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Main results

@ New learning algorithm for NFA (NL*)
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Areas of application

o Formal verification (e.g., regular model checking)

@ Bioinformatics (e.g., prediction of structure of proteins)

@ Robotics (e.g., learning environment models)

o Computational linguistics (e.g., compiling idiom dictionaries)

o ...
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Outline

@ Learning Deterministic Automata
© Learning Nondeterministic Automata
© Learning Communicating Automata
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Presentation outline

@ Learning Deterministic Automata
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Here, learning means:

Given exemplifying behavior of a system

Learn a model conforming to the given behavior

Carsten Kern Learning Communicating and Nondet. Automata



Here, learning means:

Given exemplifying behavior of a system
in terms of words

Learn a model conforming to the given behavior
in terms of a regular language (deterministic finite automaton, DFA)

Carsten Kern Learning Communicating and Nondet. Automata



Here, learning means:

Given exemplifying behavior of a system
in terms of words

Learn a model conforming to the given behavior
in terms of a regular language (deterministic finite automaton, DFA)

Active Learning

@ The learner is given positive and negative examples

Carsten Kern Learning Communicating and Nondet. Automata



Here, learning means:

Given exemplifying behavior of a system
in terms of words

Learn a model conforming to the given behavior
in terms of a regular language (deterministic finite automaton, DFA)

Active Learning

@ The learner is given positive and negative examples

@ The learner can actively ask specific questions

Carsten Kern Learning Communicating and Nondet. Automata



Here, learning means:

Given exemplifying behavior of a system
in terms of words

Learn a model conforming to the given behavior
in terms of a regular language (deterministic finite automaton, DFA)

Active Learning

@ The learner is given positive and negative examples

@ The learner can actively ask specific questions

Occam’s razor:

“In case of different explanations, choose the simplest one.”

Carsten Kern Learning Communicating and Nondet. Automata



Here, learning means:

Given exemplifying behavior of a system
in terms of words

Learn a model conforming to the given behavior
in terms of a regular language (deterministic finite automaton, DFA)

Active Learning

@ The learner is given positive and negative examples

@ The learner can actively ask specific questions

Occam’s razor:

“In case of different explanations, choose the simplest one.”
= Learn the minimal DFA conforming to given examples
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Algorithm - Overview

Teacher Membership queries

Yes/No

Is w € ¥* a member of language L7

Learner

Let ‘H be a hypothesis
Is ‘H equivalent to system to learn?

Yes/Counterexample . .
Oracle Equivalence queries

@ L: (regular) language to learn

Learning Communicating and Nondet. Autol



Algorithm - Overview

Teacher Membership queries
Yes/No

Is w € ¥* a member of language L?

Let ‘H be a hypothesis
Is ‘H equivalent to system to learn?

Yes/Counterexample . .
Oracle Equivalence queries

@ L: (regular) language to learn

Learning Communicating and Nondet. Autol



Algorithm - Overview

Membership queries

Yes/No
/e ¥* a member of language L?

Learner

Let ‘H be a hypothesis
Is ‘H equivalent to system to learn?

Yes/Counterexample . .
Oracle Equivalence queries

@ L: (regular) language to learn

Learning Communicating and Nondet. Autol



Algorithm - Overview

Teacher Membership queries
Yes/No

Is w € ¥* a member of language L?

Let ‘H be a hypothesis
Is ‘H equivalent to system to learn?

Yes/Counterexample . .
Oracle Equivalence queries

@ L: (regular) language to learn

Learning Communicating and Nondet. Autol



Algorithm - Overview

Membership queries

Yes/No
/e ¥* a member of language L?

Learner
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Algorithm - Overview

Teacher Membership queries

Yes/No

Is w € ¥* a member of language L7

Learner

Let ‘H be a hypothesis
Is ‘H equivalent to system to learn?

Yes/Counterexample i X
Equivalence queries

@ L: (regular) language to learn
@ Counterexample: w € (L(H)\ L) U (L \ L(H))
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Table-based learning

Let ¥ = {a,b}
T || €
€
a

b
aa
ab

ee L?
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Table-based learning

Let ¥ = {a, b}
T || €
e I + To derive an automaton:
a — @ 7 must be closed, i.e., all states are
b _ derivable from 7°
aa || — @ 7 must be consistent, i.e., there are
ab || + no contradicting transitions
ab (@) To this end:
9/\@ @ upper rows serve to derive states
S~ @ lower rows serve to derive transitions |

b
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Table-based learning

Let ¥ = {a, b}
T | €
€ +
a —
b _
aa || —
ab || +

a
a,b
OWBO
~_
b

bb € L(H) but bb & L
RWTH
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Table-based learning

Let ¥ = {a, b}
T || €
€ +
i | Counterexample can be added to:
b _
aaq —
ab || +

a
a,b
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Table-based learning

Let ¥ = {a, b}
T €
€ +
a —
Zb B} Counterexample can be added to:
o the rows (L*)
aaq —
ab || +
ba || —
bba || —
bbb || —

Carsten Kern Learning Communicating and Nondet. Automata



Table-based learning

Let ¥ = {a, b}
T || e|ob]b
Z t : ; Counterexample can be added to:
b N R o the rows (L*)
aa || — | — | — @ the columns (L} )
ab || +|— 1| —
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Angluin’s Algorithm L*

Theorem (Complexity of L*)
Let:

@ n: number of states of the minimal DFA Ay, for regular language L,

@ m: length of the biggest counterexample

Then, L* returns after at most:

the minimal DFA A.
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Angluin’s Algorithm L*

Theorem (Complexity of L*)
Let:
@ n: number of states of the minimal DFA Ay, for regular language L,

@ m: length of the biggest counterexample

Then, L* returns after at most:

@ n equivalence queries and

@ O(m|X|n?) membership queries
the minimal DFA A.
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But there is a problem ...

minimal DFA can be huge!
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But there is a problem ...

b
Q a a
—( @ a2 a3

minimal DFA can be huge!

What about more succinct representations like NFA?

Can we learn (a certain subclass of ) NFA?
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But there is a problem ...

b a
o o

e@ o < @ g a )

minimal DFA can be huge!

What about more succinct representations like NFA?

Can we learn (a certain subclass of ) NFA?

Yes, we can!
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Presentation outline

© Learning Nondeterministic Automata
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@ DFA can be huge

® e.g., verification is much more efficient on smaller models
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@ DFA can be huge

® e.g., verification is much more efficient on smaller models

@ Learn more compact representations of regular languages

@ Use residual finite-state automata (RFSA) for learning
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Residual Finite-State Automata [Denis

et al ]
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Residual Finite-State Automata [Denis et al.]

