
Introduction Tool: Smyle Conclusion

Smyle: a Tool for Synthesizing Distributed Models
from Scenarios by Learning

Benedikt Bollig1 Joost-Pieter Katoen2

Carsten Kern2 Martin Leucker3

1 2 3

Laboratoire Spécification Lehrstuhl für Informatik 2 Institut für Informatik

et Vérification

CONCUR 2008, August 19th



Introduction Tool: Smyle Conclusion

Outline

1 Introduction

2 Tool: Smyle

3 Conclusion



Introduction Tool: Smyle Conclusion

Presentation outline

1 Introduction

2 Tool: Smyle

3 Conclusion



Introduction Tool: Smyle Conclusion

Motivation

Requirements
(incomplete)

initial phase: requirement elicitation

contradicting or incomplete system description
common description language: sequence diagrams

goal: conforming design model

closing gap between

requirement specification (usually incomplete) and
design model (complete description of system)



Introduction Tool: Smyle Conclusion

Motivation

Requirements
(incomplete)

Design
(complete)

initial phase: requirement elicitation

contradicting or incomplete system description
common description language: sequence diagrams

goal: conforming design model

closing gap between

requirement specification (usually incomplete) and
design model (complete description of system)



Introduction Tool: Smyle Conclusion

Motivation

Requirements
(incomplete)

Design
(complete)

Implementation . . .

initial phase: requirement elicitation

contradicting or incomplete system description
common description language: sequence diagrams

goal: conforming design model

closing gap between

requirement specification (usually incomplete) and
design model (complete description of system)



Introduction Tool: Smyle Conclusion

Motivation

Requirements
(incomplete)

Design
(complete)

Implementation

gap

. . .

initial phase: requirement elicitation

contradicting or incomplete system description
common description language: sequence diagrams

goal: conforming design model

closing gap between

requirement specification (usually incomplete) and
design model (complete description of system)



Introduction Tool: Smyle Conclusion

Tool

User

MSCs DFA
Synthesis (MPA)

Interaction

host fct.

snd

snd

host fct.

snd

ack

host fct.

snd

ack

ack

1

2

3

47

8

9

5

6

!snd

?snd

!snd

!snd

!ack

?snd!snd

?snd!snd?ack!ack

!ack ?ack

1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:

Our Approach

use learning algorithms to synthesize models for
communication protocols

Input: set of Message Sequence Charts

standardized: ITU Z.120
included in UML as sequence diagrams

Output: MPA fulfilling the specification

model is close to implementation



Introduction Tool: Smyle Conclusion

Message Sequence Chart (MSC)

1 2

req

req

ack

An MSC ...

represents a system execution

can be regarded as a labelled partial order or

a set of words (linearizations)

Some linearizations

1!2(req) 1!2(req) 2!1(ack) 1?2(ack) 2?1(req) 2?1(req)

1!2(req) 2!1(ack) 1!2(req) 1?2(ack) 2?1(req) 2?1(req)

2!1(ack) 1!2(req) 2?1(req) 1!2(req) 2?1(req) 1?2(ack)

. . .

An MSC M is uniquely determined by its linearizations.



Introduction Tool: Smyle Conclusion

Message Sequence Chart (MSC)

1 2

req

req

ack

An MSC ...

represents a system execution

can be regarded as a labelled partial order or

a set of words (linearizations)

Some linearizations

1!2(req) 1!2(req) 2!1(ack) 1?2(ack) 2?1(req) 2?1(req)

1!2(req) 2!1(ack) 1!2(req) 1?2(ack) 2?1(req) 2?1(req)

2!1(ack) 1!2(req) 2?1(req) 1!2(req) 2?1(req) 1?2(ack)

. . .

An MSC M is uniquely determined by its linearizations.



Introduction Tool: Smyle Conclusion

Message Passing Automata (MPA)

An MPA consists of:

a set of finite-state automata (processes) with

common global initial state
set of global final states

communication between automata through (reliable) FIFO
channels

p!q(a) appends message a to buffer between p and q

q?p(a) removes message a from buffer between p and q

!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1



Introduction Tool: Smyle Conclusion

MPA: An Example

!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1
1 → 2

2 → 1

buffer head

1 2

!0



Introduction Tool: Smyle Conclusion

MPA: An Example

!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1
0 1 → 2

2 → 1

buffer head

1 2

!0

!0



Introduction Tool: Smyle Conclusion

MPA: An Example

!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1
0 0 1 → 2

2 → 1

buffer head

1 2

!0

!0
?0



Introduction Tool: Smyle Conclusion

MPA: An Example

!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1
0 1 → 2

2 → 1

buffer head

1 2

!0

!0
?0

!a



Introduction Tool: Smyle Conclusion

MPA: An Example

!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1
0

a

1 → 2

2 → 1

buffer head

1 2

!0

!0

?a

?0

!a



Introduction Tool: Smyle Conclusion

MPA: An Example

!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1
0 1 → 2

2 → 1

buffer head

1 2

!0

!0

?a

!1

?0

!a



Introduction Tool: Smyle Conclusion

MPA: An Example

!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1
0 1 1 → 2

2 → 1

buffer head

1 2

!0

!0

?a

!1

?0

!a

?0



Introduction Tool: Smyle Conclusion

MPA: An Example

!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1
1 1 → 2

2 → 1

buffer head

1 2

!0

!0

?a

!1

?0

!a

?0

?1



Introduction Tool: Smyle Conclusion

MPA: An Example

!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1
1 → 2

2 → 1

buffer head

1 2

!0

!0

?a

!1

?0

!a

?0

?1

!a



Introduction Tool: Smyle Conclusion

MPA: An Example

!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1

a

1 → 2

2 → 1

buffer head

1 2

!0

!0

?a

!1

?a

?0

!a

?0

?1

!a



Introduction Tool: Smyle Conclusion

MPA: An Example

!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1
1 → 2

2 → 1

buffer head

1 2

!0

!0

?a

!1

?a

?0

!a

?0

?1

!a



Introduction Tool: Smyle Conclusion

Angluin’s algorithm (L∗)

