Learning Communication Protocols from Scenarios

Benedikt Bollig! Joost-Pieter Katoen?
Carsten Kern? Martin Leucker?

RWTH 2 mms

Laboratoire Spécification = Lehrstuhl fiir Informatik 2 Institut fiir Informatik
et Vérification

Aachen 2006, December 15¢

Outline

@ Introduction

© Learning

© Learning MSCs

@ Classes of learnable regular MSC languages

© Tool Presentation

Introduction

Presentation outline

@ Introduction

Introduction
[le]e}

Software Development

Initial software development phases

@ initial phase: requirement elicitation
@ contradicting or incomplete system description

@ goal: conforming design model

Problem

@ gap between requirement specification and design phase
i.e., How to obtain an initial design model from a set of
requirements

Introduction
(o] le}

Motivation

-——{ Design j—{lmplementation]—— e

gap

@ closing gap between

e requirement specification (possibly inconsistent) and
o design model (complete description of system)

o similar to Harel’s play-in, play-out approach

@ novel aspect: use learning algorithms for synthesizing
systems from scenario-based specifications

Introduction
[efe]]

User

Interaction

MSCs MPA

Tool

@ Use learning algorithms to synthesize models for
communication protocols

Introduction
[efe]]

User

Interaction

MSCs MPA

Tool

@ Use learning algorithms to synthesize models for
communication protocols

@ Input: set of MSCs (i.e., specification)

Introduction
[efe]]

User

Interaction

MSCs MPA

Tool

@ Use learning algorithms to synthesize models for
communication protocols

@ Input: set of MSCs (i.e., specification)
@ Output: MPA fulfilling the specification

Introduction
[Jele}

A Message Sequence Chart

[Tocomniog TSUF a0 Outigoing TSUF Tranail Call (SUF - TSUF: Succersl call; el from et exchange)
I ~ rorihing e

I CATEadleT oeamal processor ARl |

I I
e e T = I T ——— I sme2 i g2 | impel T e]
TR Mewage TSUP 0SDN Uer Pty call Theeal SUF=a TSUF Fucd
[Copyrighe @ 2000.2003 oo, Al Rights Reserved.

o standardized: ITU Z.120
@ included in UML as sequence diagrams

Introduction
(o] le}

Formally

An MSC M is a 5-tuple M = (P, E, {<, }pep, <msg,)
o P: finite set of processes

o E: finite set of events (E = |J E,)
peEP

o [: E — Act: labeling function
o for p € P: <,C E, X I, is a total order on E,

® <59 describes the message order of M (partial order)

Introduction
(o] le}

Formally

An MSC M is a 5-tuple M = (P, E, {<, }pep, <msg,)
o P: finite set of processes

o E: finite set of events (E = |J E,)
peEP

o [: E — Act: labeling function

o for p € P: <,C E, X I, is a total order on E,

® <59 describes the message order of M (partial order)

A set of MSCs is called an MSC language)

Introduction
(o] le}

Formally

An MSC M is a 5-tuple M = (P, E, {<, }pep, <msg,)
o P: finite set of processes

o E: finite set of events (E = |J E,)
peEP

o [: E — Act: labeling function
o for p € P: <,C E, X I, is a total order on E,

® <59 describes the message order of M (partial order)

A set of MSCs is called an MSC language)

A linearization of an MSC is a total ordering of £)

Introduction
ooe

Scenario of the Antiblock System

Driver Control Unit Wheel Sensor Break
l | | |

Encountering
danger

€1 €2

getSensorData

sendSensorData

checkData [:
regulateBfeakPower e

S

Introduction
o

Message Passing Automata

@ A set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels
@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

[® = req Ar: Ay
req ack 2 ack

D:\:\:D 1o | 112(req) 271(req)| |2'1(ack)
req ack

buffer head -

re AN
! CLTT T 2 fuegea)| 1726ack) . |221(req)
I I

Introduction
o

Message Passing Automata

@ A set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

| 2] ® = Au: Ay:

2!1(ack)

D:\:\:D 1o | 112(req) 271(req)

buffer head Te-s

[T T 2o frzea)| J1726ack)

271(req)

Introduction
o

Message Passing Automata

@ A set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

[® = req Ar: Ay
req | ack 2 ack

EI:\:\:D 1o | 112(req) 271(req)| |2'1(ack)
req ack

buffer head -

re AN
! CLTT T 2 fuegea)| 1726ack) . |221(req)
I I

Introduction
o

Message Passing Automata

@ A set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

| 2] ® = Au: Ay:
req

M~ ack
/| BITTT] ve| U] 27100

req ack

2!1(ack)

buffer head Te-s

FLTTT] + |uatsn| |22t ™

req
. |271(req)

Introduction
o

Message Passing Automata

@ A set of finite-state automata (processes) with

¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels
@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

[® o A Asp:
req ack “ ack

/ EIE\:\:D 1o | 112(req) 271(req)| |2'1(ack)
req ack R
re AN
) L T T T 2r|uaea)| |172ack) . |271(req)
I I

Introduction
o

Message Passing Automata

@ A set of finite-state automata (processes) with
¢ common global initial state
o set of global final states
@ communication between automata through (reliable) FIFO
channels
@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

