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Ora
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Is w ∈ Σ∗ a member of language L?
Let H be a hypothesisIs H equivalent to system to learn?

Yes/No

Yes/Counterexample
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Example: Deriving the 
anoni
al RFSA for L = Σ∗aΣTransitions: δ(L1, a) = {L2 ∈ Q | L2 ⊆ a−1L1}, for a ∈ Σ.
q0

q1

q2

q3

a
b

a

b

a

b

a

b

Lq1
Lq0

Lq3

a

a, b

a, b

a, b

a

a

a, bResidual languages for L = Σ∗aΣ

Lq0
= Σ∗aΣ

Lq1
= Σ∗aΣ ∪ Σ

Lq2
= Σ∗aΣ ∪ Σ ∪{ε}

Lq3
= Σ∗aΣ ∪ {ε} Carsten Kern Learning Communi
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Designing a table-based learning algorithmLet T = (T,U, V ) be a table. Find analogon to union of residualsDe�nition (Join Operator)join of two rows r1, r2 ∈ Rows(T ) is de�ned
omponent-wise for ea
h v ∈ V :
(r1 ⊔ r2) : V → {+,−}:
(r1 ⊔ r2)(v) = r1(v) ⊔ r2(v) where

−⊔− = − and
+ ⊔ + = + ⊔ − = − ⊔ + = +

T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +
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Designing a table-based learning algorithmLet T = (T,U, V ) be a table. Find analogon to union of residualsDe�nition (Join Operator)join of two rows r1, r2 ∈ Rows(T ) is de�ned
omponent-wise for ea
h v ∈ V :
(r1 ⊔ r2) : V → {+,−}:
(r1 ⊔ r2)(v) = r1(v) ⊔ r2(v) where

−⊔− = − and
+ ⊔ + = + ⊔ − = − ⊔ + = +

T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +Example

row (a) ⊔ row (ab) = (−,+,+) ⊔ (+,−,+) = (+,+,+) = row (aa)Carsten Kern Learning Communi
ating and Nondet. Automata



Designing a table-based learning algorithmFind analogon to Composed and prime residualsDe�nition (Composed and Prime Rows)Row r ∈ Rows(T ) is 
alled:
omposed if there are rows
r1, . . . , rn ∈ Rows(T ) \ {r} su
h that
r = r1 ⊔ . . . ⊔ rn. T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +
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Designing a table-based learning algorithmFind analogon to Composed and prime residualsDe�nition (Composed and Prime Rows)Row r ∈ Rows(T ) is 
alled:
omposed if there are rows
r1, . . . , rn ∈ Rows(T ) \ {r} su
h that
r = r1 ⊔ . . . ⊔ rn. T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +ExampleRow (+,+,+) is 
omposed:

row (aa) = (+,+,+) = (−,+,+) ⊔ (+,−,+) = row (a) ⊔ row (ab)Carsten Kern Learning Communi
ating and Nondet. Automata



Designing a table-based learning algorithmFind analogon to Composed and prime residualsDe�nition (Composed and Prime Rows)Row r ∈ Rows(T ) is 
alled:
omposed if there are rows
r1, . . . , rn ∈ Rows(T ) \ {r} su
h that
r = r1 ⊔ . . . ⊔ rn.prime, otherwise.

T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +
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Designing a table-based learning algorithmFind analogon to Composed and prime residualsDe�nition (Composed and Prime Rows)Row r ∈ Rows(T ) is 
alled:
omposed if there are rows
r1, . . . , rn ∈ Rows(T ) \ {r} su
h that
r = r1 ⊔ . . . ⊔ rn.prime, otherwise.

T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +ExampleE.g. rows (−,−,+), (−,+,+) are primeCarsten Kern Learning Communi
ating and Nondet. Automata



Designing a table-based learning algorithmFind analogon to Composed and prime residualsDe�nition (Composed and Prime Rows)Row r ∈ Rows(T ) is 
alled:
omposed if there are rows
r1, . . . , rn ∈ Rows(T ) \ {r} su
h that
r = r1 ⊔ . . . ⊔ rn.prime, otherwise.

Primes(T ): The set of prime rows in T and
T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +Example

Primes(T ) = {row (ε), row (a), row (ab), row (b), row (aba), row (abb)}Carsten Kern Learning Communi
ating and Nondet. Automata



Designing a table-based learning algorithmFind analogon to Composed and prime residualsDe�nition (Composed and Prime Rows)Row r ∈ Rows(T ) is 
alled:
omposed if there are rows
r1, . . . , rn ∈ Rows(T ) \ {r} su
h that
r = r1 ⊔ . . . ⊔ rn.prime, otherwise.

