MSCan
A Tool for Analyzing MSC Specifications

Benedikt Bollig! Carsten Kern? Markus Schliitter?
Volker Stolz?

st RWTH:C) 2

Laboratoire Spécification = Lehrstuhl Informatik 2
et Vérification

TACAS 2006, March 30

Outline

9 Introduction to Message Sequence Charts
@ Message Sequence Charts (MSCs)
@ Message Sequence Graphs (MSGs)

© Implementability
@ The Formal Model of CFMs
@ Examples

© Tool Presentation

@ Summary and Outlook

Introduction to Message Sequence Charts

Presentation outline

0 Introduction to Message Sequence Charts
@ Message Sequence Charts (MSCs)
@ Message Sequence Graphs (MSGs)

Introduction to Message Sequence Charts

@00

Message Sequence Charts (MSCs)

What are Message Sequence Charts

@ Visual specification language

@ Often used in the design of communication protocols
o Standardized: ITU-TS Recommendation Z.120

@ Similar to UML’s sequence diagrams

&

What does our tool provide
@ MSCAN tests MSC specifications for implementability

RWTH

Introduction to Message Sequence Charts
(o] le}

An MSC Example

Driver Control Unit Wheel Sensor Break
l | | |

Encountering
danger

€1 €2

getSensorData

sendSensorData

checkData [:
regulateBfeakPower e

S

Introduction to Message Sequence Charts
[efe]]

Definition: Compositional MSC (CMSC)
[Gunter & Muscholl & Peled TACAS'01]

A CMSC is a tuple M = (P, E,t,m, <)
@ P finite set of processes

o E= | E, = Send W Rec set of events
peEP

t: E— {plg, ¢’p | p,q € P} labeling function

(4

(]

m : S—— R partial injective matching function
(respects FIFO)

< C E x FE partial order on events
E, is totally ordered by <

(]

(]

If m is total and bijective, we call M an MSC)
RWTH

Introduction to Message Sequence Charts
[Je]

A CMSG Example (Alternating-Bit Protocol)

N/ .
I An execution
Sender | [Recehver | Sender | |Receiver|
—eq

I E— \
—®
Sender | [Receiver

= D

P O—>]

Sender Receiver

P O—>

Introduction to Message Sequence Charts
[Je]

A CMSG Example (Alternating-Bit Protocol)

N/ .
I An execution
Sender | [Recehver | Sender | |Receiver|
—eq

_,.\

P O—>]

Sender Receiver

P O—>

Introduction to Message Sequence Charts
[Je]

A CMSG Example (Alternating-Bit Protocol)

N/ .
I An execution
Sender | [Recehver | Sender | |Receiver|
—eq

: Sender | [Receiver :
@

= D

P O—>]

Sender Receiver

P O—>

Introduction to Message Sequence Charts
[Je]

A CMSG Example (Alternating-Bit Protocol)

N/ .
I An execution
Sender | [Recehver | Sender | |Receiver|
—eq

: Sender Receiver :

= D

P O—>]

Sender Receiver

P O—>

Introduction to Message Sequence Charts
[Je]

A CMSG Example (Alternating-Bit Protocol)

N/

/| Sender Receiver|

—eq

: Sender Receiver :

L >e¢q

P O—>]

Sender Receiver

P O—>

An execution

| Sender | |Receiver|

) is safe and regular.

N

Introduction to Message Sequence Charts
oe

Definition: Compositional MSGs (CMSGs)
[Gunter & Muscholl & Peled TACAS'01]

A CMSG is a tuple G = (V, R, VO, V/)\)
@ (V, R): finite graph (RCV x V)
e V0 C V: set of start nodes
e Vf C V: set of end nodes
@ \:V — CMSC: node labeling function

If A maps to MSC, then G is called an MSG.

Implementability

Presentation outline

© Implementability
@ The Formal Model of CFMs
@ Examples

Implementability

Definition: Communicating Finite-State Machine (CFM)

Let P be a given finite set.

A CFM A = ((Ap)pep, F)

o (Ap)pep: collection of local automata

@ F C [] Sp: set of global final states
peEP

Ap = (Sp, 5p, —p)

finite automaton
@ 5, finite set of local states
® s, € Sp: local start state
o —,C Sy x {plg, p?q| g € P} x Sy
local transition relation)
RWTH

Implementability
[leJele]

An easy example

Implementability
[leJele]

An easy example

Implementability
[leJele]

An easy example

Implementability
[leJele]

An easy example

The problem we face:
Deadlocks
The solution:
Local-choice MSGs

Implementability
[e] Jele]

Local-choice CMSG
[Genest TACAS'05; Ben-Abdallah & Leue TACAS'97]

Implementability
[e] Jele]

Local-choice CMSG
[Genest TACAS'05; Ben-Abdallah & Leue TACAS'97]

Implementability
[e] Jele]

Local-choice CMSG
[Genest TACAS'05; Ben-Abdallah & Leue TACAS'97]

Implementability
[e] Jele]

Local-choice CMSG
[Genest TACAS'05; Ben-Abdallah & Leue TACAS'97]

Implementability
[e] Jele]

