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Motivation

Requirements
(incomplete)

initial phase: requirement elicitation

contradicting or incomplete system description
common description language: sequence diagrams

goal: conforming design model

closing gap between

requirement specification (usually incomplete) and
design model (complete description of system)

similar to Harel’s play-in, play-out approach
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Tool

User

MSCs DFA
Synthesis (MPA)

Interaction

host fct.
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ack
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!snd

?snd

!snd

!snd
!ack

?snd!snd

?snd!snd?ack!ack

!ack ?ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:

Our Approach

use learning algorithms to synthesize models for
communication protocols

Input: set of Message Sequence Charts

standardized: ITU Z.120
included in UML as sequence diagrams

Output: MPA fulfilling the specification

model is close to implementation
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Message Sequence Chart

1 2

req

req

ack

An MSC M = 〈P, E, {≤p}p∈P , <msg, l〉

P: finite set of processes

E: finite set of events (E =
⋃

p∈P

Ep)

l : E → Act = {p!q(req), p?q(ack), . . . }

for p ∈ P: <p⊆ Ep × Ep is a total order on
Ep

<msg relates sending and receiving events

≤=
(

<msg∪
⋃

p∈P <p

)∗

A set of MSCs is called an MSC language

A linearization of an MSC is a total ordering of E subsuming ≤
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MSCs and Linearizations

1 2

req

req

ack

Some linearizations

1!2(req) 1!2(req) 2!1(ack) 1?2(ack) 2?1(req) 2?1(req)

1!2(req) 2!1(ack) 1!2(req) 1?2(ack) 2?1(req) 2?1(req)

2!1(ack) 1!2(req) 2?1(req) 1!2(req) 2?1(req) 1?2(ack)

. . .

An MSC M is uniquely determined by its linearizations Lin(M)



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Message Passing Automata

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q
q?p(a) removes message a from buffer between p and q

1 2
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req

req

ack

ack

1 → 2

2 → 1

buffer head

, req

, ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Message Passing Automata

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q
q?p(a) removes message a from buffer between p and q

1 2

1 → 2

2 → 1

buffer head

, req

, ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Message Passing Automata

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q
q?p(a) removes message a from buffer between p and q

1 2

req

1 → 2

2 → 1

buffer head

, req

, ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Message Passing Automata

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q
q?p(a) removes message a from buffer between p and q

1 2

req ack

1 → 2

2 → 1

buffer head

, req

, ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Message Passing Automata

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q
q?p(a) removes message a from buffer between p and q

1 2

req

req

ack

1 → 2

2 → 1

buffer head

, req

, ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Message Passing Automata

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q
q?p(a) removes message a from buffer between p and q

1 2

req

req

ack

1 → 2

2 → 1

buffer head

, req

, ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Message Passing Automata

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q
q?p(a) removes message a from buffer between p and q

1 2

req

req

req

ack

1 → 2

2 → 1

buffer head

, req

, ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Message Passing Automata

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q
q?p(a) removes message a from buffer between p and q

1 2

req

req

req

ack

1 → 2

2 → 1

buffer head

, req

, ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Message Passing Automata

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q
q?p(a) removes message a from buffer between p and q

1 2

req

req

req

ack

ack

1 → 2

2 → 1

buffer head

, req

, ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Message Passing Automata

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q
q?p(a) removes message a from buffer between p and q

1 2

req

req

req

ack

ack

1 → 2

2 → 1

buffer head

, req

, ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Message Passing Automata

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q
q?p(a) removes message a from buffer between p and q

1 2

req

req

req

ack

ack

1 → 2

2 → 1

buffer head

, req

, ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Message Passing Automata

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q
q?p(a) removes message a from buffer between p and q

1 2

req

req

req

ack

ack

1 → 2

2 → 1

buffer head

, req

, ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Current State

Current State

goal: learning MPA

given: learning DFA [Angluin]
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Angluin’s algorithm

Idea:

learning regular language L(A) ⊆ Σ∗ in terms of a minimal
DFA A

components:
Learner:

initially knows nothing about A

tries to learn A

proposes hypothetical automaton H

Teacher:

knows A

answers membership queries of Learner
`

w
?