Primes(T ): The set of prime rows in T and
Primesupp(T ) = Primes(T ) ∩ Rowsupp(T ).

T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +Example

Primesupp(T ) = {row (ε), row (a), row (ab)}Carsten Kern Learning Communi
ating and Nondet. Automata



Designing a table-based learning algorithmFind analogon to subset relation between residualsDe�nition (Covering Relation)Row r ∈ Rows(T ) is:
overed by row r′ ∈ Rows(T ) (r ⊑ r′), iffor all v ∈ V : r(v) = + ⇒ r′(v) = +. T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +Examplee.g., row (ε) ⊑ row (a) and row (ε) ⊑ row (abb)Carsten Kern Learning Communi
ating and Nondet. Automata



Designing a table-based learning algorithmFind analogon to subset relation between residualsDe�nition (Covering Relation)Row r ∈ Rows(T ) is:
overed by row r′ ∈ Rows(T ) (r ⊑ r′), iffor all v ∈ V : r(v) = + ⇒ r′(v) = +. T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +Examplee.g., row (ε) ⊑ row (a) and row (ε) ⊑ row (abb)Carsten Kern Learning Communi
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Designing a table-based learning algorithmFind analogon to subset relation between residualsDe�nition (Covering Relation)Row r ∈ Rows(T ) is:
overed by row r′ ∈ Rows(T ) (r ⊑ r′), iffor all v ∈ V : r(v) = + ⇒ r′(v) = +.If moreover r′ 6= r, then r is stri
tly
overed by r′, denoted by r ⊏ r′.
T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +Examplee.g., row (ε) ⊑ row (a) and row (ε) ⊑ row (abb)e.g., row (ε) ⊏ row (ab)Carsten Kern Learning Communi
ating and Nondet. Automata



Table propertiesFind analogon to 
losedness and 
onsisten
y in L∗

T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +

RFSA-Closednessall states identi�able from the table
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T ε a aa

ε − − +
a − + +
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b − − +
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aba − + +
abb − − +

RFSA-Closednessall states identi�able from the tableall non-
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From Table to NFADe�nition (NFA of a Table)For a table T = (T,U, V ) that is RFSA-
losed and RFSA-
onsistent,we de�ne an NFA RT = (Q,Q0, F, δ) by
Q = Primesupp(T ),
Q0 = {r ∈ Q | r ⊑ row (ε)},
F = {r ∈ Q | r(ε) = +}, and
δ(row (u), a) = {r ∈ Q | r ⊑ row (ua)} (u ∈ U , row (u) ∈ Q, a ∈ Σ).

T ε a aa

∗ ε − − +
∗ a − + +
∗ ab + − +

∗ b − − +
aa + + +

∗ aba − + +
∗ abb − − +Carsten Kern Learning Communi
ating and Nondet. Automata



From Table to NFADe�nition (NFA of a Table)For a table T = (T,U, V ) that is RFSA-
losed and RFSA-
onsistent,we de�ne an NFA RT = (Q,Q0, F, δ) by
Q = Primesupp(T ),
Q0 = {r ∈ Q | r ⊑ row (ε)},
F = {r ∈ Q | r(ε) = +}, and
δ(row (u), a) = {r ∈ Q | r ⊑ row (ua)} (u ∈ U , row (u) ∈ Q, a ∈ Σ).

T ε a aa

∗ ε − − +
∗ a − + +
∗ ab + − +

∗ b − − +
aa + + +

∗ aba − + +
∗ abb − − +

Lq1
Lq0

Lq3Carsten Kern Learning Communi
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From Table to NFADe�nition (NFA of a Table)For a table T = (T,U, V ) that is RFSA-
losed and RFSA-
onsistent,we de�ne an NFA RT = (Q,Q0, F, δ) by
Q = Primesupp(T ),
Q0 = {r ∈ Q | r ⊑ row (ε)},
F = {r ∈ Q | r(ε) = +}, and
δ(row (u), a) = {r ∈ Q | r ⊑ row (ua)} (u ∈ U , row (u) ∈ Q, a ∈ Σ).

