NL*—Angluin-style learning of NFA

Benedikt Bollig! Peter Habermehl?
Carsten Kern? Martin Leucker?

1LSV, ENS Cachan
2LIAFA Paris Diderot (Paris 7)
SRWTH Aachen University

4 Technical University Munich

Pasadena, July 15th, IJCAI 2009

EGIDE

TUT Algosyn
Carsten Kern NL*—Angluin-style learning of NFA

Here, learning means:

Given exemplifying behavior of a system

Learn a model conforming to the given behavior

Carsten Kern NL*—Angluin-style learning of NFA

Here, learning means:

Given exemplifying behavior of a system
in terms of words

Learn a model conforming to the given behavior
in terms of a regular language (deterministic finite automaton, DFA)

Carsten Kern NL*—Angluin-style learning of NFA

Here, learning means:

Given exemplifying behavior of a system
in terms of words

Learn a model conforming to the given behavior
in terms of a regular language (deterministic finite automaton, DFA)

Active Learning

@ The learner is given positive and negative examples

Carsten Kern NL*—Angluin-style learning of NFA

Here, learning means:

Given exemplifying behavior of a system
in terms of words

Learn a model conforming to the given behavior
in terms of a regular language (deterministic finite automaton, DFA)

Active Learning

@ The learner is given positive and negative examples

@ The learner can actively ask specific questions

Carsten Kern NL*—Angluin-style learning of NFA

Here, learning means:

Given exemplifying behavior of a system
in terms of words

Learn a model conforming to the given behavior
in terms of a regular language (deterministic finite automaton, DFA)

Active Learning

@ The learner is given positive and negative examples

@ The learner can actively ask specific questions

Occam’s razor:

“In case of different explanations, choose the simplest one.”
= Learn the minimal DFA conforming to given examples

Carsten Kern NL*—Angluin-style learning of NFA

But there is a problem ...

0
(o)

minimal DFA can be huge!

Carsten Kern NL*—Angluin-style learning of NFA

But there is a problem ...

0
(o)

minimal DFA can be huge!
What about NFA?

Can we learn (a certain subclass of) NFA?

Carsten Kern NL*—Angluin-style learning of NFA

But there is a problem ...

b
0

o
=«

ab

minimal DFA can be huge!
What about NFA?

Can we learn (a certain subclass of) NFA?

Yes, we can!

Carsten Kern NL*—Angluin-style learning of NFA

@ Angluin’s Algorithm L*

© Residual Finite-State Automata

© Learning RFSA: The Algorithm NL*
@ NL*—Experiments

© Conclusion

Carsten Kern NL*—Angluin-style learning of NFA

Presentation outline

@ Angluin’s Algorithm L*

Carsten Kern NL*—Angluin-style learning of NFA

Algorithm - Overview

Teacher Membership queries

Is w € ¥* a member of language L?

Learner

Let ‘H be a hypothesis
Is H equivalent to system to learn?

Yes/Counterexample

Oracle Equivalencequeries

@ L: (regular) language to learn
o Counterexample: w € (L(H) \ L) U (L \ L(H))

Carsten Kern NL*—Angluin-style lea

Algorithm - Overview

Membership queries
Yes/No

Is w € ¥* a member of language L7

Learner

Let ‘H be a hypothesis
Is H equivalent to system to learn?

Yes/Counterexample

Oracle Equivalencequeries

@ L: (regular) language to learn
o Counterexample: w € (L(H) \ L) U (L \ L(H))

Carsten Kern NL*—Angluin-style learning of NFA

Algorithm - Overview

Teacher Membership queries

Yes/No

Is w € ¥* a member of language L?

Let ‘H be a hypothesis
Is H equivalent to system to learn?

Yes/Counterexample

Oracle Equivalencequeries

@ L: (regular) language to learn
o Counterexample: w € (L(H) \ L) U (L \ L(H))

Carsten Kern NL*—Angluin-style lea

Algorithm - Overview

Membership queries
Yes/No

Is w € ¥* a member of language L7

Learner

Let ‘H be a hypothesis
Is H equivalent to system to learn?

