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 �nite automaton, DFA)A
tive LearningThe learner is given positive and negative examplesThe learner 
an a
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i�
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Table-based learning
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Algorithm - OverviewNumber of states (L∗, L∗
ol vs. NL∗)
 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 20  40  60  80  100  120  140  160  180  200

# 
st

at
es

 (
le

ar
ne

d 
au

to
m

at
on

)

# states (minimal DFA)

NL* 
L*, L*col

L∗, L∗
ol
NL∗

≈ 3200 reg. exp. with minimal DFA of 1 to 200 statesCarsten Kern NL*�Angluin-style learning of NFA
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What did we learn ?NL* outperforms L* by far
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