T ε a aa

∗ ε − − +
∗ a − + +
∗ ab + − +

∗ b − − +
aa + + +

∗ aba − + +
∗ abb − − +
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From Table to NFADe�nition (NFA of a Table)For a table T = (T,U, V ) that is RFSA-
losed and RFSA-
onsistent,we de�ne an NFA RT = (Q,Q0, F, δ) by
Q = Primesupp(T ),
Q0 = {r ∈ Q | r ⊑ row (ε)},
F = {r ∈ Q | r(ε) = +}, and
δ(row (u), a) = {r ∈ Q | r ⊑ row (ua)} (u ∈ U , row (u) ∈ Q, a ∈ Σ).
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From Table to NFADe�nition (NFA of a Table)For a table T = (T,U, V ) that is RFSA-
losed and RFSA-
onsistent,we de�ne an NFA RT = (Q,Q0, F, δ) by
Q = Primesupp(T ),
Q0 = {r ∈ Q | r ⊑ row (ε)},
F = {r ∈ Q | r(ε) = +}, and
δ(row (u), a) = {r ∈ Q | r ⊑ row (ua)} (u ∈ U , row (u) ∈ Q, a ∈ Σ).

T ε a aa

∗ ε − − +
∗ a − + +
∗ ab + − +

∗ b − − +
aa + + +

∗ aba − + +
∗ abb − − +

Lq1
Lq0

Lq3
Lq0

Lq3
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From Table to NFADe�nition (NFA of a Table)For a table T = (T,U, V ) that is RFSA-
losed and RFSA-
onsistent,we de�ne an NFA RT = (Q,Q0, F, δ) by
Q = Primesupp(T ),
Q0 = {r ∈ Q | r ⊑ row (ε)},
F = {r ∈ Q | r(ε) = +}, and
δ(row (u), a) = {r ∈ Q | r ⊑ row (ua)} (u ∈ U , row (u) ∈ Q, a ∈ Σ).

T ε a aa

∗ ε − − +
∗ a − + +
∗ ab + − +

∗ b − − +
aa + + +

∗ aba − + +
∗ abb − − +

Lq1
Lq0

Lq3
Lq0

Lq3

a

a, b

a, b

a, b

a

a

a, bCarsten Kern Learning Communi
ating and Nondet. Automata



Summarizing: Tables in NL∗
T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +

From tables to RFSAwe deal with tables
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Summarizing: Tables in NL∗
T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +

From tables to RFSAwe deal with tablestable rows approximate residuallanguagesnot all rows represent statesas long as there is no other eviden
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Summarizing: Tables in NL∗
T ε a aa . . .

ε − − + . . .
a − + + . . .

ab + − + . . .

b − − + . . .
aa + + + . . .

aba − + + . . .
abb − − + . . .

From tables to RFSAwe deal with tablestable rows approximate residuallanguagesnot all rows represent statesas long as there is no other eviden
e:equal rows represent equal residuallanguagestransition relation respe
ts languagein
lusiontreatment of 
ounterexamples:add to 
olumns (as in L∗
ol)otherwise non-terminationCarsten Kern Learning Communi
ating and Nondet. Automata



Towards 
orre
tness
De�nition (Consisten
y with a table)We say that RT is 
onsistent with the table T if, for all
w ∈ (U ∪ UΣ)V , we have T (w) = + i� w ∈ L(RT ).
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Towards 
orre
tness
De�nition (Consisten
y with a table)We say that RT is 
onsistent with the table T if, for all
w ∈ (U ∪ UΣ)V , we have T (w) = + i� w ∈ L(RT ).Theorem (Corre
tness)Let T be a table that is RFSA-
losed and RFSA-
onsistent and let RTbe 
onsistent with T . Then, RT is a 
anoni
al RFSA.
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Complexity issuesTheorem (Complexity of NL∗)Let:
n: number of states of minimal DFA AL for regular language L,
m: length of the biggest 
ounterexampleThen, NL∗ returns after at most:the 
anoni
al RFSA R(L).
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Complexity issuesTheorem (Complexity of NL∗)Let:
n: number of states of minimal DFA AL for regular language L,
m: length of the biggest 
ounterexampleThen, NL∗ returns after at most:
O(n2) equivalen
e queries andthe 
anoni
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Complexity issuesTheorem (Complexity of NL∗)Let:
n: number of states of minimal DFA AL for regular language L,
m: length of the biggest 
ounterexampleThen, NL∗ returns after at most:
O(n2) equivalen
e queries and
O(m|Σ|n3) membership queriesthe 
anoni
al RFSA R(L).