∈ L(A)
´

Oracle:

knows A

answers equivalence queries of Learner
`

L(H)
?
= L(A)

´
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Angluin’s algorithm

Learner

Teacher

Oracle

w
?
∈ L(A)

yes/no answer

L(H)
?
= L(A)

yes or
counter example

query complexity: polynomial
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Goal

learning MPA from examples (MSCs)

Approach

extending Angluin’s algorithm

Input: linearizations of MSCs

positive scenarios are included in the language to learn
negative scenarios must not be contained

positive and negative scenarios form system behavior

Problem

correspondence between MPA and regular word languages
needed
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Defining a Learning Setup

obj elem

(MPA, MSC,∼ )

(minDFA,D,≈)

elem

elem

elem

obj

obj

(MPA, MSC,∼ ) (Σ,D,≈, obj , elem)

D

D

≈-closed

≈-closed

∼

∼
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(MPA, MSC,∼ ) (Σ,D,≈, obj , elem)

D

D
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≈-closed

∼

∼

membership queries for equiv. words need to be answered
equivalently

having found a hypothesis DFA H:

1 if L(H) 6⊆ D, compute counterexample w ∈ L(H) \ D

2 else if L(H) ⊆ D but L(H) not ≈-closed:
– compute w ≈ w′, w ∈ L(H), w′ 6∈ L(H) and
– perform membership queries for [w]≈
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Learner

Teacher

Oracle

MSC
?
∈ L(A)

yes/no answer

L(H)
?
= L(A)

yes or
counter example
(given as MSC)
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Learner

Teacher

Oracle

MSC
?
∈ L(A)

yes/no answer

L(H)
?
= L(A)

yes or
counter example
(given as MSC)

usercomputer
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Classes of MSCs

M is ∀B-bounded if

all linearizations of M do not exceed buffer
bound B

M is ∃B-bounded (B ∈ IN) if

events of M can be scheduled s.t. B is not
exceeded

Definition: Inference relation ⊢

process sets of M1 and M2 are distinct

M3 is inferred from two MSCs M1,M2

1 2

req

req

req

req

ack

ack

ack

1 2
req

req

req

req

req

1 2

a

M1:

,

3 4

a

M2:

⊢

1 2 3 4

a a

M3:
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Results

Learnable classes of MPA:

∀-bounded MPA

∃B-bounded MPA (for all B ∈ IN)

∀-bounded safe product MPA

Not learnable

∀-bounded product MPA



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Example

!( req )

?( req )

?(ack)

!(ack)!( req ) ?(ack)

?( req ) !(ack)

A1: A2:

not ∃B-bounded
no product MPA

not safe

!(req)

?(req)!(req) ?(ack)

?(req) !(ack)

A1: A2:

∀-bounded
product MPA

safe

!(req) ?(req)

A1: A2:

not ∀-bounded
∃1-bounded

product MPA
safe
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Learning Message-Passing Automata

Theorem: [Genest,Kuske,Muscholl], [Henriksen et al.]

for any ∃-regular MSC language L one can compute an
MPA A, s.t. L(A) = L

for any ∀-regular MSC language L one can compute a
deterministic MPA A, s.t. L(A) = L

Theorem:

The ∀-regular safe product MSC languages are exactly the
languages accepted by ∀-bounded safe product MPA

∃/∀-regular is treated with ≈

∀-regular safe product is handled by ≈, ⊢
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universally-bounded MPA

A universally-bounded MPA

Example of a universally-bounded MPA and ∀3-bounded
MSC

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:
1 2

req

req

req

ack

ack

∼: language equivalence of ∀-bounded MPA

≈ : linearization equivalence

obj : mapping a minimal DFA to a ∀-bounded MPA

elem : mapping a linearization to its corresponding MSC
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Algorithm for ∀-bounded MPA

Let H be a minimal DFA (hypothesis)

The problems L(H) ⊆ D and L(H) is ≈-closed are
constructively decidable

successively mark the states of H with channel contents

sending an event adds a message to the corresponding
channel
receiving an event removes the message from the channel
head

check diamond property for independent σ, τ

if problems in labeling the states are encountered, a
counter example can be constructed and the learning
algorithm continues

Complexity: linear in the size of H
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existentially B-bounded MPA