[® = req Ar: Ay
req | ack 2 ack

EIE\:\:D 1o | 112(req) 271(req)| |2'1(ack)
req ack

buffer head -
re AN
! CLTT T 2 fuegea)| 1726ack) . |221(req)
I I
RWTH

Introduction
o

Message Passing Automata

@ A set of finite-state automata (processes) with
¢ common global initial state
o set of global final states
@ communication between automata through (reliable) FIFO
channels
@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

1 2] ® = Ar: Ay:

req 2 ack

| ack
SIO[e]] s | ot i)
req ack
buffer head S
i

req \\
[T T 2o frzea)| J1726ack)

2!1(ack)

271(req)

Introduction
o

Message Passing Automata

@ A set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

| 2] ® = Au: Ay:

req

ack :
OIO[[T 12| M) ()
req ack
buffer head -~
i

req
LTI 2o igrea)| 172(ack)

2!1(ack)

271(req)

Introduction
o

Message Passing Automata

@ A set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

[® & Ar: Asp:
req ack £ ack

EIE\:\:D 1o | 112(req) 271(req)| |2'1(ack)
req /ack R
re N
M L T T T 2r|uaea)| |172ack) . |271(req)
I I

RWTH

Introduction
o

Message Passing Automata

@ A set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels
@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

| 2] ® = Au: Ay:
req ack

2!1(ack)

OIO[[T 12| M) 2n(ea)
req ack
buffer head -~
\/

req
LTI 2o igrea)| 172(ack)

271(req)

Introduction
o

Message Passing Automata

@ A set of finite-state automata (processes) with

¢ common global initial state
o set of global final states
@ communication between automata through (reliable) FIFO
channels

@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

[® = req Ar: Ay
req ack 2 ack

EI:\:\:D 1o | 112(req) 271(req)| |2'1(ack)
req ack

buffer head -

re AN
> CLTT T 2 fuegea)| 1726ack) . |221(req)
I I

Introduction
o

Message Passing Automata

@ A set of finite-state automata (processes) with
¢ common global initial state
o set of global final states

@ communication between automata through (reliable) FIFO
channels
@ plg(a) appends message a to buffer between p and ¢
o ¢?p(a) removes message a from buffer between p and ¢

[® = req Ar: Ay
req ack 2 ack

D:\:\:D 1o | 112(req) 271(req)| |2'1(ack)
req ack

buffer head -

re AN
! CLTT T 2 fuegea)| 1726ack) . |221(req)
I I

Learning

Presentation outline

© Learning

Learning
[le]

Angluin’s algorithm

@ algorithm for learning DFA (over X)

Learning
[le]

Angluin’s algorithm

@ algorithm for learning DFA (over X))

@ learning a regular language L(.A) C 3* by constructing a
minimal DFA A

Learning
[le]

Angluin’s algorithm

@ algorithm for learning DFA (over X))

@ learning a regular language L(.A) C ¥* by constructing a
minimal DFA A

@ components:
o Learner:

@ initially knows nothing about A
@ tries to learn A
@ proposes hypothetical automaton H

Learning
[le]

Angluin’s algorithm

@ algorithm for learning DFA (over X))

@ learning a regular language L(.A) C ¥* by constructing a
minimal DFA A

@ components:
o Learner:

o initially knows nothing about A
@ tries to learn A
@ proposes hypothetical automaton H

o Teacher:
@ knows A

@ answers membership queries of Learner (w € L(A))

Learning
[le]

Angluin’s algorithm

@ algorithm for learning DFA (over X))

@ learning a regular language L(.A) C ¥* by constructing a
minimal DFA A

@ components:
o Learner:

o initially knows nothing about A
@ tries to learn A
@ proposes hypothetical automaton H

o Teacher:
8 knows A)
o answers membership queries of Learner (w € L(.A))
o Oracle:
8 knows A
@ answers equivalence queries of Learner (L(H)

L(A))

Learning
o]]

Angluin’s algorithm

Teacher

ves/no answer

Learner

yes or
counter example

Oracle

Learning MSCs

Presentation outline

© Learning MSCs

Learning MSCs
@00

o Learning MPA from examples (MSCs)

Learning MSCs
@00

o Learning MPA from examples (MSCs)

o extending Angluin’s algorithm

@ Input: linearizations of MSCs
@ positive scenarios are included in the language to learn
¢ negative scenarios must not be contained

@ positive and negative scenarios form system behavior

Learning MSCs
@00

o Learning MPA from examples (MSCs)

o extending Angluin’s algorithm
@ Input: linearizations of MSCs

@ positive scenarios are included in the language to learn
¢ negative scenarios must not be contained

@ positive and negative scenarios form system behavior

@ correspondence between MPA and regular word languages
is needed (because Angluin’s algorithm is designed form
learning regular word languages)

v
RWTH

Learning MSCs
(o] Jo}

Teacher

yes/no answer

Learner

yes or
counter example

(given as MSC)

Learning MSCs
(o] Jo}

Learner

ves or
| counter example
I (given as MSC)

