

NL*—Angluin-style learning of NFA

Benedikt Bollig¹ Peter Habermehl²
Carsten Kern³ Martin Leucker⁴

¹LSV, ENS Cachan

²LIAFA Paris Diderot (Paris 7)

³RWTH Aachen University

⁴ Technical University Munich

Pasadena, July 15th, IJCAI 2009

Here, learning means:

Given exemplifying behavior of a system

Learn a *model* conforming to the given behavior

Here, learning means:

Given exemplifying behavior of a system
in terms of words

Learn a *model* conforming to the given behavior
in terms of a regular language (deterministic finite automaton, DFA)

Here, learning means:

Given exemplifying behavior of a system
in terms of words

Learn a *model* conforming to the given behavior
in terms of a regular language (deterministic finite automaton, DFA)

Active Learning

- The learner is given **positive** and **negative** examples

Here, learning means:

Given exemplifying behavior of a system
in terms of words

Learn a *model* conforming to the given behavior
in terms of a regular language (deterministic finite automaton, DFA)

Active Learning

- The learner is given **positive** and **negative** examples
- The learner can actively ask specific questions

Learning

Here, learning means:

Given exemplifying behavior of a system
in terms of words

Learn a *model* conforming to the given behavior
in terms of a regular language (deterministic finite automaton, DFA)

Active Learning

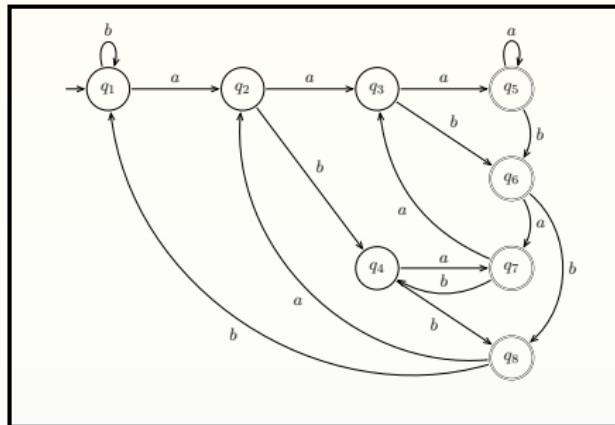
- The learner is given **positive** and **negative** examples
- The learner can actively ask specific questions

Occam's razor:

“In case of different explanations, choose the *simplest* one.”

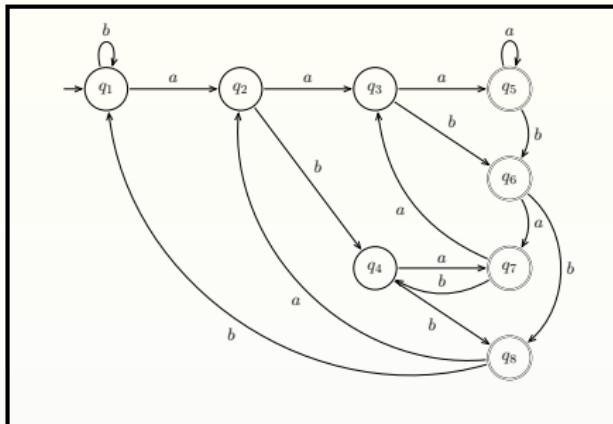
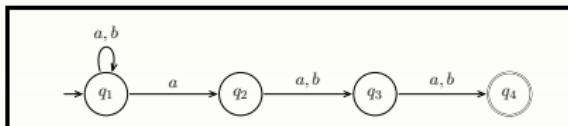
⇒ Learn the *minimal* DFA conforming to given examples

But there is a problem ...



minimal DFA can be huge!

But there is a problem ...

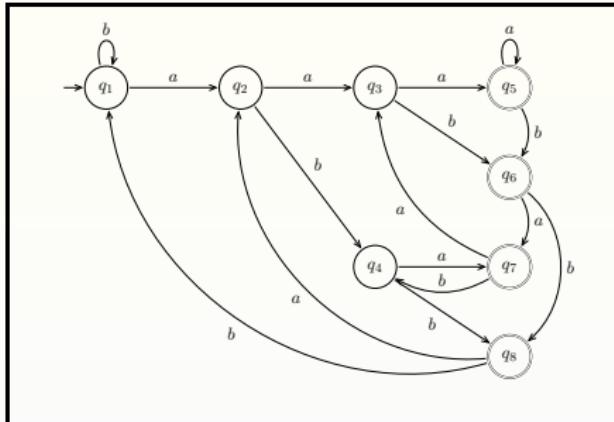
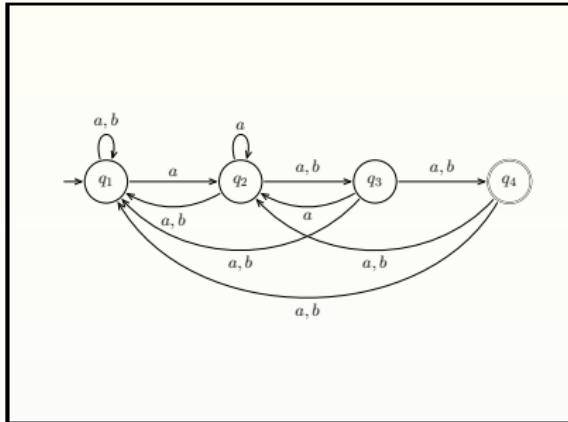


minimal DFA can be huge!

What about NFA?

Can we learn (a certain subclass of) NFA?

But there is a problem ...



minimal DFA can be huge!

What about NFA?

Can we learn (a certain subclass of) NFA?

Yes, we can!

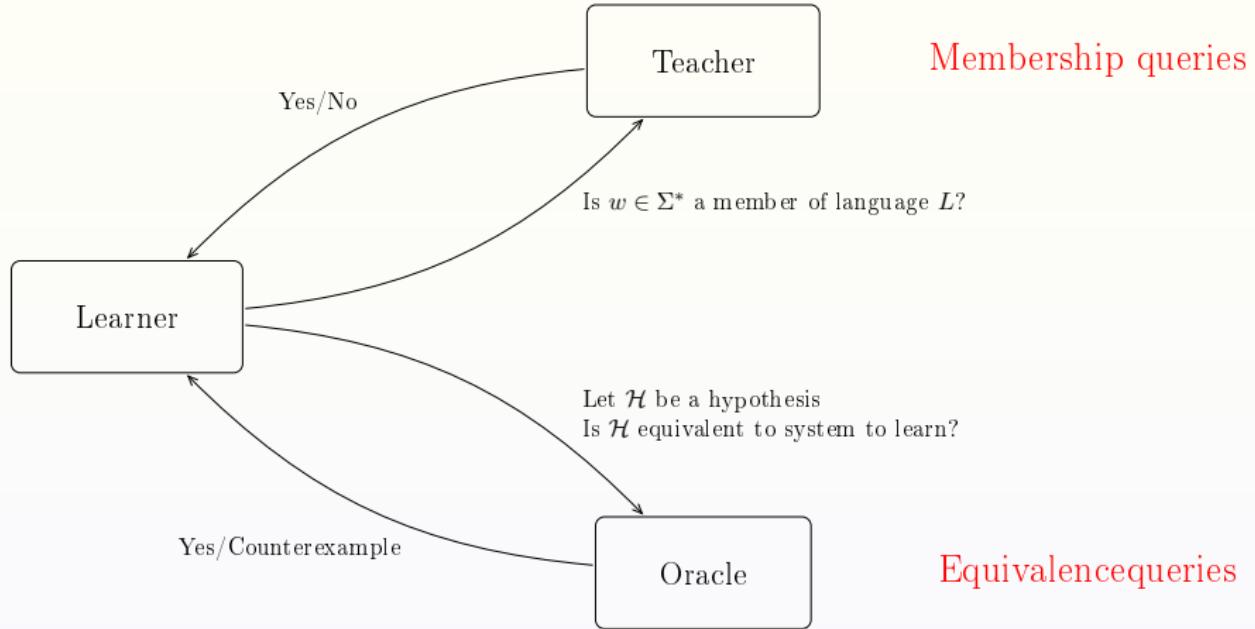
Outline

- 1 Angluin's Algorithm L^*
- 2 Residual Finite-State Automata
- 3 Learning RFSA: The Algorithm NL^*
- 4 NL^* —Experiments
- 5 Conclusion

Presentation outline

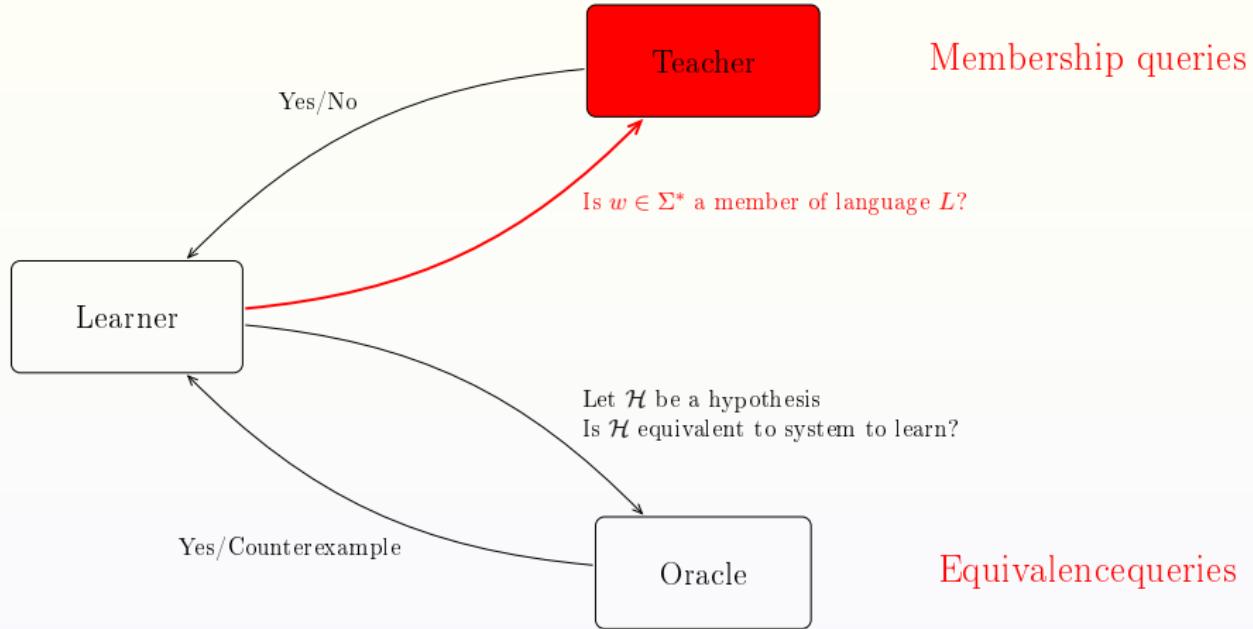
- 1 Angluin's Algorithm L^*
- 2 Residual Finite-State Automata
- 3 Learning RFSA: The Algorithm NL^*
- 4 NL^* —Experiments
- 5 Conclusion