Local-choice CMSG
[Genest TACAS'05; Ben-Abdallah & Leue TACAS'97]

Plg(a), R

s on p—q: (aL) (bL) (bR)
:f/)ﬂu]) q—p:

Implementability
[e] Jele]

Local-choice CMSG
[Genest TACAS'05; Ben-Abdallah & Leue TACAS'97]

Plg(a), R

o p—q:(bL) (bR)
omik) q—p:

Implementability
[e] Jele]

Local-choice CMSG
[Genest TACAS'05; Ben-Abdallah & Leue TACAS'97]

Plg(a), R

q?’p(a), L anb), L
q'p(b), L
QL)) &
Cr] a7
; p—q:(bR)
—e (bR) q—p:
L

Implementability
[e] Jele]

Local-choice CMSG
[Genest TACAS'05; Ben-Abdallah & Leue TACAS'97]

Plg(a), R

q?p(a), L @‘ q?p(b), L

q’p(a), R

: P—q:
q—p:

Implementability
[e] Jele]

Local-choice CMSG
[Genest TACAS'05; Ben-Abdallah & Leue TACAS'97]

Plg(a), R

Implementability
[e] Jele]

Local-choice CMSG
[Genest TACAS'05; Ben-Abdallah & Leue TACAS'97]

¢?p(a), L

a?p(a), R @’ a'p(d), R

: P—q:
: q—p:

Implementability
[e]e] o]

Globally cooperative CMSGs

[Genest et al. ICALP’02; Morin STACS'02]

Globally coop. = implementable

Not globally cooperative!

Implementability
[e]e] o]

Globally cooperative CMSGs

[Genest et al. ICALP’02; Morin STACS'02]

Globally coop. = implementable

Special case: Regularity
[Henriksen et al. ICALP’00]

Implementability
[efe]e])

Overview

Property Complexity Implementable
w/wo deadlocks

local P YES / YES

local-choice p YES / YES

[Genest et al. ICALP’02]
locally coop. | P YES / NO
[Genest et al. ICALP’02]
regular Co-NP complete YES / NO
globally coop. | Co-NP complete YES / NO

[Muscholl & Peled MFCS’99]

[Genest & Kuske &
Muscholl IC’06]

generally

NO / NO

Safe/globally cooperative CMSGs come along with decidable
model-checking problems! [Madhusudan & Meenakshi FSTTCS’01]

[Genest & Kuske & Muscholl Information&Computation’06]

RWTH

Tool Presentation

Presentation outline

© Tool Presentation

dis

select properties
to analyze

MSCan (alyzer!

File Edit ‘Analyze

BEE]

play Graph
analyze results of current
Message Sequence Graph

v.1

LoolAndFeel AHout

> ®

Tool Presentation

check whole directories’
Message Sequence Graphs

1

Server endinstance;
Browser endinstance;
Userendinstance;

endms,

o Examu\e Messeng

Ll (mmahz&)
L2 (ogin)
L3 (falledLoginy

L6:(senciSuccess)
L7:(mailDeliveryErrar)
Le:(thatRequest)

er;
seq (L2 amL3);
seq (L16);

seq (L1);

seq (L5);

seq (L6 alt L7);

q (L2);

seq (L5);
seq (L9 alt L10);

Lo (chatPartnerOnline) seq (L11 alt L12);
L10:(chatPartnerNotnline) seq (L8 al L2);
L11:(partneracceptsChat sae) (L13);
L12:(nartnerNotcceptsChat) 2 (8 a2y

153 —» (150 154},
154 [laby
154 -> {149 153 §
155 [label="Process
155 =» (149}

¥
the hmse is nat regular befause the communication graph of path
NOT strongly connected.

the given HCMSE from file "bigfxample, mse s NOT regular

Processnt. - 418, pracess name: Chat, process Kind: VariablenDeklarationen 1,

458, process name: Carsten, process kind. VariablenDeklarationen: (1

%
153 [label="Procassnb: 293, process narme: User2 | pracess kinck: ViariablenDeklaratioren: (1", fontsize=16];

 fonisize=16];

fontsize=16];

login, chatRequest, chatParneronlin

O

hat, ghat

U1z cha) seq (U13 an L14)

L14 (tha!End) seq (LZ)

L15:{logout 17);

L16: tnndmnn menuselection seq (L4 alt L8 alt L15);

L17:end;
encimsg; e Exumple Moss engr

EHl I Il " I
A
| | |
152 -5 {151

|

\\ //

displayable
communication graph

displayable
Message Sequence Graph
nodes

displayable and
displayed path

Tool

Presentation

msc

endrmsc;

msc logout;
inst User;
inst Browser;
inst Server;
inst Database;
User: out logout to Browser;
Brovrser: in logaut from Lser;
Browser: Ut l0goLt 10 Server;
Server. in logout from Browser;
Server: out logoutllser 1o Database;
Database: in logoutlser from Server;
Server: out logoutScreen 10 Browser;
Browser: in [0goutscreen from Senver;
Server. out closeConnection ta User;
User: in clazeConnection from Server;
Database:endinstance;
Server-endinstance;
Browser endinstance;
User:endinstance;
endmse;

msc Example_Messenger;

exprLL;