Carsten Kern Learning Communicating and Nondet. Automata



Residual Finite-State Automata

Definition (Residual Language)

For a language L C ¥* and u € ¥*:
ulL={veX*|uwwel} (uresidual of L)

L' C ©* is a residual language of L if: Ju € ¥* with L' = u~'L.

Res(L): the set of residual languages of L.
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Residual Finite-State Automata

D

Definition (Residual Language)

For a language L C ¥* and u € ¥*:
ulL={veX*|uwwel} (uresidual of L)

@ ¢ L =YX (= Ly)
@ (ab)7'L = T*aX U {¢} (= Lgs)

L' C ©* is a residual language of L if: Ju € ¥* with L' = u~'L.

Res(L): the set of residual languages of L.
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Residual Finite-State Automata

Definition (Residual Finite-State Automaton)

A residual finite-state automaton (RFSA) over ¥ is an NFA
R = (Q,Qo, F,0) such that for each ¢ € Q, L, € Res(L(R)).
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Residual Finite-State Automata

e ¢ L =YX (= Ly)
@ (o) 'L=%*XUX (=Lg)
o () IL=XUXU{e} (=Lg)
o (ab)7 'L =3%*aX U {e} (= Lgs)

Definition (Residual Finite-State Automaton)

A residual finite-state automaton (RFSA) over ¥ is an NFA
R = (Q,Qo, F,0) such that for each ¢ € Q, L, € Res(L(R)).
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Towards canonical RFSA

b/ \ . |eelL=3*aX
{% 1\ & @ (@TIL=3"Tus
\ . / o (h)'L=Y*aX UXU{e}
Il o (ab)~'L = T*aX U {e}

Definition (Prime and Composed Residuals)

Let L C ¥* be a language. A residual L' € Res(L) is called composed if
there are Lq,..., L, € Res(L) \ {L'} such that

L'=L,U...UL,

Otherwise, it is called prime.
The set of prime residuals of L is denoted by Primes(L).
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Towards canonical RFSA

e 1L = 3*aX

o o °
b \(t
{%/ b 8 o () 'L=S*Z U
\ /. o (b)) IL=Y*aXUXU{e}
b O b °

(ab)~!L = X*a¥X U {e}

Definition (Prime and Composed Residuals)

Let L C X* be a language. A residual L’ € Res(L) is called composed if
there are Lq,..., L, € Res(L) \ {L'} such that

L'=L,U...UL,

Otherwise, it is called prime.
The set of prime residuals of L is denoted by Primes(L).
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Canonical RFSA

o 7L =%*aX (= L)
@ (o) 'L=%*XUX (= Lg)
\ o () L= UXU{e} (=Lg)
@ (ab)7'L =3Y*aX U {e} (= Lgy)

Definition (Canonical RFSA [Denis, Lemay, Terlutte’'02])

Let L be a regular language. The canonical RFSA of L, denoted by
R(L), is the tuple (Q, Qo, F,0) where

® Q = Primes(L),

° Qu={I'eQ| L CL},

e F={L'eQl|eec L}, and

@ 0(L1,a) ={La € Q| Ly Ca 'L}, forac 3.

IS
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Example: Deriving the canonical RFSA for L = ¥*aX:

Residual languages for L = ¥*aX
Ly, = a2
Ly =X Uy
Lg, = S*aX U X U{e}
Ly =%*a¥ U {e}
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Example: Deriving the canonical RFSA for L = ¥*aX:

States: @ = Primes(L) )

v .b\a
.

Residual languages for L = X*aX
Ly, = Y*a%
Ly =Y*aX U X
Lg, = Y2 U B U{e}
Ly = S*aX U {e}
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Example: Deriving the canonical RFSA for L = ¥*aX:

Initial states: Qo ={L' € Q | L' C L}, )

Residual languages for L = ¥*aX
Ly =X*aX (initial state)
Ly =X Uy
Ly, = S*aX U X U{e}
Ly, = S*aX U {e}
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Example: Deriving the canonical RFSA for L = ¥*aX:

Final states: FF'={L' € Q | e € L'}, and )

Residual languages for L = ¥*aX
Lg, = *a%
Ly =Y*aSU Y
Ly, = S*aX U X U{e}
Ly, = X*a¥ U {e} (final state)
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Example: Deriving the canonical RFSA for L = ¥*aX:

Transitions: 6(L1,a) = {Ls € Q | Ly Ca 'Ly}, for a € 3. J

Residual languages for L = X*aX

Ly =X*aX (a-transitions)
Ly =YX UY

Ly, =¥*a¥ U X U{e}

Ly =%*a¥X U {e}
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Example: Deriving the canonical RFSA for L = ¥*aX:

Transitions: 6(L1,a) = {Ls € Q | Ly Ca 'Ly}, for a € 3. J

0 o
& T®

Residual languages for L = X*aX

Ly =X*aX (a-transitions)
Ly =YX UY

Ly, =¥*a¥ U X U{e}

Ly =%*a¥X U {e}
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Example: Deriving the canonical RFSA for L = ¥*aX:

Transitions: 6(L1,a) = {Ls € Q | Ly Ca~'L1}, for a € . J

a,b

T

Residual languages for L = X*aX
Ly = T*a%
Ly =SS U Y
Ly = $*aX U X U{e}
Ly =%*a¥X U {e}
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Designing a table-based learning algorithm

Let T = (T,U,V) be a table. Find analogon to union of residuals )
Definition (Join Operator) T|c|alaa
join of two rows ri,ry € Rows(7T) is defined | e e
component-wise for each v € V: all= |+ |+

ab ||+ | —| +
(rmUrg): V- {+ -} bl[-1-1+
(riUrg)(v) = r1(v) Ure(v) where aa || + |+ | +
@ —U—=—and aba || — | + | +
abb || — | — | +

o Ll Hi= = = ]
RWTH
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Designing a table-based learning algorithm

Let T = (T,U,V) be a table. Find analogon to union of residuals )

Definition (Join Operator) 7| |

|aa

IS

join of two rows ri,ry € Rows(7T) is defined
component-wise for each v € V:

(riUre) : V= {+4,—}:
(riUrg)(v) = r1(v) Ure(v) where
@ —J—=—and
@ tLt=+l-=—L+=+

row(a) U row(ab) = (—,+,+) U (+,—,+) = (+,+,+) = row(aa)
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Designing a table-based learning algorithm

Find analogon to Composed and prime residuals )

Definition (Composed and Prime Rows)

T‘|5|a|aa

Row r € Rows(T) is called: =1 -1+
@ composed if there are rows all — |+ 1|+
T1,...,7n € Rows(T) \ {r} such that ab ||+ |- | +
r=riU...Ur,. bl —|— |+

aa || + |+ | +

aba || — |+ | +

abb || — | — | +

RWTH
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Designing a table-based learning algorithm

Find analogon to Composed and prime residuals )

Definition (Composed and Prime Rows)

Row r € Rows(T) is called:

@ composed if there are rows
Tl ..., € Rows(7T) \ {r} such that
r=riU...Ur,.