Yes/Counterexample

Oracle Equivalencequeries

@ L: (regular) language to learn
o Counterexample: w € (L(H) \ L) U (L \ L(H))

Carsten Kern NL*—Angluin-style learning of NFA

Algorithm - Overview

Teacher Membership queries

Yes/No

Is w € ¥* a member of language L?

Let ‘H be a hypothesis
Is H equivalent to system to learn?

Yes/Counterexample

Oracle Equivalencequeries

@ L: (regular) language to learn
o Counterexample: w € (L(H) \ L) U (L \ L(H))

Carsten Kern NL*—Angluin-style lea

Algorithm - Overview

Teacher Membership queries

Is w € ¥* a member of language L?

Learner

Let H be a hypothesis
Is ‘H equivalent to system to learn?

Yes/Counterexample

Equivalencequeries

@ L: (regular) language to learn
o Counterexample: w € (L(H) \ L) U (L \ L(H))

Carsten Kern NL*—Angluin-style learning of NFA

Algorithm - Overview

Teacher Membership queries

Is w € ¥* a member of language L?

Let ‘H be a hypothesis
Is H equivalent to system to learn?

Yes/Counterexample . .
Oracle Equivalencequeries

@ L: (regular) language to learn
o Counterexample: w € (L(H) \ L) U (L \ L(H))

Carsten Kern NL*—Angluin-style lea

Table-based learning

Carsten Kern NL*—Angluin-style learning of NFA

Table-based learning

a€L?

Carsten Kern NL*—Angluin-style learning of NFA

Table-based learning

T || €

l’

b,aa,ab € L?

Carsten Kern NL*—Angluin-style learning of NFA

Table-based learning

€ +
a —
b _
aa || —
ab || +

Carsten Kern NL*—Angluin-style learning of NFA

Table-based learning

€ +

a |l =

b 1 — To derive an automaton:

aa || — @ 7 must be closed, i.e., all states are
ab || + derivable from 7°

Carsten Kern NL*—Angluin-style learning of NFA

Table-based learning

€ +

a |l =

b 1 — To derive an automaton:

aa || — @ 7 must be closed, i.e., all states are
ab || + derivable from 7°

@ 7 must be consistent, i.e., there are
no contradicting transitions

Carsten Kern NL*—Angluin-style learning of NFA

Table-based learning

T+ To derive an automaton:

€
a — @ 7 must be closed, i.e., all states are
b M= derivable from 7

aa || — @ 7 must be consistent, i.e., there are
ab || + no contradicting transitions

V.

a
7b Q
@ @ upper rows serve to derive states

@ lower rows serve to derive transitions |

a

;

b

Carsten Kern NL*—Angluin-style learning of NFA

Table-based learning

-

S e ™

bb ¢ L!

Carsten Kern NL*—Angluin-style learning of NFA

Table-based learning

-

S e ™

Counterexample can be added to:

bb ¢ L!

Carsten Kern NL*—Angluin-style learning of NFA

Table-based learning

ZZ 4 Counterexample can be added to:
ba || — o the rows (L*)

bba || —
bbb || —

Carsten Kern NL*—Angluin-style learning of NFA

Table-based learning

T || e|ob]b

5 +|— |-

a |-|-1+

b T=T1T=1=

aall — 1 = | = Counterexample can be added to:
ab ||+ | — | — o the rows (L*)

@ the columns (L})

Carsten Kern NL*—Angluin-style learning of NFA

Angluin’s Algorithm L*

Theorem (Complexity of L*)
Let:
@ n: number of states of the minimal DFA Ay, for regular language L,

@ m: length of the biggest counterexample

Then, L* returns after at most:

the minimal DFA A.

Carsten Kern NL*—Angluin-style learning of NFA

Angluin’s Algorithm L*

Theorem (Complexity of L*)
Let:

@ n: number of states of the minimal DFA Ay, for regular language L,

@ m: length of the biggest counterexample

Then, L* returns after at most:

@ n equivalence queries and

the minimal DFA A.

Carsten Kern NL*—Angluin-style learning of NFA

Angluin’s Algorithm L*

Theorem (Complexity of L*)
Let:

@ n: number of states of the minimal DFA Ay, for regular language L,

@ m: length of the biggest counterexample

Then, L* returns after at most:

@ n equivalence queries and

@ O(m|X|n?) membership queries
the minimal DFA A.

