Analysis and Implementation

of MSC-Specifications

Carsten Kern

Lehrstuhl Informatik 2
Software Modeling and Verification
RWTH Aachen

November 29, 2005

Outline

@ Introduction

© CMSGs and their properties
@ Message Sequence Charts
@ Message Sequence Graphs

© CMSG hierarchies
@ CMSG Properties
@ Property and Language Hierarchy

Q@ mplementability

© Future Work

Introduction

Presentation outline

@ Introduction

Introduction
[1]

Objects of interest: Message Sequence Charts

@ standardized modeling language at high level of abstraction
@ used for specification of communication protocols

@ similar to UML sequence diagrams

Introduction
[e]

Incoming ISUP and Outgoing ISUP Transit Call (ISUP - 1SUP: Successful call; Telease from next exchange)
Switching system]
<all Fandler | [ccomlprocessor | all handler?
Tupmgl | Gupealll | tmpl | foncmgl | taimg | smg | Gmgp? | fencmg? | bupedll | Gupmg? |

I
[THis Messags Sequence Chatt describes an 1S UF (13N User Fart) call. The call s tneoming J5UF and after rauting I L= sext aut on an ISUF omk

|Capyright © 2000-2003 EventHelix com Ine. All Rights Reserved

[Call on ISUF

e

allocate
Tocoming Truml

ereate

resoure| allocate

loeste.

resource_allocate_ack

integface

interface
owich

CMSGs and their properties

Presentation outline

© CMSGs and their properties
@ Message Sequence Charts
@ Message Sequence Graphs

CMSGs and their properties
[Je]

Message Sequence Charts

A CMSC Example (Antiblock System)

Driver Control Unit Wheel Sensor Break
l | |

Encountering
danger

€1 €2

getSensorData

sendSensorData

checkData [:
regulateBreakPower e

€g >9 €9
L | LI

CMSGs and their properties
oce

Message Sequence Charts

Definition: compositional MSCs (CMSCs)

A CMSC is a tuple M = (P, E,t,m, <)
@ P: finite, non-empty set of processes

o E= | E, =S4 R: set of events
peEP
(S: sending and R: receiving events)

@ t: event labeling function (¢ : E — Act)
(e.g.: t(e) = plg or t(e) = p?q)

@ m: injective and partial matching function (m : S—— R)
(not every sending event needs to have a
corresponding receive event)

@ < C FE x E: partial order on events

If m is total and bijective we call M an MSC)

CMSGs and their properties
L 1)

Message Sequence Graphs

A CMSG Example (Alternating-Bit Protocol)

i An execution
z J | Sender |

| Receiver |

—e q
;;/ T~

CMSGs and their properties
L 1)

Message Sequence Graphs

A CMSG Example (Alternating-Bit Protocol)

i An execution
z J | Sender |

| Receiver |

Vi

CMSGs and their properties
L 1)

Message Sequence Graphs

A CMSG Example (Alternating-Bit Protocol)

i An execution
z J | Sender |

| Receiver |

—e q \
q ﬁ

CMSGs and their properties
L 1)

Message Sequence Graphs

A CMSG Example (Alternating-Bit Protocol)

i An execution
z J | Sender |

| Receiver |

—e q \
P q
P O—

CMSGs and their properties
oce

Message Sequence Graphs

Definition: compositional MSGs (CMSGs)

A CMSG is a tuple G = (V, R, VO, V1 X)
o (V,R): graph (V#@, RCV xV)
@ V0 non-empty set of start nodes (V0 C V)
o V/: set of end nodes (VI C V)
@ \: node labeling function (A : V' — CMSC)

If X maps to MISC G is called a Message Sequence Graph (MSG) J

CMSG hierarchies

Presentation outline

© CMSG hierarchies
@ CMSG Properties
@ Property and Language Hierarchy

CMSG hierarchies
@0000

CMSG Properties

What do we need CMSG properties for?

— detecting classes of implementable (C)MSGs

CMSG hierarchies
[e] lelele]

CMSG Properties

CMSG Property: “Regularity”

Formal Definition:

A CMSG G is called regular iff the communication graph of every
cycle is strongly connected.