- - - - - — — 2 L - - - -

computer user

Learning MSCs
ooe

A simple Negotiation Protocol

» q » q req req
1' p req req chal chal
req req chal chal just just
acc Tef just Just chal chal
acc ref just just
——— — ——— — acc ref
——— — ——— —
—— E—— —— E——

membership queries: 9675
user queries: 65

Classes of learnable regular MSC languages

Presentation outline

@ Classes of learnable regular MSC languages

Classes of learnable regular MSC languages
@000

universally-bounded MPA

Definition: an MPA is universally-bounded iff
o its MSC language is universally-bounded
@ informally: there is no run needing a buffer of infinite size

o Example of a universally-bounded MPA (bound: 2)

Aj: Ay:

£cq ack
1!2(req) 271(req)| |2'1(ack)

req

112(req) | |172(ack) \\\ 271(req) red

Classes of learnable regular MSC languages
0e00

existentially-bounded MPA

Definition: an MPA is existentially-bounded iff
o its MSC language is existentially-bounded (buffer size B)
o informally: there is a run which needs a buffer of size < B
o Example of an existentially-bounded MPA (bound B=1)

req

req
req

req

Classes of learnable regular MSC languages
[e]e] e}

universally-bounded product MPA

Definition: an MPA is a universally-bounded product MPA if

@ acceptance condition is local (i.e., each process decides on
its own when to halt)

A product MPA is safe/deadlock-free, iff

o from any configuration that is reachable from the initial
configuration you can arrive at a final configuration

Classes of learnable regular MSC languages
[e]e]e]]

Theoretical results

Learnable classes: (channel size a priori fixed)

@ universally-bounded MPA
o existentially-bounded MPA
@ universally-bounded safe product MPA

Not learnable
@ universally-bounded product MPA

Tool Presentation

Presentation outline

© Tool Presentation

Algorithm

The learning chain (very coarse description)

@ Teacher specifies learning setup (V/3 and bound B)

© Teacher provides set of positive and negative MSCs
© while (Teacher not satisfied)

"
o
o
o

Learner asks set of membership queries
Teacher specifies them (as positive or negative)
Learner provides hypothesis automaton H

Teacher is satisfied or provides counter example

© Success: model was found

Tool Presentation
@0000

Tool Presentation
(o] Jelele]

@ synthesis of design models from scenario-based
requirement specifications using learning

@ incremental generation of design models

@ counterexamples for inconsistent requirements

@ generation of minimal model

Disadvantages

o for some protocols: huge memory requirements due to
enormous number of linearizations

Tool Presentation
[e]e] lele]

Implementation of learning approach: Smyle

S(ynthesizing) M(odels) (b)Y L(earning from) E(xamples)
@ written in Java 1.5

@ uses LearnLib library from University of Dortmund
(Lehrstuhl 5 Prof. Dr. Bernhard Steffen)

@ Tool homepage:
http://smyle.in.tum.de

@ More concise information in: AIB-2006-12
Replaying Play in and Play out: Synthesis of Design
Models from Scenarios by Learning

http://smyle.in.tum.de

Tool Demo

Tool Presentation
[e]e]e] o]

TEmie
Eait_ Analyze

FEIEIE

LookAndFeel Aboy

tENC)

I
[courier

213 7 o

[ampie No: 1
graph DFA e Bapecire fonsize=10) et (st
color =red], g color=: led] q6 label color =red]|
L Tape Ao -5 oL Taber ot Lol i b d
42 a1 lebe e o5 - a
label="qlp(a)’], g5 -> q6 fabel

->q Jpars 47 <> aL Uabal--graart a7 -5 ai fad]

[Bampie No: 1 T Bampiene: 1
| {
; Ermz: @ nﬁm)w‘q”<7Hp\n(z\?(u’p—‘——(av(nn(a\y(q\p(©5(5)(3(a)
Yo chose. o, op g Tauen Wy
K ki Line Example Type. Il
i -
7] =]
11 1ding 13 e 2
g o Au
R
v .] 5
S -
2 Not yet processed queries
oo = e T |
R ——" . et ol
B B
= a FORETY
<> [a‘ﬂ(ﬂ/, pla(), a7p(a), pla(@), p7a(), u‘
,CQ\,{C o b b)
) a oG ol
loi(a), glp(a). plafa), plad), p75(), o
st v w35 5 e pac- e
: = 50 i, . o 7
nting b o] E| £ plot) o -
ening b teovfr]<] s [oo [o T
nring to L
anting to kv 13, 3, 01 =

0->

2", color=red}, g3 label
'pla@)] 90 -> 2 fabel=

'} 92 -> 93 flabel ="
"q7p(@)L 94 ~> 1 fabel ="plq(a)"} 4 -
06 ~> 07 fabel="a7p(@)%; 46 ~> q1 fab

color=red, g fabel
"qip(@)’s q1 -
“plga)’) 62 -> g1 label=qip(a).
>q1

‘pla@) a5

Tool Presentation
[ee]e]e]]

Thank you for your attention! J

	Introduction
	
	
	

	Learning
	

	Learning MSCs
	

	Classes of learnable regular MSC languages
	

	Tool Presentation
	