Carsten Kern Learning Communi
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It's worth 
onsidering RFSA...
TheoremThere is an in�nite family of languages ({Ln}n∈IN) for whi
h NL*infers 
anoni
al RFSA that are exponentially more su

in
t than their
orresponding minimal DFA.
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It's worth 
onsidering RFSA...
Ln = {w ∈ Σ∗|w has an a at the (n + 1)-last position}

q1 q2 q3 . . . qn+1 qn+2
a

a, b

a, b a, b
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It's worth 
onsidering RFSA...
Ln = {w ∈ Σ∗|w has an a at the (n + 1)-last position}

q1 q2 q3 . . . qn+1 qn+2
a

a, b

a, b a, b

L2 = {w ∈ Σ∗|w has an a at the 3rd-last position}
q1 q2 q3 q4

a

a, b

a, b a, b
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Minimal DFA and RFSAMinimal DFA and RFSA for L2:
q1 q2 q3

q4

q5

q6

q7

q8

a

b

a

b

a

b

a

b

a

b

a

b

a

b
a

bAutomata for language Ln:minimal DFA general 
ase: 2n+1 statesCarsten Kern Learning Communi
ating and Nondet. Automata



Minimal DFA and RFSAMinimal DFA and RFSA for L2:
q1 q2 q3

q4

q5

q6

q7

q8

a

b

a

b

a

b

a

b

a

b

a

b

a

b
a

b

q1 q2 q3 q4
a

a, b

a, b

a, b

a

a, b

a, b

a

a, b

a, b

Automata for language Ln:minimal DFA general 
ase: 2n+1 states
anoni
al RFSA general 
ase: n + 2 statesCarsten Kern Learning Communi
ating and Nondet. Automata



Comparison of L∗, L∗
ol, and NL∗
Equivalen
e queries Membership queries Treatment of
ounterexamplesL∗ n O(m|Σ|n2) to rowsL∗
ol n O(m|Σ|n2) to 
olumnsNL∗ O(n2) O(m|Σ|n3) to 
olumnsTheoreti
al 
omplexity for the number of queries is a bit worse than forlearning DFA.

Carsten Kern Learning Communi
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Algorithm - OverviewNumber of states (L∗, L∗
ol vs. NL∗)
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Algorithm - OverviewNumber of membership queries (L∗ vs. L∗
ol vs. NL∗)
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Algorithm - OverviewNumber of equivalen
e queries (L∗ vs. L∗
ol vs. NL∗)
 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 20  40  60  80  100  120  140  160  180  200

# 
eq

ui
va

le
nc

e 
qu

er
ie

s

# states (minimal DFA)

L* 
L*col
NL* L∗L∗
olNL∗

≈ 3200 reg. exp. with minimal DFA of 1 to 200 statesCarsten Kern Learning Communi
ating and Nondet. Automata



Presentation outline1 Learning Deterministi
 Automata2 Learning Nondeterministi
 Automata3 Learning Communi
ating Automata4 Tools5 Con
lusion Carsten Kern Learning Communi
ating and Nondet. Automata



Motivation
Requirements(in
omplete)
initial phase: requirement eli
itation
ontradi
ting or in
omplete system des
ription
ommon des
ription language: sequen
e diagrams
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Motivation
Requirements(in
omplete) Design(
omplete) Implementation . . .

Gapinitial phase: requirement eli
itation
ontradi
ting or in
omplete system des
ription
ommon des
ription language: sequen
e diagramsgoal: 
onforming design model
losing gap betweenrequirement spe
i�
ation (usually in
omplete) anddesign model (
omplete des
ription of system)Carsten Kern Learning Communi
ating and Nondet. Automata



Smyle
UserSequen
eDiagrams(MSCs) Synthesis(distr. model) ImplementationIntera
tion

host f
t.sndsnd
host f
t.snda
k

host f
t.snda
ka
k
1!2(req)

2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2: publi
 void send (Msg m) {if (! this.bufferFull())this.bufferAppend(m);...}Our Approa
huse learning algorithms to synthesize models for 
ommuni
ationproto
olsInput: set of Message Sequen
e Chartsstandardized: ITU Z.120in
luded in UML as sequen
e diagramsOutput: Communi
ating �nite-state ma
hinedistributed system ful�lling the spe
i�
ationCFM model is 
lose to implementationCarsten Kern Learning Communi
ating and Nondet. Automata



Message Sequen
e Chart
1 2reqreq a
k

An MSC M = 〈P, E, {≤p}p∈P , <msg, l〉
P: �nite set of pro
esses
E: �nite set of events (E =

⋃

p∈P
Ep)

l : E → Act = {1!2(req), 1?2(ack), . . . }for p ∈ P: <p⊆ Ep × Ep is a total order on
Ep

<msg relates sending and re
eiving events
≤=

(

<msg∪
⋃

p∈P <p

)∗
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1 2reqreq a
k

An MSC M = 〈P, E, {≤p}p∈P , <msg, l〉
P: �nite set of pro
esses
E: �nite set of events (E =

⋃

p∈P
Ep)

l : E → Act = {1!2(req), 1?2(ack), . . . }for p ∈ P: <p⊆ Ep × Ep is a total order on
Ep

