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Objects of interest: Message Sequence Charts

@ standardized modeling language at high level of abstraction
@ used for specification of communication protocols

@ similar to UML sequence diagrams
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Message Sequence Charts

A CMSC Example (Antiblock System)
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Message Sequence Charts

Definition: compositional MSCs (CMSCs)

A CMSC is a tuple M = (P, E,t,m, <)
@ P: finite, non-empty set of processes

o E= | E, =S4 R: set of events
peEP
(S: sending and R: receiving events)

@ t: event labeling function (¢ : E — Act)
(e.g.: t(e) = plg or t(e) = p?q)

@ m: injective and partial matching function (m : S—— R)
(not every sending event needs to have a
corresponding receive event)

@ < C FE x E: partial order on events

If m is total and bijective we call M an MSC )
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Message Sequence Graphs

A CMSG Example (Alternating-Bit Protocol)
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A CMSG Example (Alternating-Bit Protocol)

i An execution
z J | Sender |

| Receiver |

—e q \
q ﬁ




CMSGs and their properties
L 1)

Message Sequence Graphs

A CMSG Example (Alternating-Bit Protocol)
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Message Sequence Graphs

Definition: compositional MSGs (CMSGs)

A CMSG is a tuple G = (V, R, VO, V1 X)
o (V,R): graph (V#@, RCV xV)
@ V0 non-empty set of start nodes (V0 C V)
o V/: set of end nodes (VI C V)
@ \: node labeling function (A : V' — CMSC)

If X maps to MISC G is called a Message Sequence Graph (MSG) J




CMSG hierarchies

Presentation outline

© CMSG hierarchies
@ CMSG Properties
@ Property and Language Hierarchy



CMSG hierarchies
@0000

CMSG Properties

What do we need CMSG properties for?

— detecting classes of implementable (C)MSGs
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CMSG Properties

CMSG Property: “Regularity”

Formal Definition:

A CMSG G is called regular iff the communication graph of every
cycle is strongly connected.

Intuition of property: Regularity

Regularity means that for each sent message an acknowledgement
of the destination process can be received.
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CMSG Properties

Example: CMSG-Property “Regularity”

Communication graph of
the loop:
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CMSG Properties

CMSG Properties: “local-Choice”and “Locality”

Intuition of property: Local Choice

In every choice node only one process may decide on the progress
of the system (strong local-choice).

Intuition of property: Locality

| \

The local property assures the local-choice property for every node
in the graph.

Observation:

Every local CMSG is also local-choice.
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Example: CMSG-Property “lLocal-Choice”
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Property and Language Hierarchy

Property and Language Hierarchy

Property Language Compressed
Hierarchy Hierarchy Language Hierarchy

1: strong local 3: weak local 5: locally cooperative 7: globally cooperative
2: strong local-choice 4: weak local-choice 6: regular
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Implementation of CMSGs

Communicating Finite-State Machines A = ((A,)pep, F)

@ (Ap)pep:  set of local automata

@ F C [] Sp: set of global final states
peEP

local Automata A, = (Sp, 5p, —p)

° Sy final state set
® s, € Sp: starting state

o —C S, x Act x S): transition relation
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A CFM Example (Producer-Consumer)
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Every local-choice CMSG is implementable (without deadlocks).
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Drawbacks of MSCs and MSGs

Problems
@ no distinction between what must and may happen

Possible Approach

@ using Life Sequence Charts (LSCs) (by Damm and Harel)
to distinguish between

¢ mandatory, optional and illegal behavior
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An LSC example (Antiblock System)
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Outlook

@ Extension of MSCs and MSGs to simulate quantitative
behavior

Thus modeling:
@ uncertain events
@ unreliable channels
(integrating probability into message transmission (MSCs))
@ probabilistic branching
(integrating probability into node branching (MSGs))

@ Approach: extending Life Sequence Charts to cope with
quantitative behavior
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Goals:

@ extensions need to be formally defined

@ extensions need to be equipped with a reasonable semantics
@ properties (like regularity etc.) will be defined and classified

@ relation to existing probabilistic extensions of statecharts will
be checked
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