Row (+,+,+) is composed:
row(aa) = (+,+,+) = (=, +,+) U (+, —, +) = row(a) U row(ab)
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Designing a table-based learning algorithm

Find analogon to Composed and prime residuals )

Definition (Composed and Prime Rows)

T‘|5|a|aa

Row r € Rows(T) is called: =1 -1+
@ composed if there are rows all — |+ 1|+
T1,...,Tn € Rows(T) \ {r} such that ab ||+ |- | +
r=riU...Ur,. bl —|— |+

. . aa || + |+ | +

@ prime, otherwise. aba || = |+ | +
abb || — | — | +

RWTH
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Designing a table-based learning algorithm

Find analogon to Composed and prime residuals )

Definition (Composed and Prime Rows)
Row r € Rows(T) is called:

@ composed if there are rows
Tl ..., € Rows(7T) \ {r} such that
r=riU...Ur,.

@ prime, otherwise.

E.g. rows (—,—,+), (—,+,+) are prime

Carsten Kern Learning Communicating and Nondet. Automata



Designing a table-based learning algorithm

Find analogon to Composed and prime residuals )

Definition (Composed and Prime Rows)

TH6|a|aa,

Row r € Rows(T) is called:

@ composed if there are rows
Tl ..., € Rows(7T) \ {r} such that
r=riU...Ur,.

@ prime, otherwise.

Primes(T): The set of prime rows in 7 and

Primes(T) = {row(e), row(a), row(ab), row(b), row(aba), row(abb)}

Carsten Kern Learning Communicating and Nondet. Automata



Designing a table-based learning algorithm

Find analogon to Composed and prime residuals )

Definition (Composed and Prime Rows)
Row r € Rows(T) is called:

@ composed if there are rows
T1y...,"n € Rows(7T) \ {r} such that

7 ||

(L)

|a|aa

r=riU...Ury,. bl —|—|+

. . aa ||+ |+ | +

@ prime, otherwise. aba || — |+ | +
Primes(7T): The set of prime rows in 7 and abb || — | = | +

Primesypp(T) = Primes(T) N Rowsypp (7).

Primesypp(7T) = {row(e), row(a), row(ab)}
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Designing a table-based learning algorithm

Find analogon to subset relation between residuals )

Definition (Covering Relation)
Row r € Rows(T) is:

@ covered by row r’ € Rows(T) (r E¢/), if
forallv e V:r(v) =+ =1'(v) = +.

++ 4+ |+

@ e.g., row(e) C row(a) and row(e) C row(abd)

AT
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Designing a table-based learning algorithm

Find analogon to subset relation between residuals )

Definition (Covering Relation)

Row r € Rows(T) is: al —|+

@ covered by row 1’ € Rows(T) (r C r'), if ab|| + | -
forallve V:r() =+ =1r'(v) =+. bl -

aa || + | +

aba || — | +

@ e.g., row(e) C row(a) and row(e) C row(abb)

AT
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Designing a table-based learning algorithm

Find analogon to subset relation between residuals )

N
[

|a|aa

Definition (Covering Relation)

Row r € Rows(T) is:
@ covered by row ' € Rows(T) (r C '), if
forall v € V:r(v) =+ =1'(v) = +.
@ If moreover v’ # r, then r is strictly
covered by 7/, denoted by r C 7.

@ e.g., row(e) C row(a) and row(e) C row(abb)

® e.g., row(e) C row(ab)

AT
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Table properties

Find analogon to closedness and consistency in L* J
RFSA-Closedness

T|el|alaa o all states identifiable from the table

b —[—]+

aa || + |+ | + )
aba || — |+ | +
abb || — | — | +

RWTH.
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Table properties

Find analogon to closedness and consistency in L* J
RFSA-Closedness
T|elalaa o all states identifiable from the table

@ all non-composed rows have to be in the
upper part of the table

b —|—|+
aa |+ |+ | + y

aba || — | + | +

abb || — | — | +
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Table properties

Find analogon to closedness and consistency in L* J
RFSA-Closedness
T|e|a]aa o all states identifiable from the table

@ all non-composed rows have to be in the
upper part of the table

@ all other rows can be composed by
upper rows
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Table properties

Find analogon to closedness and consistency in L* J
RFSA-Closedness
T|el|alaa o all states identifiable from the table

@ all non-composed rows have to be in the
upper part of the table

az Bl Ty @ all other rows can be composed by
-1-T+
upper rows
aa || + | + | + PP |
aba || — | + | + :
abb || = | = | + RFSA-Consistency

@ transition relation respects language
inclusion
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Table properties

Find analogon to closedness and consistency in L* J

RFSA-Closedness

@ all states identifiable from the table

@ all non-composed rows have to be in the
upper part of the table

@ all other rows can be composed by
upper rows

RFSA-Consistency

@ transition relation respects language
inclusion
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Table properties

Find analogon to closedness and consistency in L* J
RFSA-Closedness
T|e|alaa o all states identifiable from the table
ell—|—1|+ @ all non-composed rows have to be in the
al — |+ |+ upper part of the table

-— @ all other rows can be composed by

upper rows

aa || + | +
aba || — | +
abb || — | —

++ +

RFSA-Consistency

@ transition relation respects language
inclusion
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From Table to NFA

Definition (NFA of a Table)

For a table 7 = (T,U, V) that is RFSA-closed and RFSA-consistent,
we define an NFA Ry = (Q, Qo, F,d) by

® Q = Primesup,(T),

@ Qo={reQ|rCrow(e)},

e F={reQ|r(e) =4}, and

@ d(row(u),a) ={re @ |rCrow(ua)} (ue U, row(u) € Q, a € %)
7|
&
a
ab
b

aa

4

|a‘aa

(L)

—+

%% % x
I == ==

I+ +

* aba
* abb || —
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From Table to NFA

Definition (NFA of a Table)

For a table 7 = (T,U, V) that is RFSA-closed and RFSA-consistent,
we define an NFA Ry = (Q, Qo, F,d) by

