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Our Approach

use learning algorithms to synthesize models for
communication protocols

Input: set of Message Sequence Charts

standardized: ITU Z.120
included in UML as sequence diagrams

Output: MPA fulfilling the specification

model is close to implementation
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Message Passing Automata (MPA)

An MPA consists of:

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q

q?p(a) removes message a from buffer between p and q
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Angluin’s algorithm (L∗)
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H : hypothetical (learned) automaton
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Smyle

Technical details

written in Java 1.5 (available for Java 1.5 and 1.6)

approx. 21.000 lines of code (not including MSC Editor)

Libraries

currently uses LearnLib library (Dortmund, Prof. Dr. B.
Steffen)

GRAPPA (visualization of automata)

JGraph (visualization of MSCs)

MSC2000 (Parser for MSC documents)
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Package Overview
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Tool Demo
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Some protocols learned by Smyle

Protocol #membership queries #user queries #states of H memory consumption learning setup

part of USB 1.1 1.999 12 9 ∼ 3.5 MB ∃2
continuous update 4.747 36 8 ∼ 4.5 MB ∃1
simple negotiation 8.267 46 9 ∼ 5.5 MB ∃1
alternating bit 11.164 64 (24) 15 ∼ 8.5 MB ∃1
alternating bit 91.710 145 (64) 25 ∼ 16.5 MB ∃2
alternating bit 242891 199 (90) 31 ∼ 22 MB ∃3
leader election (1 round) 35.974 44 13 ∼ 12.0 MB ∀1
leader election (> 1 rounds) 584.739 495 17 ∼ 85.0 MB ∀1

Protocol #user queries #reduced user queries (∗)

alternating bit (∃1) 64 24
alternating bit (∃2) 145 64
alternating bit (∃3) 199 90

(∗) using 4 PDL formulas 1. “p receives two subsequent a”
2. “p receives a subsequent 1 and 0”
3. “q has to receive a 0 at first”
4. “p must receive an a at last”
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Outlook

Current State

learning of several classes of MPA
integrated simulation component
integrated MSC editor
currently only hard-coded formulas

Future Work

full integration of PDL
more efficient partial order treatment
discover new/broader classes of learnable MPA
dealing with don’t know answers
case studies
. . .
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S(ynthesizing) M(odels) (b)Y L(earning from) E(xamples)

http://www.smyle-tool.org

Thank you for your attention!

http://www.smyle-tool.org
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