Algorithm - Overview



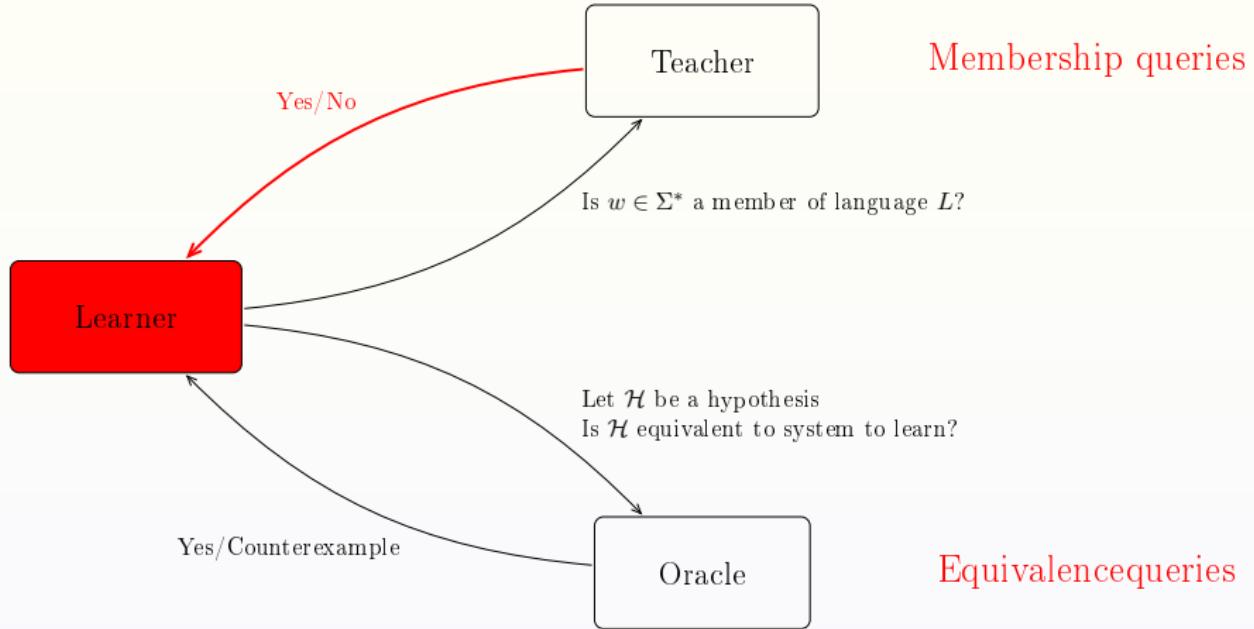
- L : (regular) language to learn
- Counterexample: $w \in (L(\mathcal{H}) \setminus L) \cup (L \setminus L(\mathcal{H}))$

Algorithm - Overview



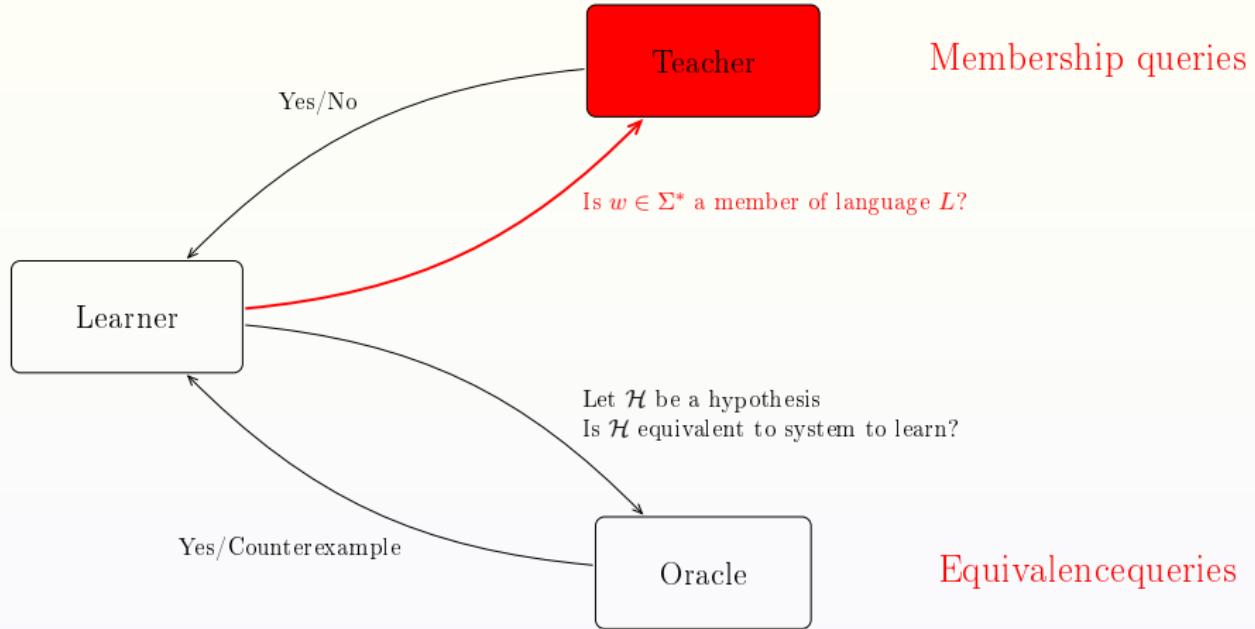
- L : (regular) language to learn
- Counterexample: $w \in (L(\mathcal{H}) \setminus L) \cup (L \setminus L(\mathcal{H}))$

Algorithm - Overview



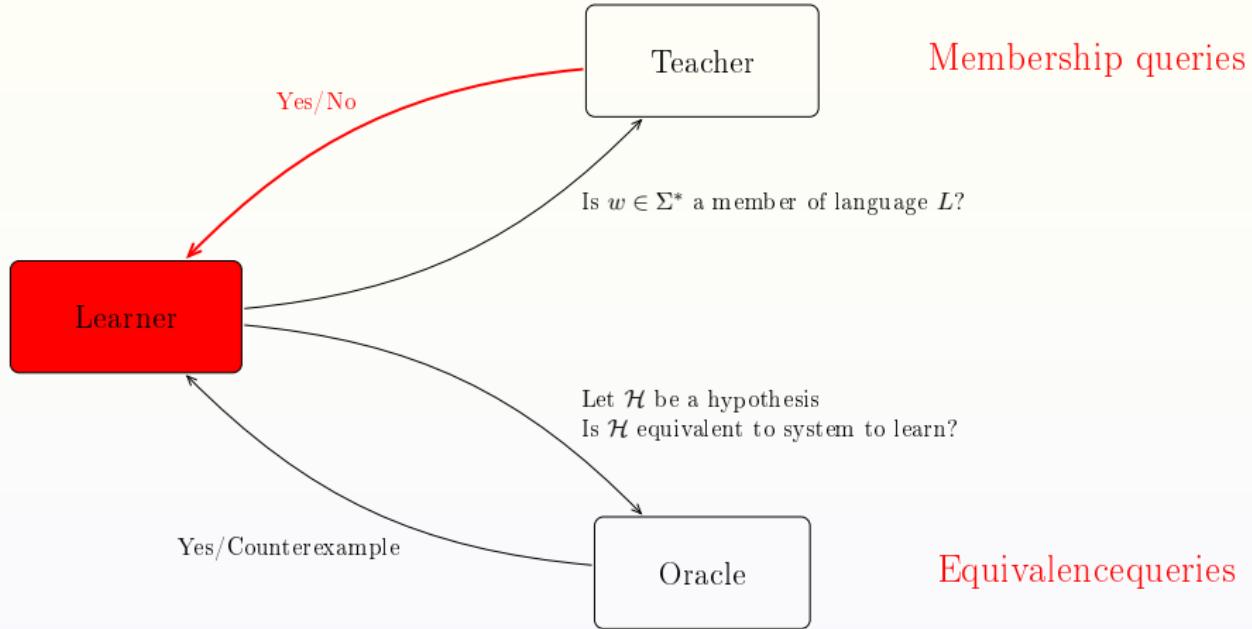
- L : (regular) language to learn
- Counterexample: $w \in (L(\mathcal{H}) \setminus L) \cup (L \setminus L(\mathcal{H}))$