@ Q = Primesupy(T),

@ Qo={reQ|rCrow(e)},

o F={reQ]r(e)=+}, and

@ d(row(u),a) ={re @ |rCrow(ua)} (ue U, row(u) € Q, a € %)
T H € | a ‘aa

v

* bi|l—|—| +

aa ||+ |+ | +
x aba || — |+ | + RWTH
* abb || —|—| +
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From Table to NFA

Definition (NFA of a Table)

For a table 7 = (T,U, V) that is RFSA-closed and RFSA-consistent,
we define an NFA Ry = (Q, Qo, F,d) by

® Q = Primesup,(T),

@ Qo={re@|rCrow)},

e F={reQ|r(e) =4}, and

@ d(row(u),a) ={re @ |rCrow(ua)} (ue U, row(u) € Q, a € %)

v

~() ® O,

*
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From Table to NFA

Definition (NFA of a Table)

For a table 7 = (T,U, V) that is RFSA-closed and RFSA-consistent,
we define an NFA Ry = (Q, Qo, F,d) by

® Q = Primesup,(T),

® Qo={req|rCmu@E)

e F={req@|r(e) =4}, and

@ d(row(u),a) ={re @ |rCrow(ua)} (ue U, row(u) € Q, a € %)

v

’TH€|a‘aa

* ell—1—-+
* a|l— |+ |+
[+ ablr]=]+] .
e — & ® ®
aa ||+ |+ | +
x aba || — |+ | + RWTH
* abb || —|—| +
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From Table to NFA

Definition (NFA of a Table)

For a table 7 = (T,U, V) that is RFSA-closed and RFSA-consistent,
we define an NFA Ry = (Q, Qo, F,d) by

® Q = Primesup,(T),

® Qo={req|rCmu@E)

e F={reQ|r(e) =4}, and

@ d(row(u),a) ={re@Q|rC row(ua)} (u €U, row(u) € Q, a € X)

v

O .
T ®
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From Table to NFA

Definition (NFA of a Table)

For a table 7 = (T,U, V) that is RFSA-closed and RFSA-consistent,
we define an NFA Ry = (Q, Qo, F,d) by

® Q = Primesup,(T),

® Qo={req|rCmu@E)

e F={reQ|r(e) =4}, and

@ d(row(u),a) ={re@Q|rC row(ua)} (u €U, row(u) € Q, a € X)

4

’TH8|a‘aa
* ell—1—-+
- I A . A w
* a + =+ — —
JERE | N

aa ||+ |+ | +
x aba || — |+ | + o RWTH
x abb || —|—| +
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Summarizing: Tables in NL*

From tables to RFSA

@ we deal with tables

T H € | a |aa
el —|— |+
all—|+]|+
ab|+|—| +
bl —1|—1|+
aa ||+ |+ | +
aba || — | + | +
abb || — | — | +
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Summarizing: Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

T || € | a | aa
languages

bil—1|—| +

aa ||+ |+ | +

aba || — | + | +

abb || — | — | +
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Summarizing: Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

T
H languages

)
S
=)
=)

@ not all rows represent states
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Summarizing: Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

languages
all— |+ | + @ not all rows represent states
ab || +| —| + 9 as long as there is no other evidence:
bl -7+ equal rows represent equal residual
aa | + |+ | + languages
aba || — | + | +
abb || — | — | +
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Summarizing: Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

languages
all— |+ | + @ not all rows represent states
ab |+ | —| + @ as long as there is no other evidence:
bl —|— |+ equal rows represent equal residual
aa || + |+ | + languages
aba || — |+ | + ., .
abb | — | — | + @ transition relation respects language

inclusion
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Summarizing: Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

languages
Ell—|— |+
@ not all rows represent states
ab |+ |- | + @ as long as there is no other evidence:
bl —|— |+ equal rows represent equal residual
aa || + |+ | + languages
aba || — |+ | + ., .
abb | — | — | + @ transition relation respects language

inclusion
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Summarizing: Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

T H € | a |aa
languages

@ not all rows represent states

ab |+ | —| + @ as long as there is no other evidence:
bl —|— |+ equal rows represent equal residual
aa || + |+ | + languages
aba || — |+ | + ., .
abb | — | — | + @ transition relation respects language

inclusion
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Summarizing: Tables in NL*

From tables to RFSA

@ we deal with tables

@ table rows approximate residual

_
o
3
B

languages
ENN—|— |+
all =+ + @ not all rows represent states
ab | + | —| + @ as long as there is no other evidence:
bl —|— 1|+ equal rows represent equal residual
aa ||+ |+ | + languages
aba || — |+ | + .- .
b |l — | — | + @ transition relation respects language

inclusion
@ treatment of counterexamples:

o add to columns (as in LY )
o otherwise non-termination
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Towards correctness

Definition (Consistency with a table)

We say that Rz is consistent with the table 7 if, for all
w e (UUUD)V, we have T'(w) = + iff w € L(R7).
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Towards correctness

Definition (Consistency with a table)

We say that Rz is consistent with the table 7 if, for all
we (UUUXN)V, we have T'(w) = + iff w € L(R7).

Theorem (Correctness)

Let 7 be a table that is RESA-closed and RFSA-consistent and let Ry
be consistent with 7. Then, R is a canonical RFSA.
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Complexity issues

Theorem (Complexity of NL*)
Let:

@ n: number of states of minimal DFA Aj, for regular language L,
@ m: length of the biggest counterexample

Then, NL* returns after at most:

the canonical RFSA R(L).
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Complexity issues

Theorem (Complexity of NL*)
Let:

@ n: number of states of minimal DFA Aj, for regular language L,
@ m: length of the biggest counterexample
Then, NL* returns after at most:

@ O(n?) equivalence queries and

the canonical RFSA R(L).
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Complexity issues

Theorem (Complexity of NL*)
Let:

@ n: number of states of minimal DFA Aj, for regular language L,
@ m: length of the biggest counterexample
Then, NL* returns after at most:
@ O(n?) equivalence queries and
@ O(m|X|n?) membership queries
the canonical RFSA R(L).
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It's worth considering RFSA...

There is an infinite family of languages ({Ly}new) for which NL*
infers canonical RFSA that are exponentially more succinct than their
corresponding minimal DFA.
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It's worth considering RFSA...

L, = {w € ¥*|w has an a at the (n + 1)-last position}

b

a,
a a,b ab
— — | —— | > ... —| ———( )
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It's worth considering RFSA...