<msg relates sending and re
eiving events
≤=

(

<msg∪
⋃

p∈P <p

)∗A set of MSCs is 
alled an MSC languageA linearization of an MSC is a total ordering of E subsuming ≤Carsten Kern Learning Communi
ating and Nondet. Automata



MSCs and Linearizations
1 2reqreq a
k

Some linearizations
1!2(req) 1!2(req) 2!1(ack) 1?2(ack) 2?1(req) 2?1(req)

1!2(req) 2!1(ack) 1!2(req) 1?2(ack) 2?1(req) 2?1(req)

2!1(ack) 1!2(req) 2?1(req) 1!2(req) 2?1(req) 1?2(ack)

. . .

Carsten Kern Learning Communi
ating and Nondet. Automata



MSCs and Linearizations
1 2reqreq a
k

Some linearizations
1!2(req) 1!2(req) 2!1(ack) 1?2(ack) 2?1(req) 2?1(req)

1!2(req) 2!1(ack) 1!2(req) 1?2(ack) 2?1(req) 2?1(req)

2!1(ack) 1!2(req) 2?1(req) 1!2(req) 2?1(req) 1?2(ack)

. . .An MSC M = MSC(w) is uniquely determined by any w ∈ Lin(M)Carsten Kern Learning Communi
ating and Nondet. Automata



MSCs and Linearizations
1 2reqreq a
k

Some linearizations
1!2(req) 1!2(req) 2!1(ack) 1?2(ack) 2?1(req) 2?1(req)

1!2(req) 2!1(ack) 1!2(req) 1?2(ack) 2?1(req) 2?1(req)

2!1(ack) 1!2(req) 2?1(req) 1!2(req) 2?1(req) 1?2(ack)

. . .An MSC M = MSC(w) is uniquely determined by any w ∈ Lin(M)Linearizations of an MSC are 
alled equivalent(∀w,w′ ∈ Lin(M) : w ≈ w′)Carsten Kern Learning Communi
ating and Nondet. Automata



Communi
ating Finite-State Ma
hines (CFM)A CFM 
onsists of:a set of �nite-state automata (pro
esses) with
ommon global initial stateset of global �nal states
!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1
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Communi
ating Finite-State Ma
hines (CFM)A CFM 
onsists of:a set of �nite-state automata (pro
esses) with
ommon global initial stateset of global �nal states
ommuni
ation between automata through (reliable) FIFO
hannels
p!q(a) appends message a to bu�er between p and q
q?p(a) removes message a from bu�er between p and q

!0

?a

!1

?a

!0 ?0

!a

?1

!a
!1

!0

?1

?0 ?0

?1
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CFM: An Example
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!0 ?0
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!1

!0

?1

?0 ?0
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1 → 2

2 → 1

bu�er head
1 2

!0
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Current State
Current Stategiven: learning DFA [Angluin℄goal: learning CFMs

Carsten Kern Learning Communi
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The learning algorithm (extension of Angluin's L∗)
Membership queries

Equivalen
e queries

MSC
Learner

Tea
her

Ora
le

?
∈ System

H ≡ System

Yes/No

Yes/Counterexample
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The learning algorithm (extension of Angluin's L∗)
Membership queries

Equivalen
e queries
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omputer
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2?1(req)1!2(req) 1?2(ack)

2?1(req) 2!1(ack)

A1: A2:H :
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The learning algorithm (extension of Angluin's L∗)
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The learning algorithm (extension of Angluin's L∗)
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Equivalen
e queries
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omputer

1 2

1 2
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Goallearning CFMs from examples (MSCs)

Carsten Kern Learning Communi
ating and Nondet. Automata



Goallearning CFMs from examples (MSCs)Approa
hextending Angluin's algorithmInput: linearizations of MSCspositive s
enarios are in
luded in the language to learnnegative s
enarios must not be 
ontainedpositive and negative s
enarios form system behavior
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Goallearning CFMs from examples (MSCs)Approa
hextending Angluin's algorithmInput: linearizations of MSCspositive s
enarios are in
luded in the language to learnnegative s
enarios must not be 
ontainedpositive and negative s
enarios form system behaviorProblem
orresponden
e between CFMs and regular word languages neededCarsten Kern Learning Communi
ating and Nondet. Automata



Classes of MSCs
M is ∀B-bounded (B ∈ IN) ifall linearizations of M do not ex
eed bu�erbound B