Algorithm - Overview



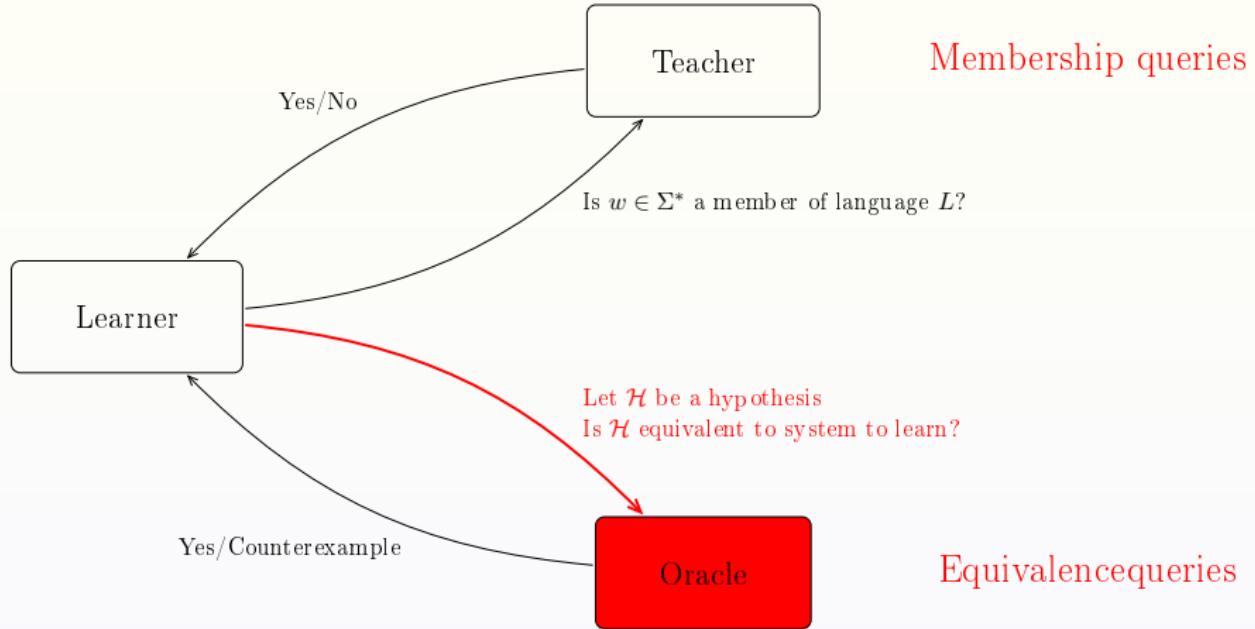
- L : (regular) language to learn
- Counterexample: $w \in (L(\mathcal{H}) \setminus L) \cup (L \setminus L(\mathcal{H}))$

Algorithm - Overview



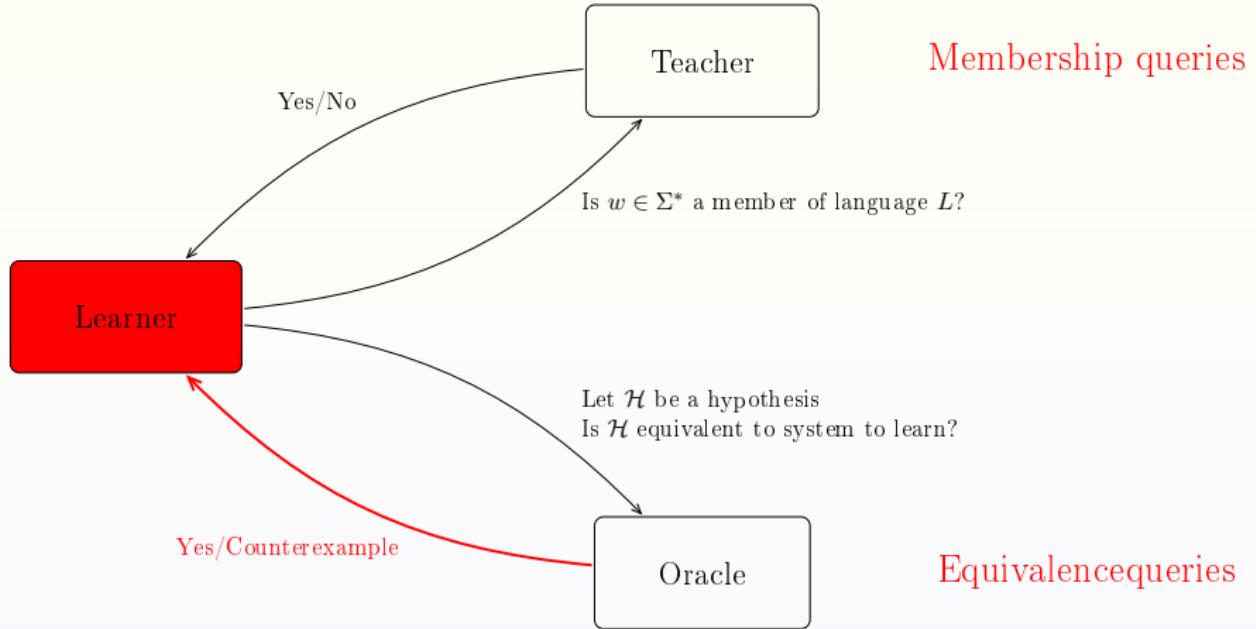
- L : (regular) language to learn
- Counterexample: $w \in (L(\mathcal{H}) \setminus L) \cup (L \setminus L(\mathcal{H}))$

Algorithm - Overview



- L : (regular) language to learn
- Counterexample: $w \in (L(\mathcal{H}) \setminus L) \cup (L \setminus L(\mathcal{H}))$

Algorithm - Overview



- L : (regular) language to learn
- Counterexample: $w \in (L(\mathcal{H}) \setminus L) \cup (L \setminus L(\mathcal{H}))$

Table-based learning

T	\parallel	ε
ε		
a		
b		
aa		
ab		

$\varepsilon \in L?$

Table-based learning

T	ε
ε	+
a	
b	
aa	
ab	

$a \in L?$

Table-based learning

T	ε
ε	+
a	-
b	
aa	
ab	

$b, aa, ab \in L?$

Table-based learning

T	ε
ε	+
a	-
b	-
aa	-
ab	+

Table-based learning

\mathcal{T}	ε
ε	+
a	-
b	-
aa	-
ab	+

To derive an automaton:

- \mathcal{T} must be **closed**, i.e., all states are derivable from \mathcal{T}

Table-based learning

\mathcal{T}	ε
ε	+
a	-
b	-
aa	-
ab	+

To derive an automaton:

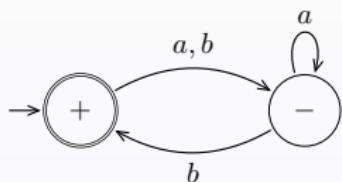
- \mathcal{T} must be **closed**, i.e., all states are derivable from \mathcal{T}
- \mathcal{T} must be **consistent**, i.e., there are no contradicting transitions

Table-based learning

\mathcal{T}	ε
ε	+
a	-
<hr/>	<hr/>
b	-
aa	-
ab	+

To derive an automaton:

- \mathcal{T} must be **closed**, i.e., all states are derivable from \mathcal{T}
- \mathcal{T} must be **consistent**, i.e., there are no contradicting transitions

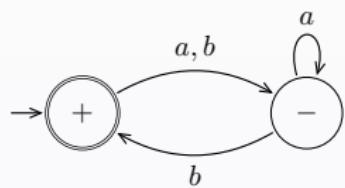


To this end:

- upper rows serve to derive states
- lower rows serve to derive transitions

Table-based learning

T	ε
ε	+
a	-
b	-
aa	-
ab	+

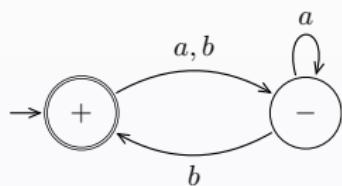


$bb \notin L!$

Table-based learning

T	ε
ε	+
a	-
b	-
aa	-
ab	+

Counterexample can be added to:



$bb \notin L!$

Table-based learning

T	ε
ε	+
a	-
b	-
bb	-
aa	-
ab	+
ba	-
bba	-
bbb	-

Counterexample can be added to:

- the rows (L^*)

Table-based learning

T	ε	bb	b
ε	+	-	-
a	-	-	+
b	-	-	-
aa	-	-	-
ab	+	-	-

Counterexample can be added to:

- the rows (L^*)
- the columns (L_{col}^*)

Angluin's Algorithm L*

Theorem (Complexity of L*)

Let:

- n : number of states of the minimal DFA \mathcal{A}_L for regular language L ,
- m : length of the biggest counterexample

Then, L^* returns after at most:

the minimal DFA \mathcal{A} .

Angluin's Algorithm L^*

Theorem (Complexity of L^*)

Let:

- n : number of states of the minimal DFA \mathcal{A}_L for regular language L ,
- m : length of the biggest counterexample

Then, L^* returns after at most:

- n equivalence queries and

the minimal DFA \mathcal{A} .

Angluin's Algorithm L*

Theorem (Complexity of L*)

Let:

- n : number of states of the minimal DFA \mathcal{A}_L for regular language L ,
- m : length of the biggest counterexample

Then, L^* returns after at most:

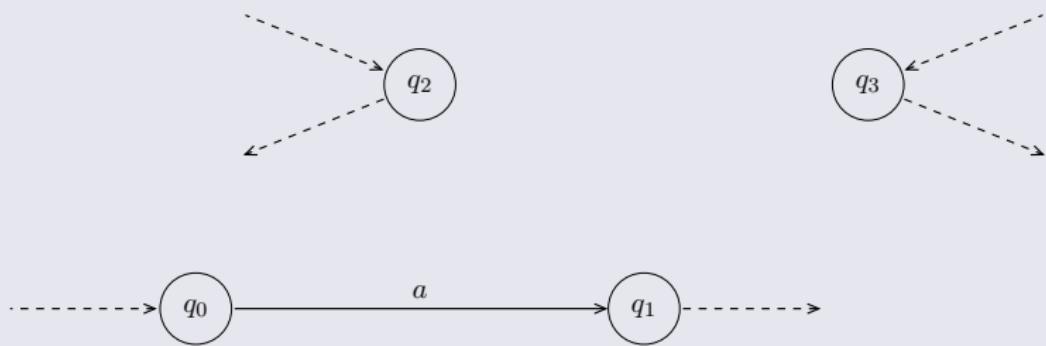
- n equivalence queries and
- $O(m|\Sigma|n^2)$ membership queries

the minimal DFA \mathcal{A} .