Carsten Kern NL*—Angluin-style learning of NFA

Presentation outline

© Residual Finite-State Automata

Carsten Kern NL*—Angluin-style learning of NFA

Residual Finite-State Automata [Denis et al.]

Carsten Kern NL*—Angluin-style learning of NFA

Residual Finite-State Automata [Denis et al.]

Carsten Kern NL*—Angluin-style learning of NFA

Residual Finite-State Automata [Denis et al.]

Carsten Kern NL*—Angluin-style learning of NFA

Residual Finite-State Automata [Denis et al.]

Carsten Kern NL*—Angluin-style learning of NFA

Residual Finite-State Automata [Denis et al.]

Carsten Kern NL*—Angluin-style learning of NFA

Residual Finite-State Automata [Denis et al.]

Carsten Kern NL*—Angluin-style learning of NFA

Residual Finite-State Automata [Denis et al.]

Carsten Kern NL*—Angluin-style learning of NFA

Residual Finite-State Automata [Denis et al.]

Carsten Kern NL*—Angluin-style learning of NFA

Residual Finite-State Automata [Denis et al.]

Carsten Kern NL*—Angluin-style learning of NFA

Residual languages for L = X*aX
Ly = S*a¥
Ly =SS U Y
Lg, = ¥*a2 U S U{e}
Ly, = S U {e}

Carsten Kern NL*—Angluin-style learning of NFA

Residual languages for L = X*aX
Ly, = Y*a%
Ly =Y*aX U X
Lg, = ¥*a2 U S U{e}
Ly = S*aX U {e}

Carsten Kern NL*—Angluin-style learning of NFA

Residual languages for L = X*aX
Ly = S*a¥
Ly =SS U Y
Lg, = ¥*a2 U S U{e}
Ly, = S U {e}

Carsten Kern NL*—Angluin-style learning of NFA

Residual languages for L = X*aX
Ly, = X*aX (initial state)
Ly =YX Uy
Ly = $*aX U X U{e}
Ly =%*a¥ U {e}

Carsten Kern NL*—Angluin-style learning of NFA

() ® &)

Residual languages for L = X*aX
Ly = S*a¥
Ly =SS U Y
Lg, = ¥*a2 U S U{e}
Ly, = S U {e}

Carsten Kern NL*—Angluin-style learning of NFA

Residual languages for L = X*aX
Ly = S*a¥
Ly =SS U Y
Lg, = ¥*a2 U S U{e}
Ly, =¥*aX U {e} (final state)

Carsten Kern NL*—Angluin-style learning of NFA

Residual languages for L = X*aX
Ly = S*a¥
Ly =SS U Y
Lg, = ¥*a2 U S U{e}
Ly, = S U {e}

Carsten Kern NL*—Angluin-style learning of NFA

Residual languages for L = X*aX
Ly, = X*aX (a-transitions)
Ly =Y a2 U S
Lg, = Y2 U X U{e}
Ly =%*a¥ U {e}

Carsten Kern NL*—Angluin-style learning of NFA

& T®

Residual languages for L = X*aX
Ly, = X*aX (a-transitions)
Ly =Y a2 U S
Lg, = Y2 U X U{e}
Ly =%*a¥ U {e}

Carsten Kern NL*—Angluin-style learning of NFA

,1
0 o
& T®

Residual languages for L = X*aX
Ly, = X*aX (a-transitions)
Ly =Y a2 U S
Lg, = Y2 U X U{e}
Ly =%*a¥ U {e}

Carsten Kern NL*—Angluin-style learning of NFA

Residual languages for L = X*aX
Ly = S*a¥
Ly =SS U Y
Lg, = ¥*a2 U S U{e}
Ly, = S U {e}

Carsten Kern NL*—Angluin-style learning of NFA

It's worth considering RFSA...

L, = {w € ¥*|w has an a at the (n + 1)-last position}

b

a,
a a,b ab
— — | —— | > ... —| ———()

Carsten Kern NL*—Angluin-style learning of NFA

It's worth considering RFSA...