M is ∃B-bounded (B ∈ IN) ifevents of M 
an be s
heduled s.t. B is notex
eeded
1 2reqreqreqreq

a
ka
ka
k
1 2reqreqreqreqreqFix a learning setup

D domain over (∀/∃B-bounded) MSC linearizations
≈: equivalen
e of (∀/∃B-bounded) linearizations
synth : Synthesis fun
tion from DFA to (∀/∃ − B-bounded) CFMsCarsten Kern Learning Communi
ating and Nondet. Automata



From regular languages to CFM languagesUser spe
i�
ation: �nal system should be, e.g.,. . .deterministi
, ∃/∀-bounded (i.e., �x domain D), deadlo
kfree et
.
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From regular languages to CFM languagesUser spe
i�
ation: �nal system should be, e.g.,. . .deterministi
, ∃/∀-bounded (i.e., �x domain D), deadlo
kfree et
.Learning pro
edure (ex
erpt): a guided approa
hmembership queries for equivalent words need to be answeredequivalently (all-or-none law)having found a hypothesis DFA H1 if L(H) 6⊆ D, 
ompute 
ounterexample w ∈ L(H) \ D2 else if L(H) ⊆ D but L(H) not ≈ -
losed
ompute w ≈ w′: w ∈ L(H), w′ /∈ L(H) andperform membership query for MSC(w)If H satis�es L(H) ⊆ D and L(H) is ≈ -
losedCFM (depending on user spe
i�
ation) 
an be derived using synth .Carsten Kern Learning Communi
ating and Nondet. Automata



Results:There are synthesis fun
tions su
h that the following 
lasses of CFMsare learnable:Learnable 
lasses of CFMs:(deterministi
) ∀-bounded CFMs
∃B-bounded CFMs (B ∈ IN)deterministi
 ∀-bounded deadlo
k-free weak CFMsNot learnable (in a guided fashion)
∀-bounded weak CFMsCarsten Kern Learning Communi
ating and Nondet. Automata



existentially B-bounded CFMsAn existentially B-bounded CFMExample of an ∃B-bounded CFM (bound B = 1)
1!2(req) 2?1(req)

A1: A2: 1 2reqreqreqreqreq
D : domain for ∃B-bounded words
≈ : linearization equivalen
e for ∃B-bounded MSCs
synth : mapping a minimal DFA to a ∃B-bounded CFMsCarsten Kern Learning Communi
ating and Nondet. Automata



Algorithm for ∃B-bounded CFMsLet H be a minimal DFA (hypothesis)Problems L(H) ⊆ D and L(H) is ≈-
losed are 
onstru
tively de
idable
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Algorithm for ∃B-bounded CFMsLet H be a minimal DFA (hypothesis)Problems L(H) ⊆ D and L(H) is ≈-
losed are 
onstru
tively de
idable1 mark states of H with their 
hannel 
ontents andalways 
he
k if the 
hannel 
apa
ity ≤ Bsending adds a message to 
orresponding 
hannelre
eiving removes a message from 
hannel head2 
he
k diamond rule σ

τ

τ

σ for independent σ, τ
(B-bounded version)3 if problems in labeling the states are en
ountered, or the 
hannel
apa
ity > B a 
ounter example 
an be 
onstru
ted and thelearning algorithm 
ontinuesComplexity: linear in the size of HCarsten Kern Learning Communi
ating and Nondet. Automata



Complexity resultsNumber of equivalen
e queries:deterministi
 ∀B-bounded CFMs: (|A| · |Msg | + 1)B·|Proc |2+|Proc|

∀B-bounded CFMs: 2(|A|·|Msg|+1)B·|Proc|2+|Proc|

∃B-bounded CFMs: 2(|A|·|Msg|+1)B·|Proc|2+|Proc|deterministi
 ∀-bounded deadlo
k-free weak CFMs:
(|A| · |Msg | + 1)B·|Proc|2Not learnable (in a supported fashion)
∀-bounded weak CFMsCarsten Kern Learning Communi
ating and Nondet. Automata



Some results
#membership queries #user #equivalen
e #rows in table learningProto
ol w.o. POL w.POL savings queries queries |H| w.o. POL w.POL redu
tion setuppart of USB 1.1 488 200 59.0% 14 1 (5) 9 61 26 57.4% ∃2
ontinuous update 712 264 62.9% 21 1 (3) 8 89 34 61.8% ∃1negotiation 1,179 432 63.4% 31 1 (3) 9 131 49 62.6% ∃1ABP 2,286 697 69.5% 64 2 (4) 15 127 42 66.9% ∃1ABP 14,432 4,557 68.4% 158 2 (13) 25 451 131 71.0% ∃2ABP 55,131 19,252 65.1% 407 2 (22) 37 799 222 72.2% ∃3leader ele
. (v1) 3,612 900 75.1% 43 1 (2) 13 301 76 74.8% ∀leader ele
. (v2) 14,704 6,864 53.3% 196 2 (5) 17 919 430 53.2% ∀