L, = {w € ¥*|w has an a at the (n + 1)-last position}

b

a,
a a,b ab
— — | —— | > ... —| ———( )
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Minimal DFA and RFSA

Minimal DFA and RFSA for L,:

Automata for language L,,:

@ minimal DFA general case: 2" states
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Minimal DFA and RFSA

Minimal DFA and RFSA for L,:

Automata for language L,,:

@ minimal DFA general case: 2" states

@ canonical RFSA general case: n + 2 states
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Comparison of L*, L} |, and NL*

Equivalence queries | Membership queries | Treatment of
counterexamples
L* n O(m|X|n?) to rows
Liy | n O(m|X|n?) to columns
NL* || O(n?) O(m|X|n3) to columns

Theoretical complexity for the number of queries is a bit worse than for
learning DFA. J
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Algorithm - Overview

Number of states

200 T ok *
NL* m—
W, By e L » ol

180

160

140

120

100

80

# states (learned automaton)

60

40 |

) |||

20 40 60 80 100 120 140 160 180 200
# states (minimal DFA)

@ ~ 3200 reg. exp. with minimal DFA of 1 to 200 states )
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Algorithm - Overview

Number of membership queries (L* vs. L}, vs. NL*)

20000

18000 |- NL* ======-

16000

14000

12000

10000

8000

6000 ot /-\/J

4000

# membership queries

2000

20 40 60 80 100 120 140 160 180 200
# states (minimal DFA)

@ ~ 3200 reg. exp. with minimal DFA of 1 to 200 states )
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Algorithm - Overview

Number of equivalence queries (L* vs. L?, vs. NL*)
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NL*
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4 P e
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2 L
20 40 60 80 100 120 140 160 180 200
# states (minimal DFA)

@ ~ 3200 reg. exp. with minimal DFA of 1 to 200 states )
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Presentation outline

© Learning Communicating Automata
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Motivation

@ initial phase: requirement elicitation

o contradicting or incomplete system description
o common description language: sequence diagrams
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Motivation

Design
(complete)

@ initial phase: requirement elicitation

o contradicting or incomplete system description
o common description language: sequence diagrams

@ goal: conforming design model
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Motivation

Design
(complete)

@ initial phase: requirement elicitation

o contradicting or incomplete system description
o common description language: sequence diagrams

@ goal: conforming design model
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Design
’ (complete)

@ initial phase: requirement elicitation

o contradicting or incomplete system description

o common description language: sequence diagrams
@ goal: conforming design model
@ closing gap between

@ requirement specification (usually incomplete) and
o design model (complete description of system)

Carsten Kern Learning Communicating and Nondet. Automata



User
Sequence Interdction
Diagrams Synthesis
(MSCs)

(distr. model)

Implementation

A

As

Smyle

112(req)

271(req)

211(ack)

1req) [ J122ack) L |271(req)

Our Approach
@ use learning algorithms to synthesize models for communication
protocols

@ Input: set of Message Sequence Charts
o standardized: ITU Z.120

o included in UML as sequence diagrams
@ Output: Communicating finite-state machine

o distributed system fulfilling the specification
o CFM model is close to implementation

4
Carsten Kern Learning Communicating and Nondet. Automata




Message Sequence Chart

An MSC M = (P, E,{<,}pep, <msg: L)

@ P: finite set of processes

o E: finite set of events (E' = |J E))
peEP

o [:FE— Act ={1'2(req),172(ack),... }

for p € P: <,C E, x E,, is a total order on
Ey

<msg Telates sending and receiving events

*
<= (<o Uper <)

©

©

©
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Message Sequence Chart

An MSC M = (P, E,{<,}pep, <msg: L)

@ P: finite set of processes

o E: finite set of events (E' = |J E))
peEP

o [:FE— Act ={1'2(req),172(ack),... }

o for p € P: <,C E, X E, is a total order on
E
P

@ <5 relates sending and receiving events

*
o <= (<mg Uper <»)

A set of MSCs is called an MSC language J

A linearization of an MSC is a total ordering of E subsuming < )
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MSCs and Linearizations

Some linearizations

° 112(req) 2!1(ack) 172(ack) 271(req) 271(req)
° 211 (ack) 112(req) 172(ack) 271(req) 271(req)
e 2!1(ack) 271(req) 1!2(req) 271(req) 172(ack)
° ...
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MSCs and Linearizations

Some linearizations

° 112(req) 2!1(ack) 172(ack) 271(req) 271(req)
° 211 (ack) 112(req) 172(ack) 271(req) 271(req)
e 2!1(ack) 271(req) 1!2(req) 271(req) 172(ack)
° ...

@ An MSC M = MSC(w) is uniquely determined by any w € Lin(M)

v
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MSCs and Linearizations

Some linearizations

° 112(req) 2!1(ack) 172(ack) 271(req) 271(req)
211 (ack) 112(req) 172(ack) 271(req) 271(req)
2!1(ack) 271(req) 1!2(req) 271(req) 172(ack)

An MSC M = MSC(w) is uniquely determined by any w € Lin(M)

Linearizations of an MSC are called equivalent
(Vw,w’ € Lin(M) : w~w')

@

v
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Communicating Finite-State Machines (CFM)

A CFM consists of:

@ a set of finite-state automata (processes) with

e common global initial state
o set of global final states
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Communicating Finite-State Machines (CFM)

A CFM consists of:

@ a set of finite-state automata (processes) with

e common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels

o plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢
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CFM: An Example

(T 112

buffer head

(T2
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CFM: An Example

o [T ]1-2

buffer head

(T2

Carsten Kern Learning Communicating and Nondet. Automata



CFM: An Example

ofo [ [ J1-2

buffer head

(T2

1 2
10~
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CFM: An Example

o [T ]1-2

buffer head

(T2

1 2
10

——E
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CFM: An Example

o [T ]1-2

buffer head

el [T 1 1]2-1

1 2
10

)
0~ —1la
?a

Carsten Kern Learning Communicating and Nondet. Automata



CFM: An Example

o [T ]1-2

buffer head

(T2

10
\ 70
— "
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CFM: An Example

10

I
i la
L ="
\
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buffer head

(T2
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CFM: An Example

10
\ 70

10 la
=
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buffer head
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CFM: An Example

(T 112

buffer head
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CFM: An Example

10
\ 70

10 la
=

7a

1
It
1 la

?a

(T 112

buffer head

el [T 1 1]2-1
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CFM: An Example

(T 112

buffer head

(T2
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Current State

e given: learning DFA [Angluin|

e goal: learning CFMs
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The learning algorithm (extension of Angluin’s L*)

Membership queries
/ YYOS/NO

Learner

Yes/Counter &‘X(LQ
Equivalence queries
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The learning algorithm (extension of Angluin’s L*)

. Membership queries

i Equivalence queries

RWTH.
computer user
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The learning algorithm (extension of Angluin’s L*)

i Membership queries

i Equivalence queries

RWTH.
computer user
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The learning algorithm (extension of Angluin’s L*)