L1:(initialize) seq (L2 alt L2);

L2: (login) sed (L16);
Lz:(failedLogin} seq (L1);

L (writeM ail) seqd (L5);

L5 (zenciM ail) seg (L6 alt L7);
L& (send5uccess) seq (L2);
L7:(mailDeliveryErrary seq (L5)
L8:(chatRequest) seq (L9 alt L10);

La:(chatParineronling) seq (L11 alt L12);
L10:(chatPartnerMatonling) seq (L8 alt L2);
L11:(partnercceptsChaty seq (L13);
L12:(partnerhotAcceptsChar) seq (L8 ah L2);

L13:(chat) seq 13 alt L14);
L14:(chatEnch) seq (L2,
L15:(ogaut) seg (L1 an L1

7),
L16:condition menuSelection seq (L4 alt LS alt L15);
L17:end;
endmsc;

[«

RWTH

Tool Presentation

bigBxample.msc |

(maulDehveryErrua @artmrAcceptsChaB @artnerNotAcceptsChaB

msc Example_Messenger

RWTH

and

Tool Presentation ummar

bigExample.msc

Checking the given HCMZC from file "higExample. msc for property “regular”
There are 10 loops 1o theck

checking Loop 1 of 10 represented by path: [chatReguest, chatPartnerMatOnline] faath) for strongly cannected communication graph
The communication graph is stronghy cannectec

checking Loop 2 of 10 represented by path: [sentMail, mailDeliveryErrar] (path) for strongly connected communication graph
The communication graph is strongly cannectect

checking Loop 3 of 10 represented by path: [initialize, failedLoain] fath) for strangly cannected communication graph
The communication graph is strongly connected.

checking Loop 4 of 10 represented by path: [login, writeh
The communication graph is strangly connected.

sendMail, sendSuccess] (pathh for strongly connected communication graph

checking Loop 5 of 10 represented by path: [login, chatRequest, chatPartnerOnline, partnerNotAcceptsthat] fath) for strangly connected communication granh
The communication graph is stronghy cannectec

checking Loop 6 of 10 represented by path: [login, chatPartnerOnling, pannerAcceptsChat, chat, chatEnd] dpathh for stranglhy conhecter communication gragh
dligranh dp_graph {

node [outthreshole = 100, inthreshold=100];

98 [lahel="Processnh. 332, process name: Liser, process kind: VariablenDeklarationen: [I*, fonisize=16];
98 -» {99 103
< [labe

Processnb.: 333, process name: Browser , process kind: VariablenDeklarationen: I, fontsize=16];
99 -> {98 100 102)

100 [\abE\="PrUEEssnb 324, process name: Server , process kind: YariablenDeklarationen: [I', fomsize=16];
100 -> {88 101 103 };

101 (lahel="Processnh.: 385, process name: Datahase , process kind: YariablenDeklarationen: [I', fantsize=16];
101 -> {100 }

102 [label="Processnh.: 293, process name: UserZ , process kind: VariahlenDeklarationen: [I, fontsize=16];
102 -> {99 103

4
103 [label="Pracessnt.: 418, process name: Chat, process Kind: VariahlenDeklarationen: [, fantsize = 16];
103 -> {98 102 }

104 [label="Pracessnh.: 458, process name: Carsten , process Kind: YariablenDeklarationen: [[', fantsize = 16];
104 -> {98}

F
the hmsc is not regular because the communication graph of path : [login, chatRequest, chatParinerOnline, partnerAccemtsChat, chat, chatEnd] (pathi is NOT strongly
conneced

the given HCMSC from file "higExample. msc” is NOT regular

RWTH

Tool Presentation

==uses>
Graph HMSCAnalyzer
T ceudess
HMSC2Dot ==UgeEE Analyzer
==gigen =sLgE=s

MSCExecute Userinterface

RWTH

Tool Presentation

HMSCAnalyzer

HMSCProperties AnalyzeResult

HMSCLocalProperty

USERE AnalyzeObjects

HMSCAnalyzer I

HMSCSafeProperty
<< pam AnalyzeObjectGraph
1
csuses>
Analyzer
Analyzer
<uises
<suse=> MSCan <eusess

GrappaPanel

R
GrappaGraphArea
GraphVisualizer | =susez> RWTH
3

Summary and Outlook

Presentation outline

@ Summary and Outlook

Summary and Outlook
o

Summary

What was done so far

@ implementation of GUI and console application
o implementation of several property checks

@ tests on small and mid-size examples

Visit our tool web page at:
http://www-i2.informatik.rwth-aachen.de/MSCan/

Summary and Outlook

Outlook

@ tests on larger examples

@ performance tests

@ speed-up by exploiting inclusion hierarchies
°

realizability without extra data
[Alur et al. ICSE’00; Lohrey CONCUR’02; Morin STACS’02]

automatic CFM generation from MSC specifications

(]

	Introduction to Message Sequence Charts
	Message Sequence Charts (MSCs)
	Message Sequence Graphs (MSGs)

	Implementability
	The Formal Model of CFMs
	Examples

	Tool Presentation
	Summary and Outlook
	
	