Carsten Kern Learning Communi
ating and Nondet. Automata



Some results
#membership queries #user #equivalen
e #rows in table learningProto
ol w.o. POL w.POL savings queries queries |H| w.o. POL w.POL redu
tion setuppart of USB 1.1 488 200 59.0% 14 1 (5) 9 61 26 57.4% ∃2
ontinuous update 712 264 62.9% 21 1 (3) 8 89 34 61.8% ∃1negotiation 1,179 432 63.4% 31 1 (3) 9 131 49 62.6% ∃1ABP 2,286 697 69.5% 64 2 (4) 15 127 42 66.9% ∃1ABP 14,432 4,557 68.4% 158 2 (13) 25 451 131 71.0% ∃2ABP 55,131 19,252 65.1% 407 2 (22) 37 799 222 72.2% ∃3leader ele
. (v1) 3,612 900 75.1% 43 1 (2) 13 301 76 74.8% ∀leader ele
. (v2) 14,704 6,864 53.3% 196 2 (5) 17 919 430 53.2% ∀# membership queries: redu
ed by partial order learning (POL)

Carsten Kern Learning Communi
ating and Nondet. Automata



Some results
#membership queries #user #equivalen
e #rows in table learningProto
ol w.o. POL w.POL savings queries queries |H| w.o. POL w.POL redu
tion setuppart of USB 1.1 488 200 59.0% 14 1 (5) 9 61 26 57.4% ∃2
ontinuous update 712 264 62.9% 21 1 (3) 8 89 34 61.8% ∃1negotiation 1,179 432 63.4% 31 1 (3) 9 131 49 62.6% ∃1ABP 2,286 697 69.5% 64 2 (4) 15 127 42 66.9% ∃1ABP 14,432 4,557 68.4% 158 2 (13) 25 451 131 71.0% ∃2ABP 55,131 19,252 65.1% 407 2 (22) 37 799 222 72.2% ∃3leader ele
. (v1) 3,612 900 75.1% 43 1 (2) 13 301 76 74.8% ∀leader ele
. (v2) 14,704 6,864 53.3% 196 2 (5) 17 919 430 53.2% ∀# membership queries: redu
ed by partial order learning (POL)# equivalen
e queries: redu
ed by our learning approa
h

Carsten Kern Learning Communi
ating and Nondet. Automata
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ed by partial order learning (POL)# equivalen
e queries: redu
ed by our learning approa
h# user queries: redu
ible by employing a logi
 (PDL)Carsten Kern Learning Communi
ating and Nondet. Automata



Related Work
Similar Approa
hesPlay-In/Play-Out approa
h [Harel et al.℄use the more expressive language of LSCsmore involved treatment of negative s
enariosproblem: dete
ting in
onsisten
iesMAS (Minimally Adequate Synthesizer) [Mäkinen et al.℄based on Angluin's learning approa
honly syn
hronous/sequential behaviorimplementation model is not distributed
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libalf: the learning library
Featuresimplements wide range of learning algorithms:L∗, L∗
ol, NL∗, PO learning, Biermann, RPNI, DeLeTe2, et
.written in C++approx. 13,500 lines of 
ode
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Smyle: Synthesizing Models bY Learning from ExamplesFeaturesimplements ∀/∃ − B/ . . . learning setupswritten in Java 1.6implements partial order learningimplements a logi
 (PDL) for redu
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odeExternal librarieslibalfGRAPPA (visualization of automata)JGraph (visualization of MSCs)MSC2000 (Parser for MSC do
uments)http://www.smyle-tool.orgCarsten Kern Learning Communi
ating and Nondet. Automata

http://www.smyle-tool.org


Tool demo

Carsten Kern Learning Communi
ating and Nondet. Automata



Presentation outline1 Learning Deterministi
 Automata2 Learning Nondeterministi
 Automata3 Learning Communi
ating Automata4 Tools5 Con
lusion Carsten Kern Learning Communi
ating and Nondet. Automata



Summary
Results a
hieved:�rst a
tive online learning algorithm for NFA: NL∗several 
lasses of CFMs learnable by an extension to L∗optimizations of learning algorithms (POL, PDL, et
.)tools supporting the theory

. . .
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Outlook
Open problems:applying NL∗ in �elds like veri�
ation, roboti
s, et
.dete
t further learnable 
lasses of CFMslearn other 
lasses of automata (Bü
hi automata, alternatingautomata)