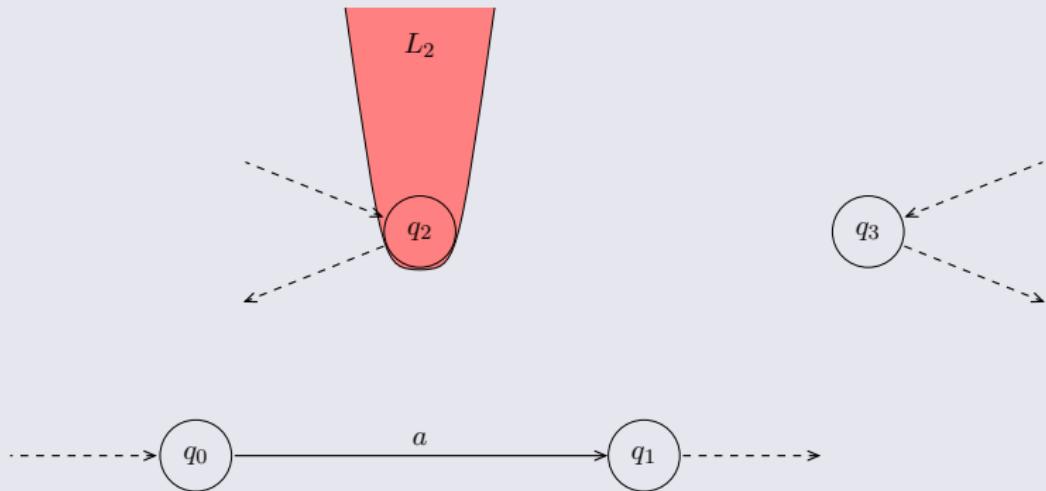
Presentation outline

- 1 Angluin's Algorithm L^*
- 2 Residual Finite-State Automata
- 3 Learning RFSA: The Algorithm NL^*
- 4 NL^* —Experiments
- 5 Conclusion

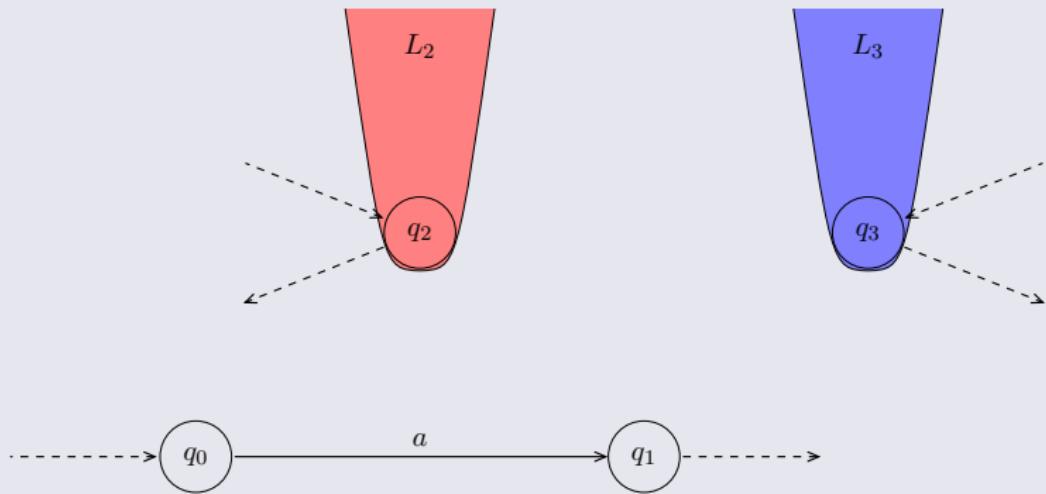
Residual Finite-State Automata [Denis et al.]



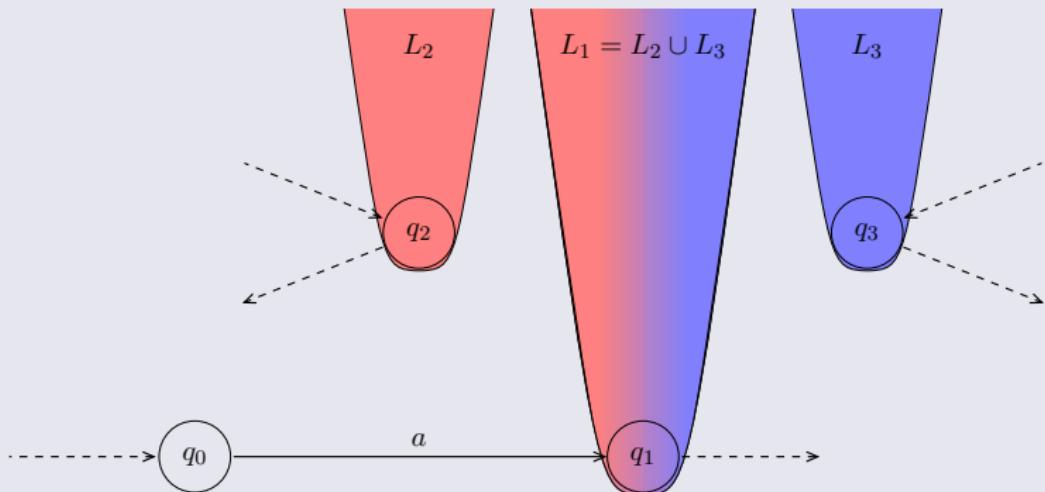
Residual Finite-State Automata [Denis et al.]



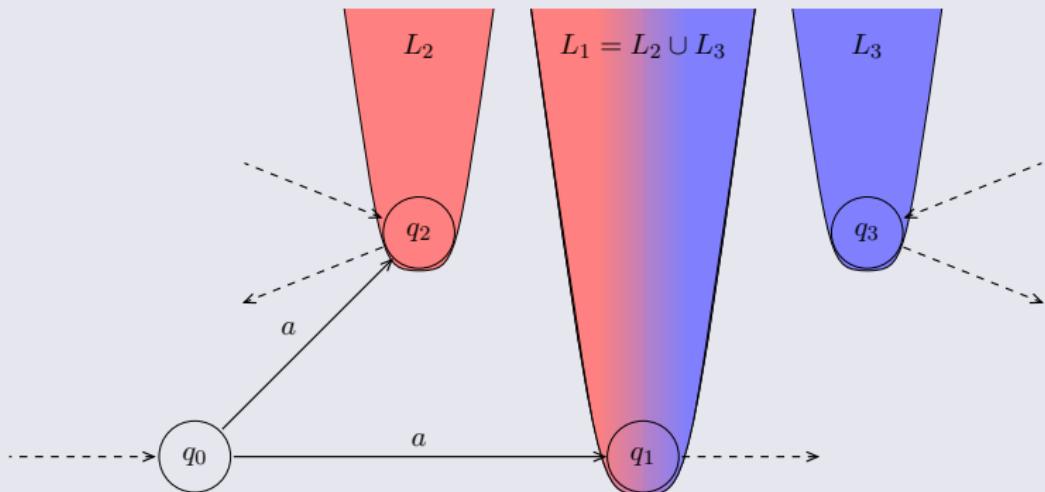
Residual Finite-State Automata [Denis et al.]



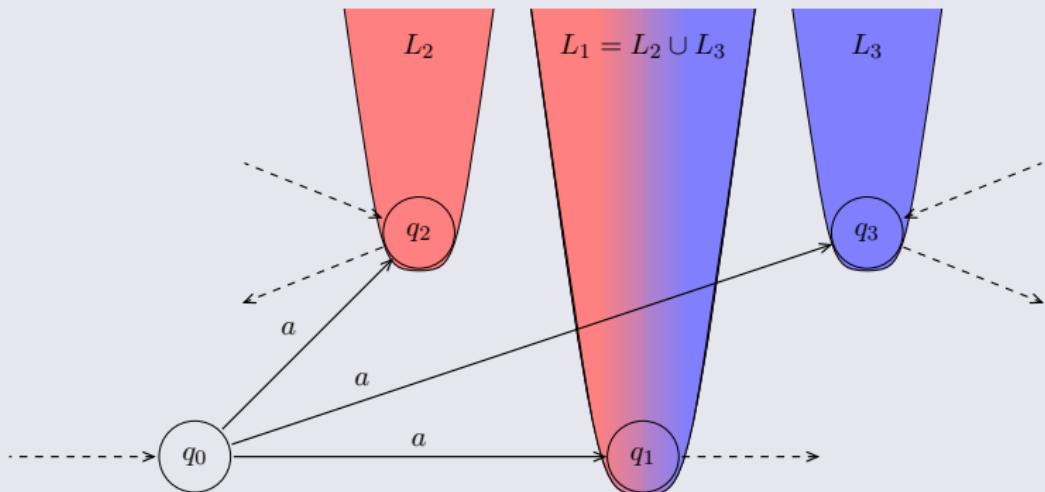
Residual Finite-State Automata [Denis et al.]



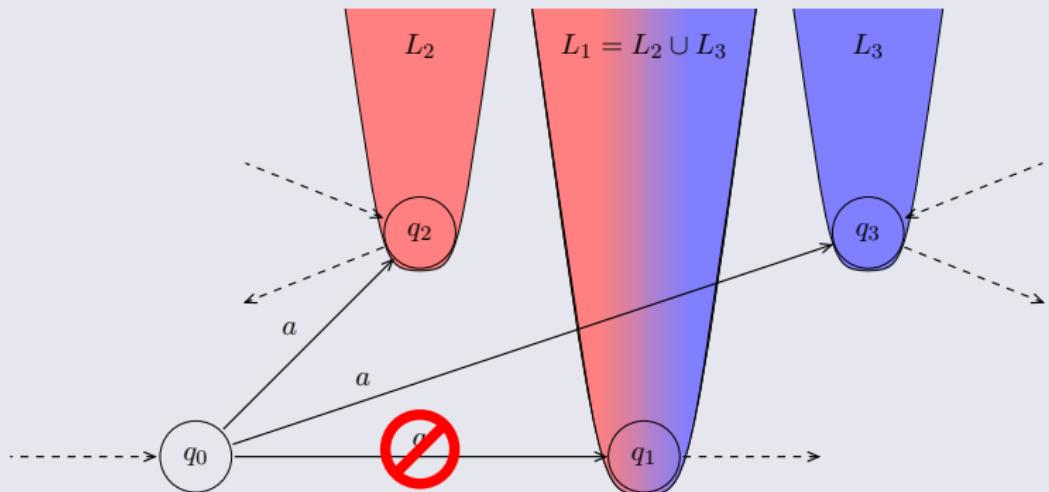
Residual Finite-State Automata [Denis et al.]