- i Membership queries

Yes/No

Learner

i Equivalence queries

RWTH.
computer user

Carsten Kern Learning Communicating and Nondet. Automata



The learning algorithm (extension of Angluin’s L*)

i Membership queries

i Equivalence queries

RWTH.
computer user
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The learning algorithm (extension of Angluin’s L*)

- i Membership queries

Yes/No

Learner

i Equivalence queries

RWTH.
computer user
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The learning algorithm (extension of Angluin’s L*)

Ay

12(req) 21(req) [ J211(ack)

112(req)[ J1720ack) v 21 (re

i Equivalence queries

RWTH.
computer user
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The learning algorithm (extension of Angluin’s L*)

. Membership queries

Learner

| Yes/Counterexample

>

Equivalence queries

RWTH.
computer user
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The learning algorithm (extension of Angluin’s L*)

Yes/Counterexample

o1 =g

>

computer

i Equivalence queries
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o learning CFMs from examples (MSCs)
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o learning CFMs from examples (MSCs)

Approach

o extending Angluin’s algorithm
@ Input: linearizations of MSCs

@ positive scenarios are included in the language to learn
¢ negative scenarios must not be contained

@ positive and negative scenarios form system behavior
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o learning CFMs from examples (MSCs)

Approach

o extending Angluin’s algorithm
@ Input: linearizations of MSCs

@ positive scenarios are included in the language to learn
¢ negative scenarios must not be contained

@ positive and negative scenarios form system behavior

Problem
@ correspondence between CFMs and regular word languages needed
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Classes of MSCs

M is VB-bounded (B € IN) if

all linearizations of M do not exceed buffer
bound B

M is 3B-bounded (B € IN) if

events of M can be scheduled s.t. B is not
exceeded

=
req ack

Fix a learning setup

@ D domain over (V/3B-bounded) MSC linearizations

@ ~: equivalence of (V/3B-bounded) linearizations

@ synth : Synthesis function from DFA to (V/3 — B-bounded) CFMs
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From regular languages to CFM languages

User specification: final system should be, e.g.,...
@ deterministic, 3/V-bounded (i.e., fix domain D), deadlockfree etc.
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From regular languages to CFM languages

User specification: final system should be, e.g.,...
@ deterministic, 3/V-bounded (i.e., fix domain D), deadlockfree etc.

Learning procedure (excerpt): a guided approach

@ membership queries for equivalent words need to be answered
equivalently (all-or-none law)
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From regular languages to CFM languages

User specification: final system should be, e.g.,...
@ deterministic, 3/V-bounded (i.e., fix domain D), deadlockfree etc.

Learning procedure (excerpt): a guided approach

@ membership queries for equivalent words need to be answered
equivalently (all-or-none law)
@ having found a hypothesis DFA H
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From regular languages to CFM languages

User specification: final system should be, e.g.,...
@ deterministic, 3/V-bounded (i.e., fix domain D), deadlockfree etc.

Learning procedure (excerpt): a guided approach

@ membership queries for equivalent words need to be answered
equivalently (all-or-none law)
@ having found a hypothesis DFA H
Q if L(H) € D, compute counterexample w € L(H) \ D
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From regular languages to CFM languages

User specification: final system should be, e.g.,...
@ deterministic, 3/V-bounded (i.e., fix domain D), deadlockfree etc.

Learning procedure (excerpt): a guided approach

@ membership queries for equivalent words need to be answered
equivalently (all-or-none law)
@ having found a hypothesis DFA H

Q if L(H) Z D, compute counterexample w € L(H) \ D
Q else if L(H) € D but L(H) not = -closed

o compute w ~ w': w € L(H), w' ¢ L(H) and

o perform membership query for MSC(w)
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From regular languages to CFM languages

User specification: final system should be, e.g.,...
@ deterministic, 3/V-bounded (i.e., fix domain D), deadlockfree etc.

Learning procedure (excerpt): a guided approach
@ membership queries for equivalent words need to be answered
equivalently (all-or-none law)
@ having found a hypothesis DFA H

Q if L(H) Z D, compute counterexample w € L(H) \ D
Q else if L(H) € D but L(H) not = -closed

o compute w ~ w': w € L(H), w' ¢ L(H) and

o perform membership query for MSC(w)

If H satisfies L(H) C D and L(H) is ~ -closed

CFM (depending on user specification) can be derived using synth.
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There are synthesis functions such that the following classes of CFMs
are learnable: J

Learnable classes of CFMs:
@ (deterministic) V-bounded CFMs
@ JB-bounded CFMs (B € IN)
@ deterministic V-bounded deadlock-free weak CFMs

Not learnable (in a guided fashion)
@ V-bounded weak CFMs
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existentially B-bounded CFMs

An existentially B-bounded CFM

@ Example of an 3B-bounded CFM (bound B = 1)

req

Ay As: e
112(req) ¢ (O --—-—---- &)2?1(req) I

req

req

@ D : domain for 3B-bounded words

@ =~ : linearization equivalence for 9B-bounded MSCs

@ synth : mapping a minimal DFA to a 3B-bounded CFMs
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Algorithm for 3B-bounded CFMs

Let H be a minimal DFA (hypothesis)

Problems and are constructively decidable
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Problems and are constructively decidable

© mark states of H with their channel contents and
always check if the channel capacity < B
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Algorithm for 3B-bounded CFMs

Let H be a minimal DFA (hypothesis)

Problems and are constructively decidable
© mark states of H with their channel contents and
always check if the channel capacity < B

o sending adds a message to corresponding channel
e receiving removes a message from channel head
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Algorithm for 3B-bounded CFMs

Let H be a minimal DFA (hypothesis)

Problems and are constructively decidable

© mark states of H with their channel contents and
always check if the channel capacity < B

o sending adds a message to corresponding channel
e receiving removes a message from channel head

o AT
© check diamond rule (B-bounded version)

o forindependent o, T
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Algorithm for 3B-bounded CFMs

Let H be a minimal DFA (hypothesis)

Problems and are constructively decidable
© mark states of H with their channel contents and
always check if the channel capacity < B

o sending adds a message to corresponding channel
e receiving removes a message from channel head

© check diamond rule N\ (B-bounded version)
o forindependent o, T
© if problems in labeling the states are encountered, or the channel
capacity > B a counter example can be constructed and the

learning algorithm continues
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Algorithm for 3B-bounded CFMs

Let H be a minimal DFA (hypothesis)

Problems and are constructively decidable
© mark states of H with their channel contents and
always check if the channel capacity < B

o sending adds a message to corresponding channel
e receiving removes a message from channel head

© check diamond rule N\ (B-bounded version)
o forindependent o, T
© if problems in labeling the states are encountered, or the channel
capacity > B a counter example can be constructed and the

learning algorithm continues

Complexity: linear in the size of H
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Complexity results

Number of equivalence queries:

o deterministic VB-bounded CFMs: (|A| - |Msg| + 1)BProcl*+|Proc]
o VB-bounded CFMs: 2(AlMsg|41)BIProel?+1Precl
o 3B-bounded CFMs: 2(AlMsg|41)B1Proel+1Prec]

@ deterministic V-bounded deadlock-free weak CFMs:
(|A] - [Msg| 4 1)B:|Procl?