. . .
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Appendix
RFSA-
losedness and -
onsisten
y NL∗ in a
tion
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Designing a table-based learning algorithm
De�nition (RFSA-Closedness)Table T = (T,U, V ) is 
alled RFSA-
losed if,for ea
h r ∈ Rows low(T ),

r =
⊔

{r′ ∈ Primesupp(T ) | r′ ⊑ r}

T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +
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r =
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a − + +

ab + − +
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T is RFSA-
losed:
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Designing a table-based learning algorithm
De�nition (RFSA-Closedness)Table T = (T,U, V ) is 
alled RFSA-
losed if,for ea
h r ∈ Rows low(T ),

r =
⊔

{r′ ∈ Primesupp(T ) | r′ ⊑ r}

T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +

T is RFSA-
losed:
row (aa) = row (ε) ⊔ row (a) ⊔ row (ab) and
row (b), row (aba), row (abb) ∈ Primesupp(T )Carsten Kern Learning Communi
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Designing a table-based learning algorithmDe�nition (RFSA-Consisten
y)A table T = (T,U, V ) is 
alledRFSA-
onsistent if, for all u, u′ ∈ U and a ∈ Σ:
row (u′) ⊑ row (u) ⇒ row (u′a) ⊑ row (ua)

T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +
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T ε a aa

ε − − +
a − + +

ab + − +

b − − +
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Designing a table-based learning algorithmDe�nition (RFSA-Consisten
y)A table T = (T,U, V ) is 
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onsistent if, for all u, u′ ∈ U and a ∈ Σ:
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T ε a aa

ε − − +
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ab + − +
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abb − − +

T is RFSA-
onsistent
row (ε) ⊑ row (a):

row(a) ⊑ row(aa) and
row(b) ⊑ row(ab)

row (ε) ⊑ row (ab):
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Designing a table-based learning algorithmDe�nition (RFSA-Consisten
y)A table T = (T,U, V ) is 
alledRFSA-
onsistent if, for all u, u′ ∈ U and a ∈ Σ:
row (u′) ⊑ row (u) ⇒ row (u′a) ⊑ row (ua)

T ε a aa

ε − − +
a − + +

ab + − +

b − − +
aa + + +

aba − + +
abb − − +

T is RFSA-
onsistent
row (ε) ⊑ row (a):

row(a) ⊑ row(aa) and
row(b) ⊑ row(ab)

row (ε) ⊑ row (ab):
row(a) ⊑ row(aba)and
row(b) ⊑ row(abb) returnCarsten Kern Learning Communi
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The algorithm in a
tion
−−− −− + − + +

− + −

+ + +
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+ −−

a a

b
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b a
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a
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Create initial table T1.
T1 ε* ε −* a −* b − Carsten Kern Learning Communi
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The algorithm in a
tion
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Hypothesis RT1
:

ε

a,b
⇒ Counterexample is aaa.
⇒ Add Suff (aaa) to V .

T1 ε* ε −* a −* b − Carsten Kern Learning Communi
ating and Nondet. Automata



The algorithm in a
tion
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T1 ε* ε −* a −* b −

T2 ε aaa aa a* ε − + − −* a − + + −* b − + − − Carsten Kern Learning Communi
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The algorithm in a
tion
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T2 is not 
losed:
row (a) /∈ Primesupp

T1 ε* ε −* a −* b −

T2 ε aaa aa a* ε − + − −* a − + + −* b − + − − Carsten Kern Learning Communi
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T1 ε* ε −* a −* b −

T2 ε aaa aa a* ε − + − −* a − + + −* b − + − −
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T3 is not 
losed:
row (ab) /∈ Primesupp

T1 ε* ε −* a −* b −

T2 ε aaa aa a* ε − + − −* a − + + −* b − + − −

T3 ε aaa aa a* ε − + − −* a − + + −* b − + − −aa − + + +* ab − + − +Carsten Kern Learning Communi
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T2 ε aaa aa a* ε − + − −* a − + + −* b − + − −

T3 ε aaa aa a* ε − + − −* a − + + −* b − + − −aa − + + +* ab − + − +
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T4 is not 
losed:
row (abb) /∈ Primesupp
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T5 is 
losed and 
onsistent:
⇒ RT5


an be derived.
T1 ε* ε −* a −* b −
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an be derived.
− + −− − + +− − + −+ + + −−

a a, b a, b

a, b a

a

a

a, b

a, b

a, b

T1 ε* ε −* a −* b −

T2 ε aaa aa a* ε − + − −* a − + + −* b − + − −

T3 ε aaa aa a* ε − + − −* a − + + −* b − + − −aa − + + +* ab − + − +
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