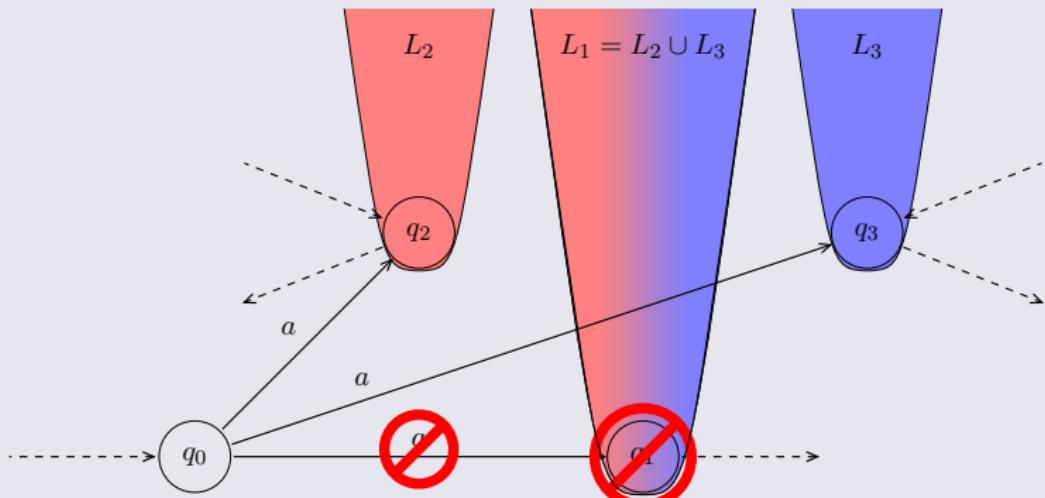
Residual Finite-State Automata [Denis et al.]



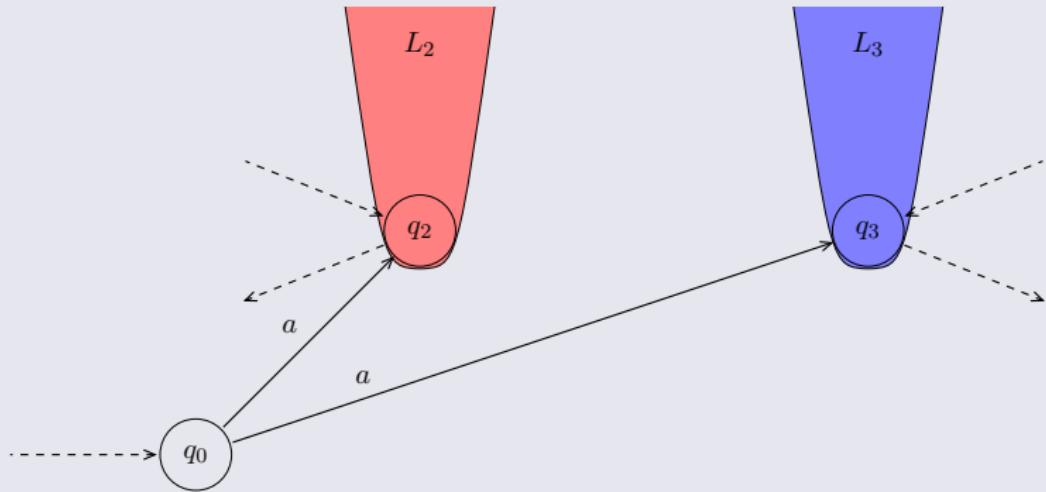
Residual Finite-State Automata [Denis et al.]



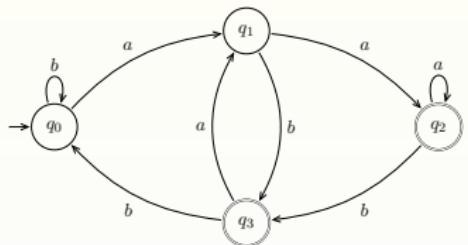
Residual Finite-State Automata [Denis et al.]



Residual Finite-State Automata [Denis et al.]



Example



Residual languages for $L = \Sigma^* a \Sigma$

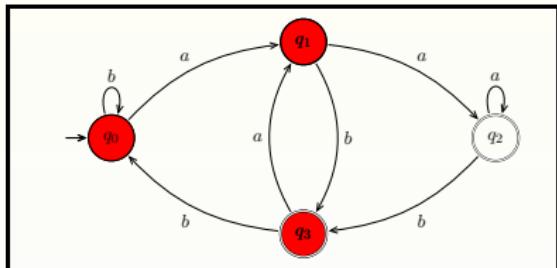
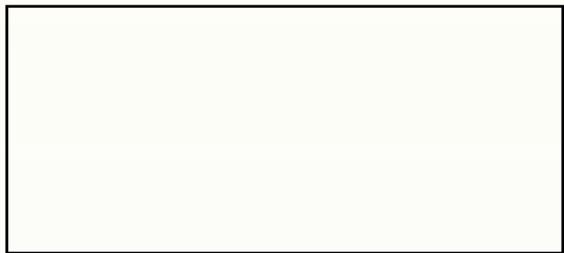
$$L_{q_0} = \Sigma^* a \Sigma$$

$$L_{q_1} = \Sigma^* a \Sigma \cup \Sigma$$

$$L_{q_2} = \Sigma^* a \Sigma \cup \Sigma \cup \{\varepsilon\}$$

$$L_{q_3} = \Sigma^* a \Sigma \cup \{\varepsilon\}$$

Example



Residual languages for $L = \Sigma^* a \Sigma$

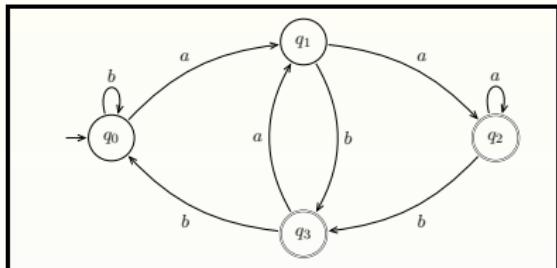
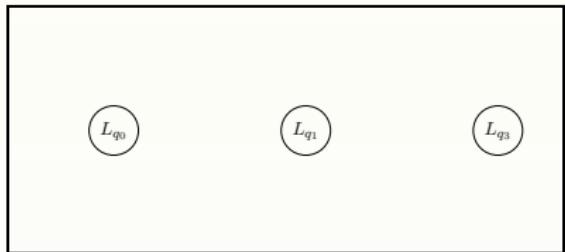
$$L_{q_0} = \Sigma^* a \Sigma$$

$$L_{q_1} = \Sigma^* a \Sigma \cup \Sigma$$

$$L_{q_2} = \Sigma^* a \Sigma \cup \Sigma \cup \{\varepsilon\}$$

$$L_{q_3} = \Sigma^* a \Sigma \cup \{\varepsilon\}$$

Example



Residual languages for $L = \Sigma^* a \Sigma$

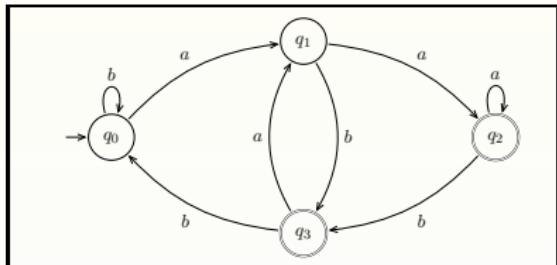
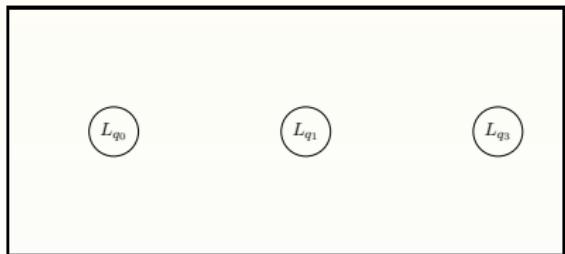
$$L_{q_0} = \Sigma^* a \Sigma$$

$$L_{q_1} = \Sigma^* a \Sigma \cup \Sigma$$

$$L_{q_2} = \Sigma^* a \Sigma \cup \Sigma \cup \{\varepsilon\}$$

$$L_{q_3} = \Sigma^* a \Sigma \cup \{\varepsilon\}$$

Example



Residual languages for $L = \Sigma^* a \Sigma$

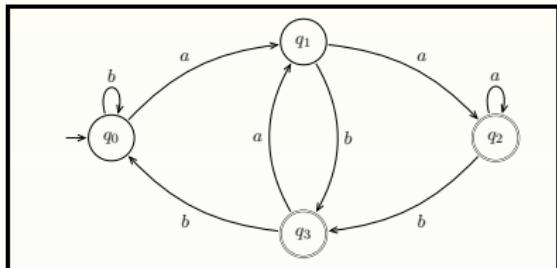
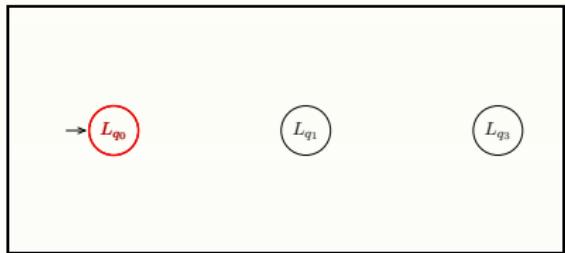
$$L_{q_0} = \Sigma^* a \Sigma \quad (\text{initial state})$$

