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@ initial phase: requirement elicitation

@ contradicting or incomplete system description

¢ common description language: sequence diagrams
@ goal: conforming design model
@ closing gap between

@ requirement specification (usually incomplete) and
@ design model (complete description of system)
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Our Approach

@ use learning algorithms to synthesize models for
communication protocols

o Input: set of Message Sequence Charts
o standardized: ITU Z.120

o included in UML as sequence diagrams
@ Output: MPA fulfilling the specification

@ model is close to implementation
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@ represents a system execution

@ can be regarded as a labelled partial order or
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Some linearizations
° 112(req) 2!1(ack) 172(ack) 271(req) 271(req)
° 211 (ack) 112(req) 172(ack) 271(req) 271(req)
o 2!1(ack) 271(req) 1!2(req) 271(req) 172(ack)

O o000

An MSC M is uniquely determined by its linearizations. )
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Message Passing Automata (MPA)

An MPA consists of:

@ a set of finite-state automata (processes) with
¢ common global initial state
o set of global final states
@ communication between automata through (reliable) FIFO
channels
@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢
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Angluin’s algorithm (L*)

Teacher

yes/no answer

Learner

ves or
counter example

Oracle

o L : language to learn
@ H : hypothetical (learned) automaton J
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Technical details

@ written in Java 1.5 (available for Java 1.5 and 1.6)

@ approx. 21.000 lines of code (not including MSC Editor)

@ currently uses LearnLib library (Dortmund, Prof. Dr. B.
Steffen)

@ GRAPPA (visualization of automata)
@ JGraph (visualization of MSCs)
@ MSC2000 (Parser for MSC documents)
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MSCs

MSC
GUI
Components
Learning MSC Editor
Components Components
Graph Interface to
Components LearnLib
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Protocol #membership queries | #user queries | #states of H memory consumption | learning setup
part of USB 1.1 1.999 12 9 ~ 3.5 MB 32
continuous update 4.747 36 8 ~ 4.5 MB 31
simple negotiation 8.267 46 9 ~ 5.5 MB 31
alternating bit 11.164 64 (24) 15 ~ 8.5 MB 31
alternating bit 91.710 145 (64) 25 ~ 16.5 MB 32
242891 199 (90) 31 ~ 22 MB 33
g 35.974 44 13 ~ 12.0 MB V1
leader election (> 1 rounds) 584.739 495 17 ~ 85.0 MB V1
Protocol | #user queries | #reduced user queries (x) |
alternating bit (31) 64 24
alternating bit (32) 145 64
alternating bit (33) 199 90

1. “p receives two subsequent a”
2. “p receives a subsequent 1 and 0”
3. “q has to receive a 0 at first”
4. “p must receive an a at last”

(*) using 4 PDL formulas
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Current State

@ learning of several classes of MPA
o integrated simulation component

@ integrated MSC editor

o currently only hard-coded formulas

full integration of PDL

more efficient partial order treatment

discover new/broader classes of learnable MPA
dealing with don’t know answers

case studies
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http://www.smyle-tool.org

Thank you for your attention! |
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