Not learnable (in a supported fashion)
@ V-bounded weak CFMs
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Some results

#membership queries ##user |#equivalence #rows in table learning
Protocol w.o. POL|w. POL|savings ||queries queries |H|||w.o. POL|w. POL|reduction| setup
part of USB 1.1 488 200 59.0% 14 1 (5) 9 61 26 57.4% 32
continuous update 712 264| 62.9% 21 1 (3) 8 89 34 61.8% 1
negotiation 1,179 432|  63.4% 31 1 (3) 9 131 49 62.6% J1
ABP 2,286 697| 69.5% 64 2 4 15 127 42 66.9% J1
ABP 14,432| 4,557 68.4% 158 2 (13) 25 451 131 71.0% 32
ABP 55,131 19,252| 65.1% 407 2 (22) 37 799 222 72.2% 33
leader elec. (v1) 3,612 900| 75.1% 43 1 (2) 13 301 76 74.8% v
leader elec. (v2) 14,704 6,864 53.3% 196 2 (5) 17 919 430 53.2% M
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Some results

#membership queries #user |#equivalence #rows in table learning
Protocol Hw.o. POL|w. POL|savings ||queries| queries |H| Hw.o. POL|w. POL|reduction|| setup
part of USB 1.1 488 200 59.0% 14 9 61 26 57.4% 32
continuous update 712 264| 62.9% 21 8 89 34 61.8% I
negotiation 1,179 432 63.4% 31 9 131 49 62.6% 31
ABP 2,286 697 69.5% 64 15 127 42 66.9% J1
ABP 14,432 4,557 68.4% 158 25 451 131 71.0% 32
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@ # equivalence queries: reduced by our learning approach




Some results

#membership queries ##user |#equivalence #rows in table learning
Protocol w.0. POL|w. POL|savings ||queries queries |H|||w.o. POL|w. POL|reduction| setup
part of USB 1.1 488 200|  59.0% 1 (5) 9 61 26 57.4% 32
continuous update 712 264| 62.9% 1 (3) 8 89 34 61.8% J1
negotiation 1,179 432| 63.4% 1 (3) 9 131 49 62.6% J1
ABP 2,286 697| 69.5% 2 4 15 127 42 66.9% J1
ABP 14,432 4,557| 68.4% 2 (13) 25| 451 131 71.0% E>)
ABP 55,131 19,252| 65.1% 2 (22) 37 799 222 72.2% 33
leader elec. (v1) 3,612 900 75.1% 1 (2) 13 301 76 74.8% v
leader elec. (v2) 14,704 6,864 53.3% 2 (5) 17 919 430 53.2% \

@ #+ membership queries: reduced by partial order learning (POL)

@ #+ equivalence queries: reduced by our learning approach

@ # user queries: reducible by employing a logic (PDL)

Learning Communicating and Nondet. Autol



Related Work

Similar Approaches

® Play-In/Play-Out approach |[Harel et al.|
o use the more expressive language of LSCs
e more involved treatment of negative scenarios
@ problem: detecting inconsistencies
@ MAS (Minimally Adequate Synthesizer) [Mékinen et al.|
o based on Angluin’s learning approach

o only synchronous/sequential behavior
o implementation model is not distributed
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Presentation outline

Q Tools
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libalf: the learning library

@ implements wide range of learning algorithms:
L*, L!,, NL*, PO learning, Biermann, RPNI, DeLeTe2, etc.

col?

@ written in C++

@ approx. 13,500 lines of code
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Smyle: Synthesizing Models bY Learning from Examples

Features

o implements V/3 — B/... learning setups

@ written in Java 1.6

@ implements partial order learning

@ implements a logic (PDL) for reducing user queries
°

approx. 24,000 lines of code
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Smyle: Synthesizing Models bY Learning from Examples

Features

o implements V/3 — B/... learning setups

@ written in Java 1.6

@ implements partial order learning

@ implements a logic (PDL) for reducing user queries
°

approx. 24,000 lines of code

4

External libraries

@ libalf

@ GRAPPA (visualization of automata)

@ JGraph (visualization of MSCs)

@ MSC2000 (Parser for MSC documents)
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Smyle: Synthesizing Models bY Learning from Examples

Features

o implements V/3 — B/... learning setups

@ written in Java 1.6

@ implements partial order learning

@ implements a logic (PDL) for reducing user queries
°

approx. 24,000 lines of code

4

External libraries

@ libalf

@ GRAPPA (visualization of automata)

@ JGraph (visualization of MSCs)

@ MSC2000 (Parser for MSC documents)

http://www.smyle-tool.org
e aen tere. TSR W e —
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Presentation outline

© Conclusion
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Results achieved:

o first active online learning algorithm for NFA: NL*

several classes of CFMs learnable by an extension to L*

tools supporting the theory

°
@ optimizations of learning algorithms (POL, PDL, etc.)
°
°
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Open problems:

@ applying NL* in fields like verification, robotics, etc.
@ detect further learnable classes of CFMs

@ learn other classes of automata (Biichi automata, alternating
automata)
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Appendix




Designing a table-based learning algorithm

_
o
=
H

Definition (RFSA-Closedness) Nl
— [+ +

Table T = (T,U, V) is called RFSA-closed if, ach I
for each r € Rows)ow(7), bl =1 =1+
aa || + |+ | +

7= |_|{r’ € Primesypp(T) | 7' C 1} aba || — |+ | +

abb || — | — | +

RWTH
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Designing a table-based learning algorithm

TH6|a|aa,

Definition (RFSA-Closedness)

Table 7 = (T,U, V) is called RFSA-closed if,
for each r € Rows)ow(7),

r= |_|{'r/ € Primesupp(7) | 7' C 1}

T is RFSA-closed:

@ row(aa) = row(e) U row(a) L row(ab) and
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Designing a table-based learning algorithm

Definition (RFSA-Closedness)