$$L_{q_1} = \Sigma^* a \Sigma \cup \Sigma$$

$$L_{q_2} = \Sigma^* a \Sigma \cup \Sigma \cup \{\varepsilon\}$$

$$L_{q_3} = \Sigma^* a \Sigma \cup \{\varepsilon\}$$

Example



Residual languages for $L = \Sigma^* a \Sigma$

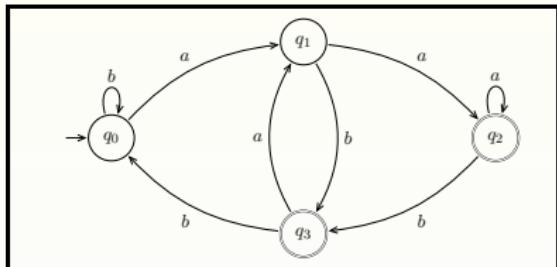
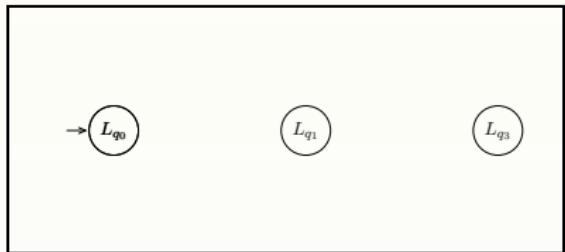
$$L_{q_0} = \Sigma^* a \Sigma$$

$$L_{q_1} = \Sigma^* a \Sigma \cup \Sigma$$

$$L_{q_2} = \Sigma^* a \Sigma \cup \Sigma \cup \{\varepsilon\}$$

$$L_{q_3} = \Sigma^* a \Sigma \cup \{\varepsilon\}$$

Example



Residual languages for $L = \Sigma^* a \Sigma$

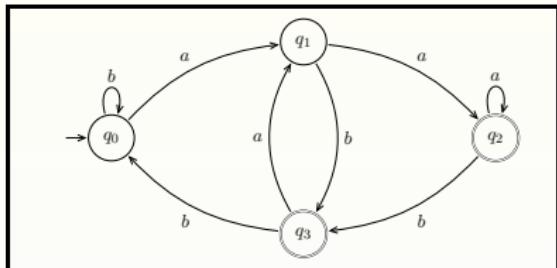
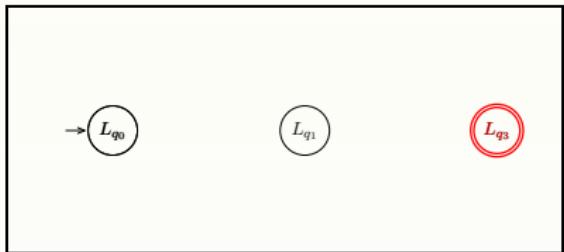
$$L_{q_0} = \Sigma^* a \Sigma$$

$$L_{q_1} = \Sigma^* a \Sigma \cup \Sigma$$

$$L_{q_2} = \Sigma^* a \Sigma \cup \Sigma \cup \{\varepsilon\}$$

$$L_{q_3} = \Sigma^* a \Sigma \cup \{\varepsilon\} \quad \text{(final state)}$$

Example



Residual languages for $L = \Sigma^* a \Sigma$

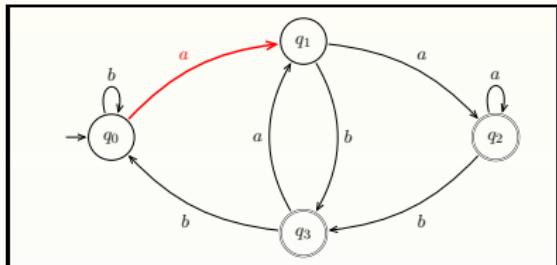
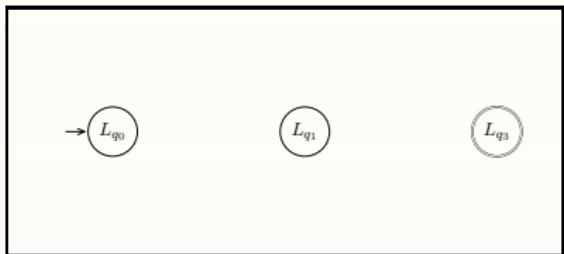
$$L_{q_0} = \Sigma^* a \Sigma$$

$$L_{q_1} = \Sigma^* a \Sigma \cup \Sigma$$

$$L_{q_2} = \Sigma^* a \Sigma \cup \Sigma \cup \{\varepsilon\}$$

$$L_{q_3} = \Sigma^* a \Sigma \cup \{\varepsilon\}$$

Example



Residual languages for $L = \Sigma^* a \Sigma$

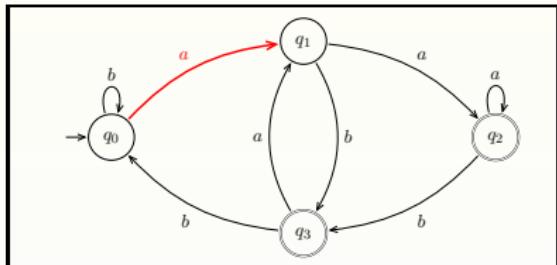
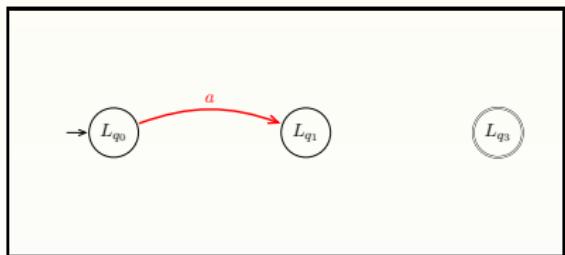
$$L_{q_0} = \Sigma^* a \Sigma \quad (a\text{-transitions})$$

$$L_{q_1} = \Sigma^* a \Sigma \cup \Sigma$$

$$L_{q_2} = \Sigma^* a \Sigma \cup \Sigma \cup \{\varepsilon\}$$

$$L_{q_3} = \Sigma^* a \Sigma \cup \{\varepsilon\}$$

Example



Residual languages for $L = \Sigma^* a \Sigma$

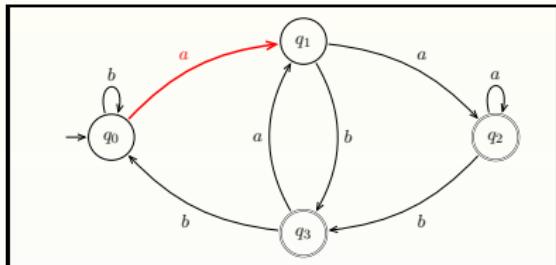
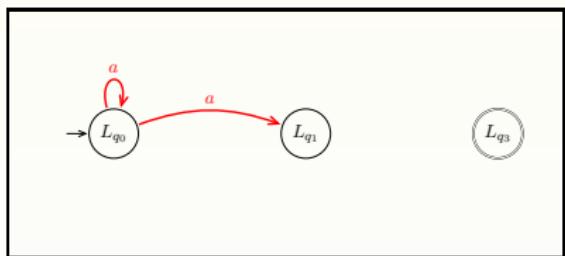
$$L_{q_0} = \Sigma^* a \Sigma \quad (a\text{-transitions})$$

$$L_{q_1} = \Sigma^* a \Sigma \cup \Sigma$$

$$L_{q_2} = \Sigma^* a \Sigma \cup \Sigma \cup \{\varepsilon\}$$

$$L_{q_3} = \Sigma^* a \Sigma \cup \{\varepsilon\}$$

Example



Residual languages for $L = \Sigma^* a \Sigma$

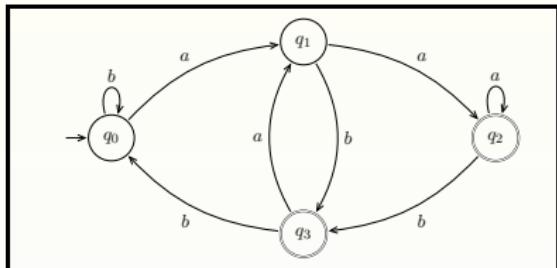
$$L_{q_0} = \Sigma^* a \Sigma \quad (a\text{-transitions})$$

$$L_{q_1} = \Sigma^* a \Sigma \cup \Sigma$$

$$L_{q_2} = \Sigma^* a \Sigma \cup \Sigma \cup \{\varepsilon\}$$

$$L_{q_3} = \Sigma^* a \Sigma \cup \{\varepsilon\}$$

Example



Residual languages for $L = \Sigma^* a \Sigma$

$$L_{q_0} = \Sigma^* a \Sigma$$

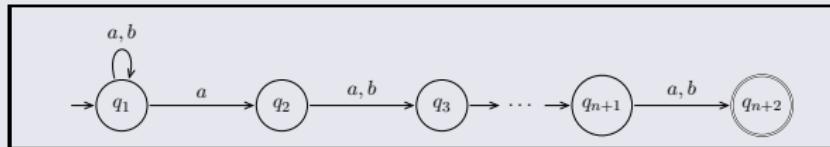
$$L_{q_1} = \Sigma^* a \Sigma \cup \Sigma$$

$$L_{q_2} = \Sigma^* a \Sigma \cup \Sigma \cup \{\varepsilon\}$$

$$L_{q_3} = \Sigma^* a \Sigma \cup \{\varepsilon\}$$

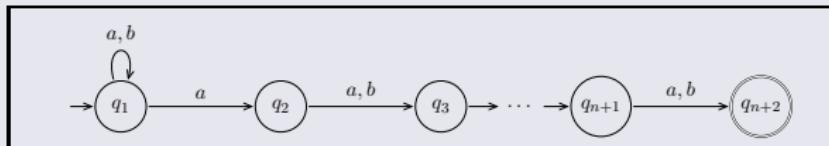
It's worth considering RFSA...

$L_n = \{w \in \Sigma^* | w \text{ has an } a \text{ at the } (n+1)\text{-last position}\}$

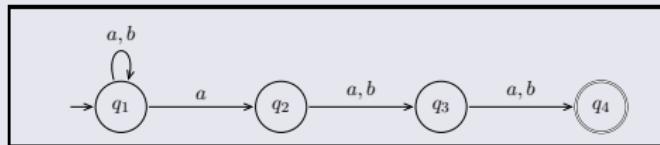


It's worth considering RFSA...