L, = {w € ¥*|w has an a at the (n + 1)-last position}

b

a,
a a,b ab
— — | —— | > ... —| ———()

Carsten Kern NL*—Angluin-style learning of NFA

Minimal DFA and RFSA

Minimal DFA and RFSA for L,:
& a
“ @%

Automata for language L,,:

@ minimal DFA general case: 2" states

=

VJQ

O"
o

Carsten Kern NL*—Angluin-style learning of NFA

Minimal DFA and RFSA

Minimal DFA and RFSA for L,:

Automata for language L,,:

@ minimal DFA general case: 2" states

@ canonical RFSA general case: n + 2 states

Carsten Kern NL*—Angluin-style learning of NFA

Presentation outline

© Learning RFSA: The Algorithm NL*

Carsten Kern NL*—Angluin-style learning of NFA

Tables in NL*

From tables to RFSA

@ we deal with tables

T H € | a |aa
el —|— |+
all—|+]|+
ab|+|—| +
bl —1|—1|+
aa ||+ |+ | +
aba || — | + | +
abb || — | — | +

Carsten Kern NL*—Angluin-style learning of NFA

Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

T || € | a | aa
languages

bil—1|—| +

aa ||+ |+ | +

aba || — | + | +

abb || — | — | +

Carsten Kern NL*—Angluin-style learning of NFA

Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

T
H languages

)
S
=)
=)

@ not all rows represent states

Carsten Kern NL*—Angluin-style learning of NFA

Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

languages
all— |+ | + @ not all rows represent states
ab || +| —| + 9 as long as there is no other evidence:
bl -7+ equal rows represent equal residual
aa | + |+ | + languages
aba || — | + | +
abb || — | — | +

Carsten Kern NL*—Angluin-style learning of NFA

Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

languages
all— |+ | + @ not all rows represent states
ab |+ | —| + @ as long as there is no other evidence:
bl —|— |+ equal rows represent equal residual
aa || + |+ | + languages
aba || — |+ | + ., .
abb | — | — | + @ transition relation respects language

inclusion

Carsten Kern NL*—Angluin-style learning of NFA

Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

languages
Ell—|— |+
@ not all rows represent states
ab |+ |- | + @ as long as there is no other evidence:
bl —|— |+ equal rows represent equal residual
aa || + |+ | + languages
aba || — |+ | + ., .
abb | — | — | + @ transition relation respects language

inclusion

Carsten Kern NL*—Angluin-style learning of NFA

Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

T H € | a |aa
languages

@ not all rows represent states

ab |+ | —| + @ as long as there is no other evidence:
bl —|— |+ equal rows represent equal residual
aa || + |+ | + languages
aba || — |+ | + ., .
abb | — | — | + @ transition relation respects language

inclusion

Carsten Kern NL*—Angluin-style learning of NFA

Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

_
o
3
B

languages
ENN—|— |+
all =+ + @ not all rows represent states
ab | + | —| + @ as long as there is no other evidence:
bl —|— 1|+ equal rows represent equal residual
aa ||+ |+ | + languages
aba || — |+ | + .- .
b |l — | — | + @ transition relation respects language

inclusion
@ treatment of counterexamples:

o add to columns
o otherwise non-termination

Carsten Kern NL*—Angluin-style learning of NFA

Table properties

T H € | a | aa @ all states identifiable from the table
b -] -] +
aa || + | + | + J
aba || — | + | +
abb || — | — | +
RWTH

Carsten Kern NL*—Angluin-style learning of NFA

Table properties

T|elalaa o all states identifiable from the table
@ all non-composed rows have to be in the
upper part of the table
b= +
aa |+ |+ | + y
aba || — |+ | +
abb || — | — | +

Carsten Kern NL*—Angluin-style learning of NFA

Table properties

| a | aa o all states identifiable from the table

7 ||

™

@ all non-composed rows have to be in the
upper part of the table

@ all other rows can be composed by
upper rows

Carsten Kern NL*—Angluin-style learning of NFA

Table properties

T H c | a | i @ all states identifiable from the table

@ all non-composed rows have to be in the
upper part of the table

az mi @ all other rows can be composed by
-T-T+

upper rows
aa | + |+ | + PP %
aba || — |+ | + .

