ ® = req Ar: Ay
req ack 2 ack

D:\:\:D 1o | 112(req) 271(req)| |2'1(ack)
req ack

buffer head -

re AN
! CLTT T 2 fuegea)| 1726ack) . |221(req)
I I
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Current State

o goal: learning MPA
@ given: learning DFA [Angluin]
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Angluin’s algorithm

@ learning regular language L(A) C ¥* in terms of a minimal
DFA A

@ components:
e Learner:
@ initially knows nothing about A
@ tries to learn A
@ proposes hypothetical automaton H
o Teacher:
o knows A
@ answers membership queries of Learner (w é L(.A))
e Oracle:

@ knows A
@ answers equivalence queries of Learner (L(H) = L(A))
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Angluin’s algorithm

Teacher

yes/no answer

Learner

yes or
counter example

@ query complexity: polynomial J
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o extending Angluin’s algorithm

@ Input: linearizations of MSCs

e positive scenarios are included in the language to learn
e negative scenarios must not be contained

@ positive and negative scenarios form system behavior
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o learning MPA from examples (MSCs)

Approach

o extending Angluin’s algorithm
@ Input: linearizations of MSCs

e positive scenarios are included in the language to learn
e negative scenarios must not be contained

@ positive and negative scenarios form system behavior

@ correspondence between MPA and regular word languages
needed
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Defining a Learning Setup

(MPA, MSC, ~)
t

obj elem

|
(minDFA, D, =)

(MPA,MSC, ~) (3, D, =, obj, elem)

ed

~dlosed
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Defining a Learning Setup

(MPA, MSC, ~) (5. D, =, obj, elem)

(MPA, MSC, ~ )
1

obj elem

(minDFA, D, =)

@ membership queries for equiv. words need to be answered
equivalently
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Defining a Learning Setup

@ membership queries for equiv. words need to be answered
equivalently

@ having found a hypothesis DFA H:

Q if L(H) £ D, compute counterexample w € L(H) \ D

Q else if L(H) C D but L(H) not ~-closed:
— compute w ~ w', w € L(H), w' ¢ L(H) and
— perform membership queries for [w]~
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Teacher

yes/no answer

Learner

yes or
counter example

(given as MSC)
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Learner

ves or
| counter example
I (given as MSC)

computer user
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Classes of MSCs

M is VB-bounded if

all linearizations of M do not exceed buffer .
bound B

M is 3B-bounded (B € IN) if e

events of M can be scheduled s.t. B is not
exceeded _— -

] -
Definition: Inference relation ; f f }_

@ process sets of M7 and M are distinct

. ]
@ Ms is inferred from two MSCs M, My H H
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Results

Learnable classes of MPA:
@ V-bounded MPA

@ JB-bounded MPA (for all B € IN)
@ V-bounded safe product MPA

Not learnable
@ V-bounded product MPA
RWTH
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Example

Ay As: A Ag: A A
!(req) Yreq) C Y D)------- ?(req)
?(ack) 2(req)| |1(ack) (req) ?(req)
(B[ | ?(ack) 1(ack) \(req) [ | ?(ack)
777777777 (g
not dB-bounded V-bounded not V-bounded
no product MPA product MPA J1-bounded
not safe safe product MPA
safe
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Learning Message-Passing Automata

@ for any d-regular MSC language £ one can compute an
MPA A, st. L(A) =L

o for any V-regular MSC language £ one can compute a
deterministic MPA A, s.t. L(A) =L

The V-regular safe product MSC languages are exactly the
languages accepted by V-bounded safe product MPA

@ J/V-regular is treated with ~

@ V-regular safe product is handled by =~, F
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universally-bounded MPA

A universally-bounded MPA

@ Example of a universally-bounded MPA and V3-bounded
MSC
112(req) 271(req)| | 2!1(ack)

112(req) [ |172(ack) < |271(req)