$L_n = \{w \in \Sigma^* | w \text{ has an } a \text{ at the } (n+1)\text{-last position}\}$

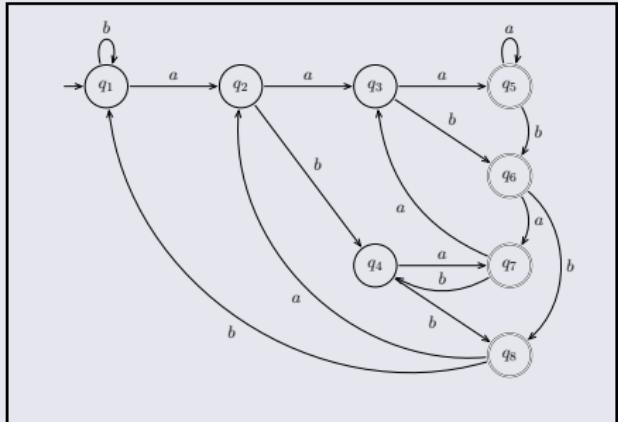


$L_2 = \{w \in \Sigma^* | w \text{ has an } a \text{ at the 3}^{\text{rd}}\text{-last position}\}$



Minimal DFA and RFSA

Minimal DFA and RFSA for L_2 :

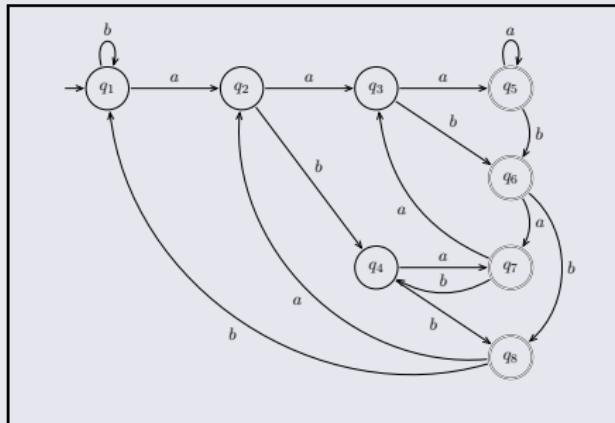
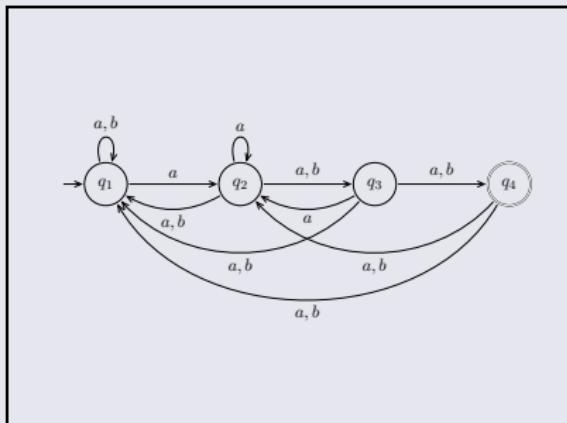


Automata for language L_n :

- minimal DFA general case: 2^{n+1} states

Minimal DFA and RFSA

Minimal DFA and RFSA for L_2 :



Automata for language L_n :

- minimal DFA general case: 2^{n+1} states
- *canonical* RFSA general case: $n + 2$ states

Presentation outline

- 1 Angluin's Algorithm L^*
- 2 Residual Finite-State Automata
- 3 Learning RFSA: The Algorithm NL^*
- 4 NL^* —Experiments
- 5 Conclusion

Tables in NL^*

From tables to RFSA

- we deal with tables

T	ε	a	aa
ε	—	—	+
a	—	+	+
ab	+	—	+
b	—	—	+
aa	+	+	+
aba	—	+	+
abb	—	—	+

Tables in NL^*

T	ε	a	aa
ε	—	—	+
a	—	+	+
ab	+	—	+
b	—	—	+
aa	+	+	+
aba	—	+	+
abb	—	—	+

From tables to RFSA

- we deal with tables
- table rows approximate residual languages

Tables in NL^*

T	ε	a	aa
ε	—	—	+
a	—	+	+
ab	+	—	+
b	—	—	+
aa	+	+	+
aba	—	+	+
abb	—	—	+

From tables to RFSA

- we deal with tables
- table rows approximate residual languages
- not all rows represent states

T	ε	a	aa
ε	-	-	+
a	-	+	+
ab	+	-	+
b	-	-	+
aa	+	+	+
aba	-	+	+
abb	-	-	+

From tables to RFSA

- we deal with tables
- table rows approximate residual languages
- not all rows represent states
- as long as there is no other evidence:
equal rows represent equal residual languages

T	ε	a	aa
ε	—	—	+
a	—	+	+
ab	+	—	+
b	—	—	+
aa	+	+	+
aba	—	+	+
abb	—	—	+

From tables to RFSA

- we deal with tables
- table rows approximate residual languages
- not all rows represent states
- as long as there is no other evidence:
equal rows represent equal residual languages
- transition relation respects language inclusion

Tables in NL^*

T	ε	a	aa
ε	—	—	+
a	—	+	+
ab	+	—	+
b	—	—	+
aa	+	+	+
aba	—	+	+
abb	—	—	+

From tables to RFSA

- we deal with tables
- table rows approximate residual languages
- not all rows represent states
- as long as there is no other evidence:
equal rows represent equal residual languages
- transition relation respects language inclusion

Tables in NL^*

T	ε	a	aa
ε	—	—	+
a	—	+	+
ab	+	—	+
b	—	—	+
aa	+	+	+
aba	—	+	+
abb	—	—	+

From tables to RFSA

- we deal with tables
- table rows approximate residual languages
- not all rows represent states
- as long as there is no other evidence:
equal rows represent equal residual languages
- transition relation respects language inclusion

From tables to RFSA

T	ε	a	aa	...
ε	—	—	+	...
a	—	+	+	...
ab	+	—	+	...
b	—	—	+	...
aa	+	+	+	...
aba	—	+	+	...
abb	—	—	+	...

- we deal with tables
- table rows approximate residual languages
- not all rows represent states
- as long as there is no other evidence:
equal rows represent equal residual languages
- transition relation respects language inclusion
- treatment of counterexamples:
 - add to columns
 - otherwise non-termination

Table properties

T	ε	a	aa
ε	—	—	+
a	—	+	+
ab	+	—	+
b	—	—	+
aa	+	+	+
aba	—	+	+
abb	—	—	+

Closedness

- all states identifiable from the table

Table properties

T	ε	a	aa
ε	—	—	+
a	—	+	+
ab	+	—	+
b	—	—	+
aa	+	+	+
aba	—	+	+
abb	—	—	+

Closedness

- all states identifiable from the table
- all *non-composed* rows have to be in the upper part of the table

Table properties

T	ε	a	aa
ε	—	—	+
a	—	+	+
ab	+	—	+
b	—	—	+
aa	+	+	+
aba	—	+	+
abb	—	—	+

Closedness

- all states identifiable from the table
- all *non-composed* rows have to be in the upper part of the table
- all other rows can be composed by upper rows

Table properties

T	ε	a	aa
ε	—	—	+
a	—	+	+
ab	+	—	+
b	—	—	+
aa	+	+	+
aba	—	+	+
abb	—	—	+

Closedness

- all states identifiable from the table
- all *non-composed* rows have to be in the upper part of the table
- all other rows can be composed by upper rows

Consistency

- transition relation respects language inclusion

T	ε	a	aa
ε	—	—	+
a	—	+	+
ab	+	—	+
b	—	—	+
aa	+	+	+
aba	—	+	+
abb	—	—	+

Closedness

- all states identifiable from the table
- all *non-composed* rows have to be in the upper part of the table
- all other rows can be composed by upper rows

Consistency

- transition relation respects language inclusion

Table properties

T	ε	a	aa
ε	—	—	+
a	—	+	+
ab	+	—	+
b	—	—	+
aa	+	+	+
aba	—	+	+
abb	—	—	+

Closedness

- all states identifiable from the table
- all *non-composed* rows have to be in the upper part of the table
- all other rows can be composed by upper rows

Consistency

- transition relation respects language inclusion

Theorem (Complexity of NL^*)

Let:

- n : number of states of minimal DFA \mathcal{A}_L for regular language L ,
- m : length of the biggest counterexample

Then, NL^* returns after at most:

the canonical RFSA $\mathcal{R}(L)$.

Theorem (Complexity of NL^*)

Let:

- n : number of states of minimal DFA \mathcal{A}_L for regular language L ,
- m : length of the biggest counterexample

Then, NL^* returns after at most:

- $O(n^2)$ equivalence queries and

the canonical RFSA $\mathcal{R}(L)$.

Theorem (Complexity of NL^*)

Let:

- n : number of states of minimal DFA \mathcal{A}_L for regular language L ,
- m : length of the biggest counterexample

Then, NL^* returns after at most:

- $O(n^2)$ equivalence queries and
- $O(m|\Sigma|n^3)$ membership queries

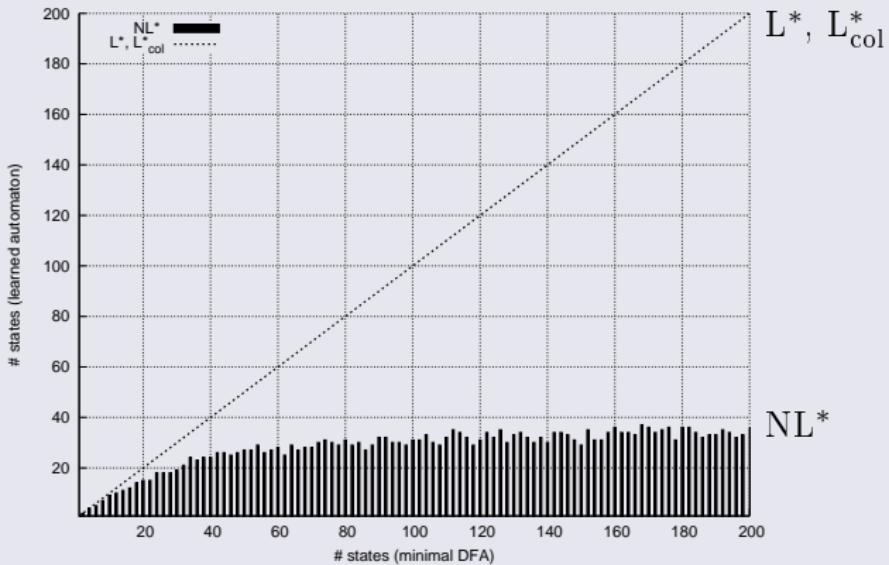
the canonical RFSA $\mathcal{R}(L)$.