Table T = (T,U, V) is called RFSA-closed if,
for each r € Rows)ow(7),

7= |_|{r’ € Primesypp(T) | 7' C 1}

T is RFSA-closed:

o row(aa) = row(e) U row(a) U row(ab) and

o row(b), row(aba), row(abb) € Primes,p,(7T)
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Designing a table-based learning algorithm

TH6|a|aa

Definition (RFSA-Consistency) Z - :r Jt
A table 7 = (T, U, V) is called ab ||+ = | +
RFSA-consistent if, for all u,u’ € U and a € X: bl —1-1+
aa || + |+ | +

row(u") C row(u) = row(u'a) C row(ua) aba || — |+ | +
abb || — | — | +

RWTH
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Designing a table-based learning algorithm

T‘|5|a|aa

Definition (RFSA-Consistency)

A table T = (T,U,V) is called
RFSA-consistent if, for all u,u’ € U and a € X:

row(u") C row(u) = row(u'a) C row(ua)

[+ + |

abb || —
7T is RFSA-consistent

e row(e) C row(a):

° and
e row(b) C row(ab)

v
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Designing a table-based learning algorithm

T‘|5|a|aa

Definition (RFSA-Consistency)

A table T = (T,U,V) is called
RFSA-consistent if, for all u,u’ € U and a € X:

row(u") C row(u) = row(u'a) C row(ua)

7T is RFSA-consistent

e row(e) C row(a):

9 and
e row(b) C row(ab)

o row(e) C row(ab):
° and
e row(b) C row(abb)
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Designing a table-based learning algorithm

Definition (RFSA-Consistency)

A table T = (T,U,V) is called
RFSA-consistent if, for all u,u’ € U and a € X:

row(u') C row(u) = row(u'a) C row(ua)

7T is RFSA-consistent

e row(e) C row(a):
9 and
e row(b) C row(ab)

@ row(e) C row(ab):
9 and
e row(b) C row(abb)
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The algorithm in action

Create initial table 77.

Carsten Kern Learning Communicating and Nondet. Automata



The algorithm in action

Hypothesis Rz;:

a.b

8

= Counterexample is aaa.
= Add Suff (aaa) to V.
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The algorithm in action

T | e T | € | aaa | aa
* = — * — + — —
- * a e
* b ¥ h T+ | = | =

Learning Communicating and Nondet. Automata
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The algorithm in action

75 is not closed:
row(a) ¢ Primesypp

T Tz ‘ aaa | aa
* - el -]+ =
* oa |- al— + | +]—
* b b | — ‘ + | = | =
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The algorithm in action

ab

T3 aaa | aa
Ti| e Ty | ¢ |aaa | aa | a e [ I
* e |- e |-+ -]- a + |+ |-
*a |- *al-]+[+]- b + [ = [=
ol e T aa e
+ +




The algorithm in action

73 is not closed:
row(ab) ¢ Primespp

T3 | € | aaa | aa
T | e To| ¢ |aaa | aa | a * [N T R
* e -+ [-T- ¥ a + 1+ -
* A Al -+ [+ ] L =]+ -] —
* b R aa | — | + |+ |+
*ab|-[+[- +
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The algorithm in action

Ty | € | aaa | aa | a
T3 | € |aaa | aa | a 0 € | + =
T | e To| ¢ |aaa | aa | a * - | — |+ | — | = a2 - + |+
e - e == a4+ [+]- *oab [ -]+ [ -]+
a | - * 4 ¥+ ] - * bl + ][]~ b -+ -
* b |- * b + | == aa | — | + |+ |+ aa | — | + | + | +
*ab | —| + | - |+ aba |+ + | +
* abb [+ + [ -
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The algorithm in action

7, is not closed:
row(abb) ¢ Primesypp

Ty | € | aaa | aa | a
T3 | ¢ | aaa | aa * e | =+ |=-|-
T | e Ty | ¢ |aaa | aa| a T g [=% == * o | — | + |+ | =
el -F e -1+ T =T * a + |+ - ab [T+ [+
*a |- II[* a[=[+ [+]- *Fhl-l+[-]- = b -] + | - -
* b |- h -1+ -1- aa | — | + [+ ]+ aa | — | + |+ |+
*ab | —| + | - |+ aba | + | + | + | —

* abb |+ | + | -
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The algorithm in action

Carsten Kern

T ¢ |aaa |aa | a

T, | € | aaa | aa * € = [=]=

T3 aaa | aa | a 5 + | - * a -+ |+ |-

T|e Ty | ¢ | aaa | aa B + [ - a |-+ [+ * ab [-| + |-+
U e = e -1+ - a + [+ ab |- [ + | - ¥ abb [+ + [-]-
Fa - l[* al-T+[+ b + [ - b [-[ + [ - b [ -]+ [ -]~
* b |- * b [ - + [ = aa + [+ [+ aa | — | + [+ aa | — | + | + | +
ab + -1+ aba [+ | + | + aba [+ + [+ ] -

abb | +| + | = * abba |- | + [+ | -

abbb
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The algorithm in action

75 is closed and consistent:
= Rg; can be derived.

T e | aaa | aa | a
Ty | € | aaa | aa | a . € -+ | -|-
T3] € |aaa | aa | a * e -+ | -1- * a -+ |+ |-
T | ¢ T, | € |aaa |aa| a * e | = | + = | = * 2) + |+ | - * ab = || = = | =
* e [ - E3 ==1T=10I= * a + [+ ] - *ab |-+ -]+ * abb |+ + [ - | -
a1 al=T+T+[- * b |-+ | -]- *“' b=+ |=|=-lIl* b |[=-|+]|-]-
b | — b | = + | = = aa |- | + |+ |+ aa | —| + [+ [+ aa |- | + [+ [+
Fab || + | - |+ aba |+ | + [+ [ - aba [+ | + [+ [ -

* abb [+ | + | - |- ¥ abba | — | + | +
* bbb | HNNTHIAAGHE
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The algorithm in action

75 is closed and consistent:
= R7; can be derived.

avb a

7% € aaa | aa a
Ty | ¢ |aaa|aa| a 5 == ==
T aaa | aa | a * | —| + | = | = 3 5 ) T Ry
T T aaa | aa € + [ - 1= * a + [+ - b [+ [
g c c + | - a + [+ = b |~ + | - |+ b [+ + | -] -
¥ a a + [+ b + [ -]~ b [+ [-]- b [ -]+ [ -]~
* b b = = aa + [+ [+ aa | —| + [+ [+ aa | — | + | + | +
b + [ - [+ aba [+ + |+ - aba (¥ + [+ ] =

¥ abb[+[ + ] -[- ¥ abba | — | + | +
* bbb | HNNTHIAAGHE
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