Learner

Teacher

Oracle

w
?
∈ L

yes/no answer

L(H)
?
= L

yes or
counter example

L : language to learn

H : hypothetical (learned) automaton



Introduction Tool: Smyle Conclusion

Angluin’s algorithm: extended

Learner

Teacher

Oracle

MSC
?
∈ L

yes/no answer

L(H)
?
= L

yes or
counter example
(given as MSC)



Introduction Tool: Smyle Conclusion

Angluin’s algorithm: extended

Learner

Teacher

Oracle

usercomputer



Introduction Tool: Smyle Conclusion

Angluin’s algorithm: extended

Learner

Teacher

Oracle

?
∈ L

usercomputer

1 2



Introduction Tool: Smyle Conclusion

Angluin’s algorithm: extended

Learner

Teacher

Oracle

yes/no answer
(+ PDL formulas)

usercomputer



Introduction Tool: Smyle Conclusion

Angluin’s algorithm: extended

Learner

Teacher

Oracle

?
∈ L

usercomputer

1 2



Introduction Tool: Smyle Conclusion

Angluin’s algorithm: extended

Learner

Teacher

Oracle

yes/no answer
(+ PDL formulas)

usercomputer



Introduction Tool: Smyle Conclusion

Angluin’s algorithm: extended

Learner

Teacher

Oracle

L(H)
?
= L

usercomputer

1

2

3

47

8

9

5

6

!snd

?snd

!snd

!snd

!ack

?snd!snd

?snd!snd?ack!ack

!ack ?ack

H



Introduction Tool: Smyle Conclusion

Angluin’s algorithm: extended

Learner

Teacher

Oracle

yes or
counter example
(given as MSC)

usercomputer



Introduction Tool: Smyle Conclusion

Angluin’s algorithm: extended

Learner

Teacher

Oracle

?
∈ L

yes/no answer
(+ PDL formulas)

L(H)
?
= L

yes or
counter example
(given as MSC)

usercomputer

1 2



Introduction Tool: Smyle Conclusion

Presentation outline

1 Introduction

2 Tool: Smyle

3 Conclusion



Introduction Tool: Smyle Conclusion

Smyle

Technical details

written in Java 1.5 (available for Java 1.5 and 1.6)

approx. 21.000 lines of code (not including MSC Editor)

Libraries

currently uses LearnLib library (Dortmund, Prof. Dr. B.
Steffen)

GRAPPA (visualization of automata)

JGraph (visualization of MSCs)

MSC2000 (Parser for MSC documents)



Introduction Tool: Smyle Conclusion

Package Overview



Introduction Tool: Smyle Conclusion

Tool Demo



Introduction Tool: Smyle Conclusion

Some protocols learned by Smyle

Protocol #membership queries #user queries #states of H memory consumption learning setup

part of USB 1.1 1.999 12 9 ∼ 3.5 MB ∃2
continuous update 4.747 36 8 ∼ 4.5 MB ∃1
simple negotiation 8.267 46 9 ∼ 5.5 MB ∃1
alternating bit 11.164 64 (24) 15 ∼ 8.5 MB ∃1
alternating bit 91.710 145 (64) 25 ∼ 16.5 MB ∃2
alternating bit 242891 199 (90) 31 ∼ 22 MB ∃3
leader election (1 round) 35.974 44 13 ∼ 12.0 MB ∀1
leader election (> 1 rounds) 584.739 495 17 ∼ 85.0 MB ∀1

Protocol #user queries #reduced user queries (∗)

alternating bit (∃1) 64 24
alternating bit (∃2) 145 64
alternating bit (∃3) 199 90

(∗) using 4 PDL formulas 1. “p receives two subsequent a”
2. “p receives a subsequent 1 and 0”
3. “q has to receive a 0 at first”
4. “p must receive an a at last”



Introduction Tool: Smyle Conclusion

Presentation outline

1 Introduction

2 Tool: Smyle

3 Conclusion



Introduction Tool: Smyle Conclusion

Outlook

Current State

learning of several classes of MPA
integrated simulation component
integrated MSC editor
currently only hard-coded formulas

Future Work

full integration of PDL
more efficient partial order treatment
discover new/broader classes of learnable MPA
dealing with don’t know answers
case studies
. . .



Introduction Tool: Smyle Conclusion

S(ynthesizing) M(odels) (b)Y L(earning from) E(xamples)

http://www.smyle-tool.org

Thank you for your attention!

http://www.smyle-tool.org

	Introduction
	
	
	

	Tool: Smyle
	

	Conclusion
	