@ ~: language equivalence of V-bounded MPA
@ = : linearization equivalence

@ 0bj : mapping a minimal DFA to a V-bounded MPA

@ elem : mapping a linearization to its corresponding MSC




Learning Design Models
0000000008000

Algorithm for V-bounded MPA

Let H be a minimal DFA (hypothesis) |

The problems and are
constructively decidable
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@ sending an event adds a message to the corresponding
channel

e receiving an event removes the message from the channel
head
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Algorithm for V-bounded MPA

Let H be a minimal DFA (hypothesis)

The problems and are
constructively decidable

@ successively mark the states of H with channel contents
@ sending an event adds a message to the corresponding

channel
e receiving an event removes the message from the channel
head
o AT
@ check diamond property /. for independent o, T

o if problems in labeling the states are encountered, a
counter example can be constructed and the learning
algorithm continues

Complexity: linear in the size of H )
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existentially B-bounded MPA

An existentially B-bounded MPA

o Example of an 3B-bounded MPA (bound B = 1)

o ~: language equivalence of 3B-bounded MPA
@ =~ : linearization equivalence for 3B-bounded MSCs
@ 0bj : mapping a minimal DFA to a 9B-bounded MPA

@ clem : mapping a linearization to its corresponding MSC
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Algorithm for V-bounded safe product MPA

Let H be a ~-closed minimal DFA

The problem if a regular ~-closed set of MSC linearizations is
recognized by some safe product MPA is constructively

decidable (based on EXPSPACE algorithm by
[Alur, Etessami, Yannakakis])
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Algorithm for V-bounded safe product MPA

Let H be a ~-closed minimal DFA

The problem if a regular ~-closed set of MSC linearizations is
recognized by some safe product MPA is constructively
decidable (based on EXPSPACE algorithm by

[Alur, Etessami, Yannakakis])

@ construct deterministic MPA by projecting H to Act, for
any p € P (determinizing and minimizing the resulting
components): results in (H|,)pep

@ L(H) is recognized by some safe product MPA <=
(H|p)pep is safe and recognizes L(H)
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Algorithm for V-bounded safe product MPA

Let H be a ~-closed minimal DFA

The problem if a regular ~-closed set of MSC linearizations is
recognized by some safe product MPA is constructively
decidable (based on EXPSPACE algorithm by

[Alur, Etessami, Yannakakis])

@ construct deterministic MPA by projecting H to Act, for
any p € P (determinizing and minimizing the resulting
components): results in (H|,)pep

@ L(H) is recognized by some safe product MPA <=
(H|p)pep is safe and recognizes L(H)

(Hlp)per

chanmel bound exceeded - deadlocks contained?

- buffer bound exceeded?
?

- L(H) - L((H‘p)pep)
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Results

Learnable classes of MPA:
@ V-bounded MPA

@ JB-bounded MPA (for all B € IN)
@ V-bounded safe product MPA

Not learnable
@ V-bounded product MPA
RWTH
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Dedicated Tool: Smyle
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A Negotiation Protocol

» q » q req req
1' p req req chal chal
req req chal chal just just
acc Tef just Just chal chal
acc ref just just
——— — ——— — acc ref
——— — ——— —
—— E—— —— E——

membership queries: 9675
user queries: 60
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Dedicated Tool: Smyle
[e]e]e] )

Implementation of learning approach: Smyle

S(ynthesizing) M(odels) (b)Y L(earning from) E(xamples)
@ written in Java 1.5

@ uses LearnLib library from University of Dortmund
(Lehrstuhl 5, Prof. Dr. Bernhard Steffen)

@ Smyle homepage:
http://smyle.in.tum.de
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Related Work

Similar Approaches

® Play-In/Play-Out approach [Harel et al.]
@ use the more expressive language of LSCs
@ more involved treatment of negative scenarios
@ MAS (Minimally Adequate Synthesizer) [Mékinen et al.]
o based on Angluin’s learning approach
@ only synchronous/sequential behavior
@ implementation model is not distributed
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Outlook

more efficient partial order treatment

(]

dealing with don’t know answers
discover new/broader classes of learnable MPA

case studies
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Thank you for your attention! J

RWTHAACHEN
UNIVERSITY
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