Intuition of property: Regularity

Regularity means that for each sent message an acknowledgement
of the destination process can be received.

CMSG hierarchies
[e]e] Jole]

CMSG Properties

Example: CMSG-Property “Regularity”

Communication graph of
the loop:

CMSG hierarchies
[ee]e] le]

CMSG Properties

CMSG Properties: “local-Choice”and “Locality”

Intuition of property: Local Choice

In every choice node only one process may decide on the progress
of the system (strong local-choice).

Intuition of property: Locality

| \

The local property assures the local-choice property for every node
in the graph.

Observation:

Every local CMSG is also local-choice.

CMSG Properties

CMSG hierarchies
[e]e]ele]]

Example: CMSG-Property “lLocal-Choice”

‘ Browser ‘

‘Server‘ ‘ DB ‘

pwSend

confirm

/

N\

‘Browser‘ ‘ Server ‘ ‘

DB

sendHello

pwOK

‘Browser‘ ‘Server‘ ‘ DB

sendError

wWRONG

CMSG hierarchies
L]

Property and Language Hierarchy

Property and Language Hierarchy

Property Language Compressed
Hierarchy Hierarchy Language Hierarchy

1: strong local 3: weak local 5: locally cooperative 7: globally cooperative
2: strong local-choice 4: weak local-choice 6: regular

Implementability

Presentation outline

Q@ mplementability

Implementability
[le]e}

Implementation of CMSGs

Communicating Finite-State Machines A = ((A,)pep, F)

@ (Ap)pep: set of local automata

@ F C [] Sp: set of global final states
peEP

local Automata A, = (Sp, 5p, —p)

° Sy final state set
® s, € Sp: starting state

o —C S, x Act x S): transition relation

112(a) 12(b) 271(b) C:‘i) 271(a)

HEEEREN

A CFM Example (Producer-Consumer)

112(a) 112(b) 271(b) C:‘i) 271(a)

|
LT[[a] e

112(a)

A CFM Example (Producer-Consumer)

112(a) 12(b) 2?1(b) C:‘i) 271(a)

A CFM Example (Producer-Consumer)

112(a) 12(b) 271(b) C:‘i) 271(a)

— 1 | 2 |

L L1 [efa] e

A CFM Example (Producer-Consumer)

112(a) 12(b) 271(b) C:é)i) 271(a)

— Lt][2]

L LT[[“

A CFM Example (Producer-Consumer)

112(b) 12(b) 271(b) C:‘i) 271(a)

— Lt][2]

L LT[[“

A CFM Example (Producer-Consumer)

112(b) 12(b) 271(b) Cé)i) 271(a)

HEEEREN “

A CFM Example (Producer-Consumer)

112(b) 12(b) 271(b) C:‘i) 271(a)

HEEEREN “

Implementability
[efe]]

Every local-choice CMSG is implementable (without deadlocks).

Future Work

Presentation outline

© Future Work

Future Work
@000

Drawbacks of MSCs and MSGs

Problems
@ no distinction between what must and may happen

Possible Approach

@ using Life Sequence Charts (LSCs) (by Damm and Harel)
to distinguish between

¢ mandatory, optional and illegal behavior

Future Work
[o] le]e}

An LSC example (Antiblock System)

e Display Control Unit Wheel Sensor ~ Break >
Ve AN
< || || || .

N wheel blocks I

adjust breéak power

inform driver

Future Work
[e]e] e}

Outlook

@ Extension of MSCs and MSGs to simulate quantitative
behavior

Thus modeling:
@ uncertain events
@ unreliable channels
(integrating probability into message transmission (MSCs))
@ probabilistic branching
(integrating probability into node branching (MSGs))

@ Approach: extending Life Sequence Charts to cope with
quantitative behavior

Future Work
[e]ele]]

Goals:

@ extensions need to be formally defined

@ extensions need to be equipped with a reasonable semantics
@ properties (like regularity etc.) will be defined and classified

@ relation to existing probabilistic extensions of statecharts will
be checked

	Main Part
	Introduction
	CMSGs and their properties
	Message Sequence Charts
	Message Sequence Graphs

	CMSG hierarchies
	CMSG Properties
	Property and Language Hierarchy

	Implementability
	Future Work