An existentially B-bounded MPA

Example of an ∃B-bounded MPA (bound B = 1)

1!2(req) 2?1(req)

A1: A2:

1 2
req

req

req

req

req

∼: language equivalence of ∃B-bounded MPA

≈ : linearization equivalence for ∃B-bounded MSCs

obj : mapping a minimal DFA to a ∃B-bounded MPA

elem : mapping a linearization to its corresponding MSC
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Algorithm for ∀-bounded safe product MPA

Let H be a ≈-closed minimal DFA

The problem if a regular ≈-closed set of MSC linearizations is
recognized by some safe product MPA is constructively
decidable (based on EXPSPACE algorithm by

[Alur, Etessami, Yannakakis])

construct deterministic MPA by projecting H to Actp for
any p ∈ P (determinizing and minimizing the resulting
components): results in (H|p)p∈P

L(H) is recognized by some safe product MPA ⇐⇒
(H|p)p∈P is safe and recognizes L(H)

- deadlocks contained?
- buffer bound exceeded?
- L(H)

?
= L((H|p)p∈P)



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Algorithm for ∀-bounded safe product MPA

Let H be a ≈-closed minimal DFA

The problem if a regular ≈-closed set of MSC linearizations is
recognized by some safe product MPA is constructively
decidable (based on EXPSPACE algorithm by

[Alur, Etessami, Yannakakis])

construct deterministic MPA by projecting H to Actp for
any p ∈ P (determinizing and minimizing the resulting
components): results in (H|p)p∈P

L(H) is recognized by some safe product MPA ⇐⇒
(H|p)p∈P is safe and recognizes L(H)

- deadlocks contained?
- buffer bound exceeded?
- L(H)

?
= L((H|p)p∈P)



Introduction Angluin’s Learning Approach Learning Design Models Dedicated Tool: Smyle Conclusion

Algorithm for ∀-bounded safe product MPA

Let H be a ≈-closed minimal DFA

The problem if a regular ≈-closed set of MSC linearizations is
recognized by some safe product MPA is constructively
decidable (based on EXPSPACE algorithm by

[Alur, Etessami, Yannakakis])

construct deterministic MPA by projecting H to Actp for
any p ∈ P (determinizing and minimizing the resulting
components): results in (H|p)p∈P

L(H) is recognized by some safe product MPA ⇐⇒
(H|p)p∈P is safe and recognizes L(H)

Deadlock

channel bound exceeded

(H|p)p∈P

- deadlocks contained?
- buffer bound exceeded?
- L(H)

?
= L((H|p)p∈P)
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Results

Learnable classes of MPA:

∀-bounded MPA

∃B-bounded MPA (for all B ∈ IN)

∀-bounded safe product MPA

Not learnable

∀-bounded product MPA
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Tool Demo
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A Negotiation Protocol

p q

req

acc

p q

req

ref

p q

req

chal

just

acc

p q

req

chal

just

ref

p q

req

chal

just

chal

just

acc

p q

req

chal

just

chal

just

ref

p q

req

p q

chal

just

p q

ref

p q

acc

Smyle
=⇒ 1 2 3

6

4

5

7 89

!req ?req !chal

?chal

!just

?just

!acc!ref

?ref ?acc

membership queries: 9675
user queries: 60
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Alternating Bit Protocol (after 105 user queries)
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Implementation of learning approach: Smyle

S(ynthesizing) M(odels) (b)Y L(earning from) E(xamples)

written in Java 1.5

uses LearnLib library from University of Dortmund
(Lehrstuhl 5, Prof. Dr. Bernhard Steffen)

Smyle homepage:
http://smyle.in.tum.de

http://smyle.in.tum.de
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Related Work

Similar Approaches

Play-In/Play-Out approach [Harel et al.]

use the more expressive language of LSCs
more involved treatment of negative scenarios

MAS (Minimally Adequate Synthesizer) [Mäkinen et al.]

based on Angluin’s learning approach
only synchronous/sequential behavior
implementation model is not distributed
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Outlook

Current Work

more efficient partial order treatment

dealing with don’t know answers

discover new/broader classes of learnable MPA

case studies

. . .
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http://smyle.in.tum.de

Thank you for your attention!
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