@ transition relation respects language
inclusion

Carsten Kern NL*—Angluin-style learning of NFA

Table properties

T H c | a | i @ all states identifiable from the table

ell—|—1|+ @ all non-composed rows have to be in the
upper part of the table

@ all other rows can be composed by
upper rows

@ transition relation respects language
inclusion

Carsten Kern NL*—Angluin-style learning of NFA

Table properties

@ all states identifiable from the table

@ all non-composed rows have to be in the
upper part of the table

@ all other rows can be composed by
upper rows

<

|
aba || — |+ | + .
@ transition relation respects language
inclusion

Carsten Kern NL*—Angluin-style learning of NFA

Towards correctness

Theorem (Complexity of NL*)

Let:

@ n: number of states of minimal DFA Aj, for regular language L,
@ m: length of the biggest counterexample

Then, NL* returns after at most:

the canonical RFSA R(L).

Carsten Kern NL*—Angluin-style learning of NFA

Towards correctness

Theorem (Complexity of NL*)

Let:

@ n: number of states of minimal DFA Aj, for regular language L,
@ m: length of the biggest counterexample
Then, NL* returns after at most:

@ O(n?) equivalence queries and

the canonical RFSA R(L).

Carsten Kern NL*—Angluin-style learning of NFA

Towards correctness

Theorem (Complexity of NL*)

Let:

@ n: number of states of minimal DFA Aj, for regular language L,
@ m: length of the biggest counterexample
Then, NL* returns after at most:
@ O(n?) equivalence queries and
@ O(m|X|n?) membership queries
the canonical RFSA R(L).

Carsten Kern NL*—Angluin-style learning of NFA

Presentation outline

@ NL*—Experiments

Carsten Kern NL*—Angluin-style learning of NFA

Algorithm - Overview

Number of states

200 = * *
NL* m—
W, By e L 3 col

180

160

140

120

100

80

states (learned automaton)

60

40 |

) |||

20 40 60 80 100 120 140 160 180 200
states (minimal DFA)

@ ~ 3200 reg. exp. with minimal DFA of 1 to 200 states)

Carsten Kern NL*—Angluin-style learning of NFA

Algorithm - Overview

Number of membership queries (L* vs. L}, vs. NL*)

20000

18000 |- NL* ======-

16000

14000

12000

10000

8000

6000 ot /-\/J

4000

membership queries

2000

20 40 60 80 100 120 140 160 180 200
states (minimal DFA)

@ ~ 3200 reg. exp. with minimal DFA of 1 to 200 states)

Carsten Kern NL*—Angluin-style learning of NFA

Algorithm - Overview

Number of equivalence queries (L* vs. L?, vs. NL*)

20
=
o
18 |- N =oooen
16 | L*
14
E— 12
é 10
g, v col
NL*
6 i
4 *or L
2 L
20 40 60 80 100 120 140 160 180 200
states (minimal DFA)
V.
@ ~ 3200 reg. exp. with minimal DFA of 1 to 200 states)

Carsten Kern NL*—Angluin-style learning of NFA

Presentation outline

© Conclusion

Carsten Kern NL*—Angluin-style learning of NFA

That's it!

o —

What did learn ?
o NL* outperforms L* by far

Carsten Kern NL*—Angluin-style learning of NFA

That's it!

o —

What did learn ?
o NL* outperforms L* by far

@ Learning using NFA works well in practice!

Carsten Kern NL*—Angluin-style learning of NFA

That's it!

o —

What did learn ?
o NL* outperforms L* by far

@ Learning using NFA works well in practice!

o Nondeterminism does not always hurt!!!

Carsten Kern NL*—Angluin-style learning of NFA

That's it!

20 20000
o —

10 18000 |- N e

12000

 membership queries

What did learn ?

o NL* outperforms L* by far

@ Learning using NFA works well in practice!

o Nondeterminism does not always hurt!!!

Thanks! |

Carsten Kern NL*—Anglui

	Motivation
	Angluin's Algorithm L
	Residual Finite-State Automata
	Learning RFSA: The Algorithm NL
	NL*---Experiments
	Conclusion