Presentation outline

- 1 Angluin's Algorithm L^*
- 2 Residual Finite-State Automata
- 3 Learning RFSA: The Algorithm NL^*
- 4 NL^* —Experiments
- 5 Conclusion

Algorithm - Overview

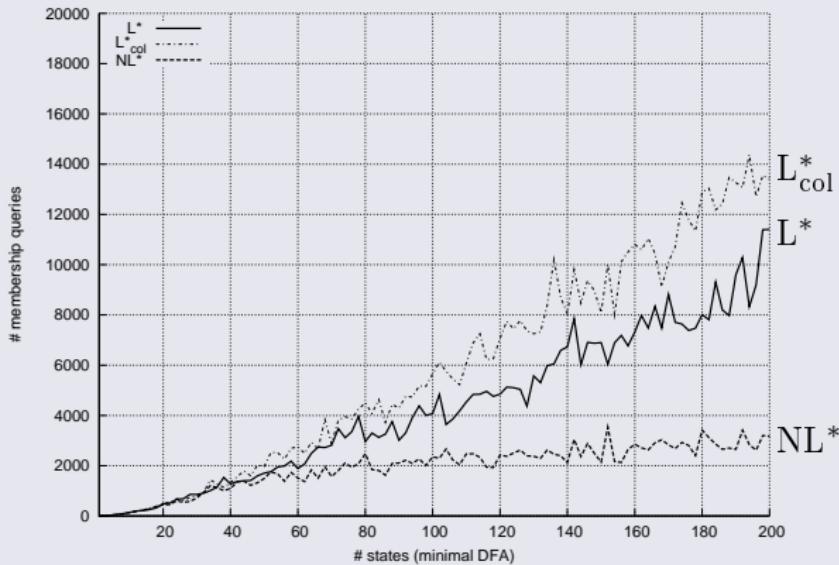
Number of states (L^* , L_{col}^* vs. NL^*)



- ≈ 3200 reg. exp. with minimal DFA of 1 to 200 states

Algorithm - Overview

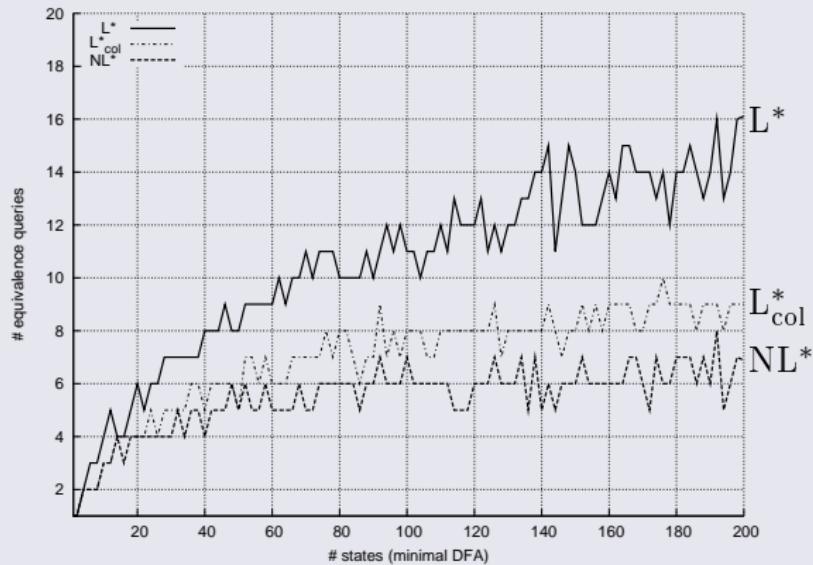
Number of membership queries (L^* vs. L_{col}^* vs. NL^*)



- ≈ 3200 reg. exp. with minimal DFA of 1 to 200 states

Algorithm - Overview

Number of equivalence queries (L^* vs. L_{col}^* vs. NL^*)

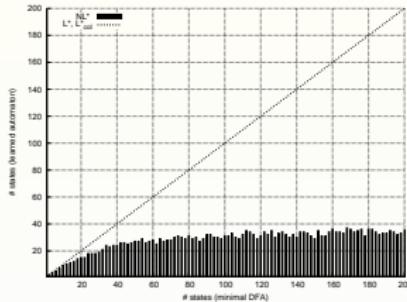
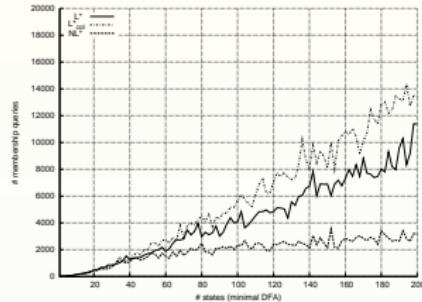
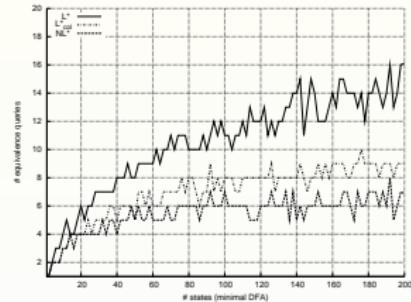


- ≈ 3200 reg. exp. with minimal DFA of 1 to 200 states

Presentation outline

- 1 Angluin's Algorithm L^*
- 2 Residual Finite-State Automata
- 3 Learning RFSA: The Algorithm NL^*
- 4 NL^* —Experiments
- 5 Conclusion

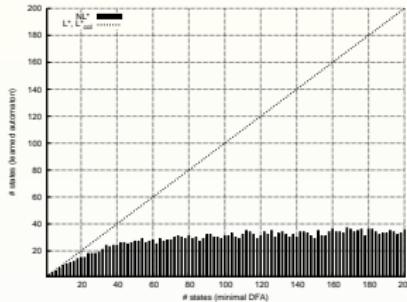
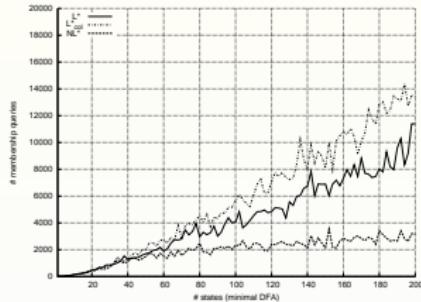
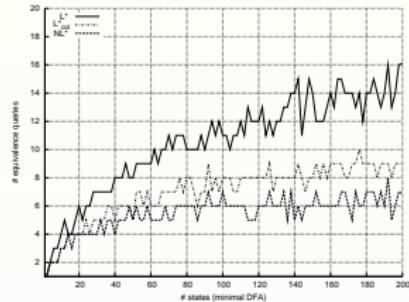
That's it!



What did *we* learn ?

- NL^* outperforms L^* by far

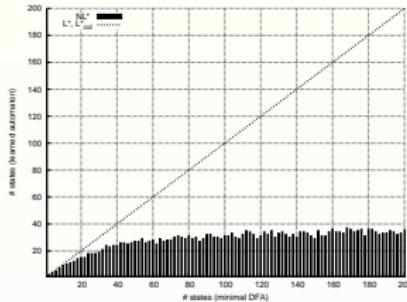
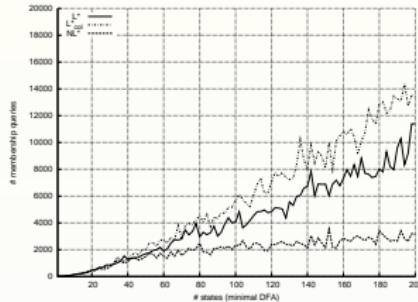
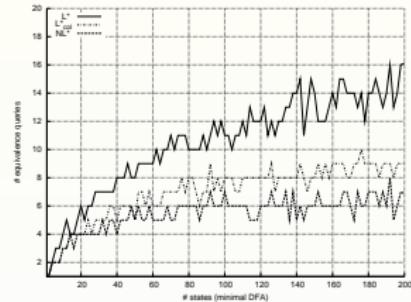
That's it!



What did *we* learn ?

- NL* outperforms L* by far
- Learning using NFA works well in practice!

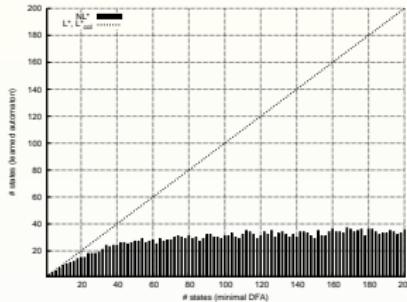
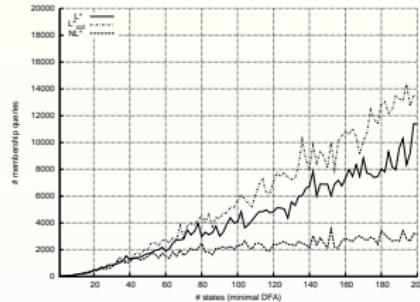
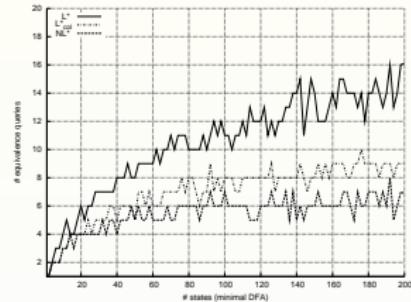
That's it!



What did *we* learn ?

- NL* outperforms L* by far
- Learning using NFA works well in practice!
- Nondeterminism does not always hurt!!!

That's it!



What did *we* learn ?

- NL* outperforms L* by far
- Learning using NFA works well in practice!
- Nondeterminism does not always hurt!!!

Thanks!